id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
3484448
<gh_stars>1-10 # Generated by Django 2.2.6 on 2019-12-10 08:04 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Exam', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('total_duration', models.DurationField(default=30)), ], ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('total_duration', models.DurationField(default=30)), ], ), migrations.CreateModel( name='Topic', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ], ), migrations.CreateModel( name='QuestionGroup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('exam', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exam.Exam')), ('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exam.Question')), ], ), migrations.AddField( model_name='question', name='topic', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exam.Topic'), ), migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=200)), ('is_right_answer', models.BooleanField(default=False)), ('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exam.Question')), ], ), ]
StarcoderdataPython
5133696
from yacs.config import CfgNode as CN __all__ = ['get_default_cfg'] _C = CN() _C.OUTPUT_DIR = "results" _C.DATASET = CN() _C.DATASET.PATH = '' _C.MODEL = CN() _C.TRAIN = CN() _C.TRAIN.BASE_LEARNING_RATE = 0.05 _C.TRAIN.LEARNING_DECAY_RATE = 0.1 _C.TRAIN.LEARNING_DECAY_STEPS = [1000, 2000] _C.TRAIN.TRAIN_EPOCHS = 3000 _C.TRAIN.SNAPSHOT_FREQ = 100 _C.TRAIN.REPORT_FREQ = 30 def get_default_cfg(): return _C.clone()
StarcoderdataPython
32989
<filename>packages/validate_and_forward/lambda_handler.py<gh_stars>1-10 import json import os import traceback from datetime import datetime from uuid import uuid4 import boto3 from aws.ssm import get_ssm_params from database import Jobs from gp_file_parser.parser import parse_gp_extract_file_s3 from jobs.statuses import InputFolderType, InvalidErrorType, JobStatus, ParseStatus from lr_logging import error, get_cloudlogbase_config, success from lr_logging.exceptions import InvalidFilename, InvalidGPExtract, InvalidStructure from mesh import AWSMESHMailbox, get_mesh_mailboxes from pynamodb.exceptions import PutError, PynamoDBConnectionError, QueryError from spine_aws_common.lambda_application import LambdaApplication class ValidateAndForward(LambdaApplication): """ Lambda: Responsible for creating a Job, tracking it DynamoDB and then sending a given input file off to DPS. If the input file is invalid, then reject Trigger: extracts_inbound inputs bucket """ def __init__(self): super().__init__(additional_log_config=get_cloudlogbase_config()) self.job_id = None self.s3 = boto3.client("s3") self.mesh_params = get_ssm_params( self.system_config["MESH_SSM_PREFIX"], self.system_config["AWS_REGION"] ) def initialise(self): pass def start(self): try: self.job_id = str(uuid4()) self.input_bucket = self.event["Records"][0]["s3"]["bucket"]["name"] self.input_file = self.event["Records"][0]["s3"]["object"]["key"] except KeyError as e: self.response = error( "validate_and_forward Lambda tried to access missing key", self.log_object.internal_id, error=traceback.format_exc(), ) raise e self.create_initial_job() self.filename, file = self.get_file_contents() # get gp_file extract stats for job's table # Also handles rejection if file can't be parsed and validations fails try: practice_code, num_of_records = self.parse_gp_extract( self.input_bucket, self.input_file ) self.log_object.write_log( "LRSDI02", log_row_dict={ "input_file": self.input_file, "job_id": self.job_id, }, ) except (InvalidStructure, InvalidGPExtract, InvalidFilename) as exc: self.update_job_status( JobStatus.REJECTED.value, ParseStatus.PARSE_FAILED.value ) message = json.dumps(self.process_invalid_message(exc)) self.handle_rejection(InputFolderType.REJECTED, message) self.log_object.write_log( "LRSDW01", log_row_dict={ "input_file": self.input_file, "job_id": self.job_id, "reason": exc, }, ) self.response = success( message="Lambda application stopped gp extract input file rejected, rejected file handled", internal_id=self.log_object.internal_id, job_id=self.job_id, file=self.input_file, reason=exc, ) return self.response self.update_job_info(practice_code, num_of_records) self.send_mesh_file(self.filename, file) self.update_job_status(JobStatus.SENT_TO_DPS.value) self.response = success( message="validate_and_forward file sent", internal_id=self.log_object.internal_id, job=self.job_id, file=self.input_file, ) def create_initial_job(self): """Creates an initial Job item in DynamoDb.""" try: job_item = Jobs( self.job_id, PracticeCode=ParseStatus.NOT_PARSED.value, FileName=self.input_file, Timestamp=datetime.now(), StatusId=JobStatus.PENDING.value, ) job_item.save() self.log_object.write_log( "LRSDI01", log_row_dict={ "job_id": self.job_id, "input_file": self.input_file, }, ) except (PynamoDBConnectionError, PutError) as e: self.log_object.write_log( "LRSDC01", log_row_dict={ "job_id": self.job_id, "input_file": self.input_file, "error": e, }, ) self.response = error( message="validate_and_forward failed to create a job item before processing the gp_extract file", internal_id=self.log_object.internal_id, job_id=self.job_id, file=self.input_file, ) raise e def parse_gp_extract(self, input_bucket: str, input_file: str) -> tuple[str, int]: """Handler to process an uploaded S3 object containing a GP flat file extract Returns: extract file data: practice_code & num_of_records """ self.upload_date = datetime.now() input_file_dict = parse_gp_extract_file_s3( self.s3, input_bucket, input_file, self.upload_date, ) practice_code = input_file_dict["practice_code"] num_of_records = len(input_file_dict["records"]) return practice_code, num_of_records def get_file_contents(self): filename = os.path.basename(str(self.input_file)) file = ( self.s3.get_object( Bucket=self.input_bucket, Key=self.input_file, )["Body"] .read() .decode("utf-8") ) return filename, file def send_mesh_file(self, filename: str, file): listrec_mesh_id, dps_mesh_id = get_mesh_mailboxes( json.loads(self.mesh_params["mesh_mappings"]), self.mesh_params["listrec_dps_workflow"], ) mesh = AWSMESHMailbox(listrec_mesh_id, self.log_object) mesh.send_message(dps_mesh_id, filename, file, overwrite=True) self.log_object.write_log( "LRSDI04", log_row_dict={ "job_id": self.job_id, "input_file": self.input_file, "dps_mesh_id": dps_mesh_id, }, ) def update_job_info(self, practice_code: str, num_of_records: int): """Creates Job items in DynamoDb. Args: practice_code (str): GP practice code of GP extract. num_of_records (int): Number of records in GP extract. """ try: job = Jobs.IdIndex.query(self.job_id) for j in job: j.PracticeCode = practice_code j.TotalRecords = num_of_records j.save() self.log_object.write_log( "LRSDI03", log_row_dict={ "upload_filename": self.input_file, "job_id": self.job_id, }, ) except (PynamoDBConnectionError, PutError, QueryError) as e: self.log_object.write_log( "LRSDC02", log_row_dict={ "job_id": self.job_id, "input_file": self.input_file, "error": e, }, ) self.response = error( message="validate_and_forward failed to update job before sending to DPS", internal_id=self.log_object.internal_id, job_id=self.job_id, file=self.input_file, ) raise e def update_job_status(self, status_code: str, practice_code=None): """Updates Job Status in DynamoDB""" try: job = Jobs.IdIndex.query(self.job_id) if practice_code is None: for j in job: j.StatusId = status_code j.save() else: for j in job: j.StatusId = status_code j.PracticeCode = practice_code j.save() self.log_object.write_log( "LRSDI05", log_row_dict={ "upload_filename": self.input_file, "job_id": self.job_id, "status_code": status_code, }, ) except (PynamoDBConnectionError, PutError, QueryError) as e: self.log_object.write_log( "LRSDC03", log_row_dict={ "job_id": self.job_id, "input_file": self.input_file, "error": e, }, ) self.response = error( message="validate_and_forward failed to update job after sending to DPS", internal_id=self.log_object.internal_id, job_id=self.job_id, file=self.input_file, ) raise e def cleanup_files(self, bucket: str, key: str): """Cleanup file that have already been processed e.g. sent DPS file from s3 or rejected""" try: self.s3.delete_object(Bucket=bucket, Key=key) self.log_object.write_log( "LRSDI03", log_row_dict={"key": key, "bucket": bucket}, ) except Exception as e: self.log_object.write_log( "LRSDC02", log_row_dict={"key": key, "bucket": bucket}, ) raise e def handle_rejection(self, prefix: InputFolderType, error_message: str = None): """Handles a rejected GP extract file, stores input file and log in output bucket Args: prefix (str): S3 folder prefix for where to place the handled file error_message (str): message to handle. """ rejection_output_bucket = self.system_config["REJECTION_BUCKET"] key = f"{prefix.value}{self.filename}" self.s3.copy_object( Bucket=rejection_output_bucket, Key=key, CopySource={"Bucket": self.input_bucket, "Key": self.input_file}, ) if error_message: log_filename = f"{self.filename}-RejectedFile-{self.job_id}.json" log_key = f"{InputFolderType.REJECTED.value}logs/{log_filename}" self.s3.put_object( Body=error_message, Bucket=rejection_output_bucket, Key=log_key ) self.cleanup_files(self.input_bucket, self.input_file) def process_invalid_message(self, exception: Exception) -> str: """Create a formatted error message string based on raised exception, used to store log files Args: exception (Exception): exception raised Returns: dict: dictionary of failed file information """ rejection_log = {"file": self.input_file, "upload_date": str(self.upload_date)} if isinstance(exception, InvalidStructure): error = { "error_type": InvalidErrorType.STRUCTURE.value, "message": [exception.args[0]], } elif isinstance(exception, InvalidGPExtract): msg = exception.args[0] error = { "error_type": InvalidErrorType.RECORDS.value, "total_records": msg["total_records"], "total_invalid_records": len(msg["invalid_records"]), "message": msg["invalid_records"], } elif isinstance(exception, InvalidFilename): msg = exception.args[0]["message"] error = {"error_type": InvalidErrorType.FILENAME.value, "message": msg} rejection_log.update(error) return rejection_log
StarcoderdataPython
6516856
<reponame>hitotsunorb1/Zope ############################################################################## # # Copyright (c) 2004, 2005 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Adapter test fixtures """ from zope.component import adapter from zope.interface import Interface from zope.interface import implementer class IAdaptable(Interface): """This is a Zope interface. """ def method(): """This method will be adapted """ class IAdapted(Interface): """The interface we adapt to. """ def adaptedMethod(): """A method to adapt. """ class IOrigin(Interface): """Something we'll adapt""" class IDestination(Interface): """The result of an adaption""" def method(): """Do something""" @implementer(IAdaptable) class Adaptable(object): def method(self): return "The method" @implementer(IAdapted) @adapter(IAdaptable) class Adapter(object): def __init__(self, context): self.context = context def adaptedMethod(self): return "Adapted: %s" % self.context.method() @implementer(IOrigin) class Origin(object): pass @implementer(IDestination) class OriginalAdapter(object): def __init__(self, context): self.context = context def method(self): return "Original" @implementer(IDestination) class OverrideAdapter(object): def __init__(self, context): self.context = context def method(self): return "Overridden"
StarcoderdataPython
6632999
<filename>scrapeops_python_logger/utils/error_handling.py import functools from scrapeops_python_logger.exceptions import ScrapeOpsAPIResponseError def exception_handler(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except ScrapeOpsAPIResponseError as e: pass except Exception as e: pass return wrapper
StarcoderdataPython
12807607
from .naming import frozendict class TypeCheck(object): """ Encapsulate the results of a type check pass. """ class Error(Exception): pass @staticmethod def success(): return TypeCheck(True, "") @staticmethod def failure(msg): return TypeCheck(False, msg) def __init__(self, success, message): self._success = success self._message = message def message(self): return self._message def ok(self): return self._success def __repr__(self): if self.ok(): return 'TypeCheck(OK)' else: return 'TypeCheck(FAILED): %s' % self._message class TypeFactoryType(type): _TYPE_FACTORIES = {} def __new__(mcs, name, parents, attributes): """Args: mcs(metaclass): the class object to create an instance of. Since this is actually creating an instance of a type factory class, it's really a metaclass. name (str): the name of the type to create. parents (list(class)): the superclasses. attributes (map(string, value)): """ if 'PROVIDES' not in attributes: return type.__new__(mcs, name, parents, attributes) else: provides = attributes['PROVIDES'] new_type = type.__new__(mcs, name, parents, attributes) TypeFactoryType._TYPE_FACTORIES[provides] = new_type return new_type TypeFactoryClass = TypeFactoryType('TypeFactoryClass', (object,), {}) class TypeFactory(TypeFactoryClass): @staticmethod def get_factory(type_name): assert type_name in TypeFactoryType._TYPE_FACTORIES, ( 'Unknown type: %s, Existing factories: %s' % ( type_name, TypeFactoryType._TYPE_FACTORIES.keys())) return TypeFactoryType._TYPE_FACTORIES[type_name] @staticmethod def create(type_dict, *type_parameters, **kwargs): """ Implemented by the TypeFactory to produce a new type. Should return: reified type (with usable type.__name__) """ raise NotImplementedError("create unimplemented for: %s" % repr(type_parameters)) @staticmethod def new(type_dict, type_factory, *type_parameters, **kwargs): """ Create a fully reified type from a type schema. """ type_tuple = (type_factory,) + type_parameters if type_tuple not in type_dict: factory = TypeFactory.get_factory(type_factory) reified_type = factory.create(type_dict, *type_parameters, **kwargs) type_dict[type_tuple] = reified_type return type_dict[type_tuple] @staticmethod def wrapper(factory): assert issubclass(factory, TypeFactory) def wrapper_function(*type_parameters): return TypeFactory.new({}, factory.PROVIDES, *tuple( [typ.serialize_type() for typ in type_parameters])) return wrapper_function @staticmethod def load(type_tuple, into=None): """ Determine all types touched by loading the type and deposit them into the particular namespace. """ type_dict = {} TypeFactory.new(type_dict, *type_tuple) deposit = into if (into is not None and isinstance(into, dict)) else {} for reified_type in type_dict.values(): deposit[reified_type.__name__] = reified_type return deposit @staticmethod def load_json(json_list, into=None): """ Determine all types touched by loading the type and deposit them into the particular namespace. """ def l2t(obj): if isinstance(obj, list): return tuple(l2t(L) for L in obj) elif isinstance(obj, dict): return frozendict(obj) else: return obj return TypeFactory.load(l2t(json_list), into=into) @staticmethod def load_file(filename, into=None): import json with open(filename) as fp: return TypeFactory.load_json(json.load(fp), into=into) class TypeMetaclass(type): def __instancecheck__(cls, other): if not hasattr(other, 'type_parameters'): return False if not hasattr(other, '__class__'): return False if cls.__name__ != other.__class__.__name__: return False return cls.type_factory() == other.type_factory() and ( cls.type_parameters() == other.type_parameters()) def __new__(mcls, name, parents, attributes): """Creates a new Type object (an instance of TypeMetaclass). Args: name (str): the name of the new type. parents (list(str)): a list of superclasses. attributes: (???): a map from name to value for "parameters" for defining the new type. """ return type.__new__(mcls, name, parents, attributes) class Type(object): @classmethod def type_factory(cls): """ Return the name of the factory that produced this class. """ raise NotImplementedError @classmethod def type_parameters(cls): """ Return the type parameters used to produce this class. """ raise NotImplementedError @classmethod def serialize_type(cls): return (cls.type_factory(),) + cls.type_parameters() @classmethod def dump(cls, fp): import json json.dump(cls.serialize_type(), fp) def check(self): """ Returns a TypeCheck object explaining whether or not a particular instance of this object typechecks. """ raise NotImplementedError
StarcoderdataPython
5128329
<filename>flybirds/core/driver/screen.py # -*- coding: utf-8 -*- """ screen proxy """ from flybirds.core.global_context import GlobalContext def screen_shot(path): GlobalContext.screen.screen_shot(path) def screen_link_to_behave(scenario, step_index, tag=None): GlobalContext.screen.screen_link_to_behave(scenario, step_index, tag)
StarcoderdataPython
6423649
# ABC002a import sys input = sys.stdin.readline sys.setrecursionlimit(10**6) print(max(tuple(map(int, input().split()))))
StarcoderdataPython
185167
<gh_stars>1-10 """Module to store EnforceTyping exceptions.""" class EnforcedTypingError(TypeError): """Class to raise errors relating to static typing decorator."""
StarcoderdataPython
6646847
<gh_stars>0 """ Checks database validity. Checks if word.word and word.bad_variant are equal (case insensetive) Checks if there is only one uppercase letter in word.word and word.bad_variant """ import unittest from models import Session, Word class WordsTest(unittest.TestCase): def test_word_and_bad_variant_equality(self): session = Session() for word in session.query(Word).all(): self.assertEqual(word.word.lower(), word.bad_variant.lower(), msg=f"WORD ID: {word.id}") session.close() def test_only_one_stress_in_word(self): session = Session() for word in session.query(Word).all(): self.assertEqual(1, sum([char.isupper() for char in word.word]), msg=f"WORD ID: {word.id}") self.assertEqual( 1, sum([char.isupper() for char in word.bad_variant]), msg=f"WORD ID: {word.id}", ) session.close() if __name__ == "__main__": unittest.main()
StarcoderdataPython
5127881
import os import sys import json import webbrowser import requests from urllib import parse GET_INFO = False url = "https://api.bilibili.com/x/v2/dm/subtitle/draft/save" bvid = "BV1qf4y1B7D3" oid = "245340306" if GET_INFO: webbrowser.open_new_tab(f"http://api.bilibili.com/x/web-interface/view?bvid={bvid}") sys.exit(0) config = os.path.join(__file__,'..','..','config.json') with open(config,'r') as f: config = json.load(f) csrf = "" cookie = config.get('bilibili_cookie','') for line in cookie.split(";"): line = line.strip() if line.startswith("bili_jct="): csrf = line[len("bili_jct=") :] with open('test/test.bcc','r') as f: subtitle = f.read() lang = "en-US" payload = f'lan={lang}&submit=true&csrf={csrf}&sign=false&bvid={bvid}&type=1&oid={oid}&{parse.urlencode({"data":subtitle})}' headers = { 'Cookie': 'bfe_id=6f285c892d9d3c1f8f020adad8bed553; bili_jct=9f0d2f125fb02375a2938581cb08a373; sid=kq8c5ukb; DedeUserID=12895307; DedeUserID__ckMd5=4786945f2e41f323; SESSDATA=90c4a3a0%2C1611422137%2C5c6a6*71', 'Content-Type': 'application/x-www-form-urlencoded' } response = requests.request("POST", url, headers=headers, data = payload) print(response.text)
StarcoderdataPython
1818389
<filename>website/webQuery.py<gh_stars>0 from flask import Flask, url_for, render_template, request, redirect import sys sys.path.append('../') import retrival sys.path.append('website') import time import urllib app = Flask(__name__) links = [] @app.route('/<nextQ>', methods=['POST', 'GET']) def homeRedirect(nextQ): error = None if request.method == 'GET': pastTime = time.time() text = nextQ linkObj = retrival.Retrival() linkObj.searchRequest(str(text)) links = linkObj.flink for link in links: links[links.index(link)] = urllib.parse.unquote(link) dym = linkObj.dym if dym != [None]: dym = ' '.join(dym) t = str(time.time() - pastTime) if links != []: return render_template('index.html', name=links, timming=t) elif links == []: if dym == [None] or dym == []: return render_template('index.html', error='Search Not Found!', timming=t) elif dym != [None]: return render_template('index.html', instead=dym, timming=t) error = 'Invalid' elif request.method == 'POST': return redirect("", code=303) return render_template('index.html', error=error) @app.route('/', methods=['POST', 'GET']) def home(): error = None if request.method == 'POST': if request.form['query']: pastTime = time.time() text = request.form['query'] linkObj = retrival.Retrival() linkObj.searchRequest(str(text)) links = linkObj.flink dym = linkObj.dym if dym != [None]: dym = ' '.join(dym) for link in links: links[links.index(link)] = urllib.parse.unquote(link) t = str(time.time() - pastTime) if links != []: return render_template('index.html', name=links, timming=t) elif links == []: if dym == [None] or dym == []: return render_template('index.html', error='Search Not Found!', timming=t) elif dym != [None]: return render_template('index.html', instead=dym, timming=t) error = 'Invalid' return render_template('index.html', error=error) if __name__ == '__main__': app.run()
StarcoderdataPython
3287882
#!/usr/bin/env python3 import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt from cartopy.io.img_tiles import OSM imagery = OSM() fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=imagery.crs) ax.set_extent([-119.0, -116, 32, 34], crs=ccrs.PlateCarree()) ax.gridlines() # #states_provinces = cfeature.NaturalEarthFeature( # category='cultural', # name='admin_1_states_provinces_lines', # scale='10m', # facecolor='none') # ax.add_feature(states_provinces, edgecolor='gray') # ax.add_feature(cfeature.BORDERS, linestyle=":") #ax.add_feature(cfeature.STATES.with_scale('10m')) land_10m = cfeature.NaturalEarthFeature('physical', 'land', '10m', edgecolor='black', facecolor='grey' #facecolor=cfeature.COLORS['land'] ) coast_10m = cfeature.NaturalEarthFeature('physical', 'coastline', '10m', edgecolor='black', facecolor='white') #ocean_10m = cfeature.NaturalEarthFeature('physical', 'ocean', '10m', # edgecolor='black', # facecolor='blue') ax.add_feature(land_10m) ax.add_feature(coast_10m) #ax.add_feature(ocean_10m) # ax = plt.axes(projection=ccrs.PlateCarree()) # ax.set_extent([-119.12, -116.2, 32.5, 33.9], crs=ccrs.PlateCarree()) #ax.add_image(imagery, 5) #ax.coastlines('10m') plt.show()
StarcoderdataPython
9792128
<filename>snakeai/agent/test.py class test(): def __init__(self): self.flag = True
StarcoderdataPython
6684018
<filename>mapper.py from utils import get_env_vars import yaml import json import os class Mapper: def __init__(self, env_vars, log) -> None: self.log = log self.mapping_file = env_vars['MAPPING_FILE'] self.mapping_folder = env_vars['MAPPING_FOLDER'] self.load() def load(self): ''' Load the mapping files with the mappings ''' self.mapping_files = [] dir_path = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(dir_path, self.mapping_file)) as file: self.mappings = yaml.load(file, Loader=yaml.FullLoader) if self.mapping_folder[0] != '/': self.mapping_folder = os.path.join(dir_path, self.mapping_folder) if os.path.exists(self.mapping_folder): for mapping_file in os.listdir(self.mapping_folder): with open(os.path.join(self.mapping_folder, mapping_file)) as file: self.mapping_files.append( {"file": mapping_file, "content": json.load(file)}) def apply_mapping(self, data): ''' Extend the object depends on the configured mappings ''' for mapping in self.mappings: if(all(k in data != None for k in mapping['from'])): mapping_file = next( x for x in self.mapping_files if x['file'] == mapping['file']) if mapping_file is None: self.log.info(f"Mapping file: '{mapping['file']}' not found") continue mapping_found = False for map_item in mapping_file['content']: if(all(data[k] == map_item[k] for k in mapping['from'])): data[mapping['to']] = map_item[mapping['to']] self.log.info(f"Mapping, {mapping}, Map_item: {map_item}") mapping_found = True break if not mapping_found: self.log.info(f"No mapping found for Mapping: {mapping}") data[mapping['to']] = 'NO_MAPPING_FOUND'
StarcoderdataPython
9695459
########################################################################## # MediPy - Copyright (C) Universite de Strasbourg # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ########################################################################## import logging import operator import numpy from vtk import vtkDataArray, vtkImageData, vtkImageExport, vtkImageImport, vtkLookupTable import vtk.util.numpy_support from vtk.util import vtkConstants import medipy.base from medipy.vtk import vtkColorTransferFunctionWithAlpha, vtkEnhancedLookupTable def array_to_vtk_image(array, copy_data, data_type="scalar"): """ Create an ``vtkImage`` matching the contents and type of given array. If ``copy_data`` is ``True``, then the data of the will be copied. Otherwise the data will be shared, and the array **must not** be destroyed before the ``vtkImage``. ``data_type`` specifies how the array should be interpreted : either as a n-array of scalars (``data_type="scalar"``) or as an n-1 array of vectors (``data_type="vector"``). """ if data_type not in ["scalar", "vector"] : raise medipy.base.Exception("Unknown data_type: {0}".format(repr(data_type))) if data_type == "scalar" : ndim = array.ndim elif data_type == "vector" : ndim = array.ndim-1 if ndim > 3 : raise medipy.base.Exception( "Cannot convert a {0} array of dimension {1}".format(data_type, array.ndim)) importer = vtkImageImport() if numpy.iscomplexobj(array) : # Get the first element of the array element = array.flat.next() scalar_type = vtk.util.numpy_support.get_vtk_array_type(element.real.dtype) else : scalar_type = vtk.util.numpy_support.get_vtk_array_type(array.dtype) importer.SetDataScalarType(scalar_type) if data_type == "scalar" : number_of_components = 1 elif data_type == "vector" : number_of_components = array.shape[ndim] if numpy.iscomplexobj(array) : number_of_components *= 2 importer.SetNumberOfScalarComponents(number_of_components) extent = 6*[0] extent[1] = array.shape[ndim-1]-1 if ndim >= 2 : extent[3] = array.shape[ndim-2]-1 if ndim >= 3 : extent[5] = array.shape[ndim-3]-1 importer.SetDataExtent(extent) importer.SetWholeExtent(extent) size = array.itemsize*reduce(operator.mul, array.shape, 1) if copy_data : importer.CopyImportVoidPointer(array, size) else : importer.SetImportVoidPointer(array, size) importer.Update() return importer.GetOutput() def vtk_image_to_array(vtk_image) : """ Create an ``numpy.ndarray`` matching the contents and type of given image. If the number of scalars components in the image is greater than 1, then the ndarray will be 4D, otherwise it will be 3D. """ exporter = vtkImageExport() exporter.SetInput(vtk_image) # Create the destination array extent = vtk_image.GetWholeExtent() shape = [extent[5]-extent[4]+1, extent[3]-extent[2]+1, extent[1]-extent[0]+1] if vtk_image.GetNumberOfScalarComponents() > 1: shape += [vtk_image.GetNumberOfScalarComponents()] dtype = vtk.util.numpy_support.get_numpy_array_type(vtk_image.GetScalarType()) array = numpy.zeros(shape, dtype=dtype) exporter.Export(array) return array def vtk_image_to_medipy_image(vtk_image, medipy_image): """ Create an ``medipy.base.Image`` matching the contents and type of given image. """ if medipy_image is None : medipy_image = medipy.base.Image( (0,0,0), vtk.util.numpy_support.get_numpy_array_type(vtk_image.GetScalarType())) medipy_image.data = vtk_image_to_array(vtk_image) if vtk_image.GetNumberOfScalarComponents() > 1 : medipy_image.data_type = "vector" else : medipy_image.data_type = "scalar" medipy_image.origin = [x for x in reversed(vtk_image.GetOrigin())] medipy_image.spacing = [x for x in reversed(vtk_image.GetSpacing())] # VTK images are not oriented, assume identity medipy_image.direction = numpy.identity(3) return medipy_image def build_vtk_colormap(colormap, vtk_colormap=None) : """ Build either a ``vtkLookupTable`` or a ``vtkColorTransferFunctionWithAlpha`` from the given colormap. The colormap is specified as a custom table -- which must respect the formats of the dictionaries defined in :func:`build_lookup_table` and :func:`build_color_transfer_function_with_alpha`. If ``vtk_colormap`` is ``None``, a new vtk object is created, otherwise ``vtk_colormap`` is used as a container. """ if type(colormap) not in [list, tuple] : colormap_type = str(type(colormap)) raise medipy.base.Exception("Cannot process colormap of type %s"%(colormap_type)) if type(colormap[0][0]) in [list, tuple] : # Stage colormap vtk_colormap = build_color_transfer_function_with_alpha(colormap, vtk_colormap) else : # "Regular" colormap vtk_colormap = build_lookup_table(colormap, vtk_colormap) return vtk_colormap def build_lookup_table(colormap, vtk_colormap=None): """ Build a ``vtkLookupTable`` from a colormap, given as an array of colors. """ if vtk_colormap is None : vtk_colormap = vtkEnhancedLookupTable() vtk_colormap.SetRampToLinear() # Allocate a new colormap to avoid numerous ModifiedEvents to be fired by # the original colormap new_colormap = vtkEnhancedLookupTable() new_colormap.DeepCopy(vtk_colormap) new_colormap.Allocate(len(colormap), len(colormap)) for i in range(len(colormap)) : new_colormap.SetTableValue(i, colormap[i]) vtk_colormap.DeepCopy(new_colormap) vtk_colormap.Modified() return vtk_colormap def build_color_transfer_function_with_alpha(colormap, vtk_colormap=None): """ Build a ``vtkColorTransferFunctionWithAlpha`` from an array of (range, color) """ if vtk_colormap is None : vtk_colormap = vtkColorTransferFunctionWithAlpha() vtk_colormap.RemoveAllPoints() special_points = [] for extent, (r,g,b,a) in colormap: if extent[0] == extent[1]: special_points.append((extent, (r,g,b,a))) else: try : vtk_colormap.AddRGBASegment(extent[0], r, g, b, a, extent[1], r, g, b, a) except : logging.debug("%s %s"%(extent, (r,g,b,a))) for extent, color in special_points: vtk_colormap.AddRGBAPoint(extent[0], r, g, b, a) return vtk_colormap
StarcoderdataPython
8132809
<filename>Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/scripts/xsslint/xsslint/django_linter.py """ Classes for Django Template Linting. """ import re from xsslint.utils import Expression, StringLines from xsslint.reporting import ExpressionRuleViolation class TransExpression(Expression): """ The expression handling trans tag """ def __init__(self, ruleset, results, *args, **kwargs): super().__init__(*args, **kwargs) self.string_lines = StringLines(kwargs['template']) self.ruleset = ruleset self.results = results def validate_expression(self, template_file, expressions=None): """ Validates trans tag expression for missing escaping filter Arguments: template_file: The content of the Django template. results: Violations to be generated. Returns: None """ trans_expr = self.expression_inner # extracting translation string message trans_var_name_used, trans_expr_msg = self.process_translation_string(trans_expr) if not trans_var_name_used or not trans_expr_msg: return # Checking if trans tag has interpolated variables eg {} in translations string. # and testing for possible interpolate_html tag used for it. if self.check_string_interpolation(trans_expr_msg, trans_var_name_used, expressions, template_file): return escape_expr_start_pos, escape_expr_end_pos = self.find_filter_tag(template_file) if not escape_expr_start_pos or not escape_expr_end_pos: return self.process_escape_filter_tag(template_file=template_file, escape_expr_start_pos=escape_expr_start_pos, escape_expr_end_pos=escape_expr_end_pos, trans_var_name_used=trans_var_name_used) def process_translation_string(self, trans_expr): """ Process translation string into string and variable name used Arguments: trans_expr: Translation expression inside {% %} Returns: None """ quote = re.search(r"""\s*['"].*['"]\s*""", trans_expr, re.I) if not quote: _add_violations(self.results, self.ruleset.django_trans_escape_filter_parse_error, self) return None, None trans_expr_msg = trans_expr[quote.start():quote.end()].strip() if _check_is_string_has_html(trans_expr_msg): _add_violations(self.results, self.ruleset.django_html_interpolation_missing, self) return None, None pos = trans_expr.find('as', quote.end()) if pos == -1: _add_violations(self.results, self.ruleset.django_trans_missing_escape, self) return None, None trans_var_name_used = trans_expr[pos + len('as'):].strip() return trans_var_name_used, trans_expr_msg def check_string_interpolation(self, trans_expr_msg, trans_var_name_used, expressions, template_file): """ Checks if the translation string has used interpolation variable eg {variable} but not used interpolate_html tag to escape them Arguments: trans_expr_msg: Translation string in quotes trans_var_name_used: Translation variable used expressions: List of expressions found during django file processing template_file: django template file Returns: True: In case it finds interpolated variables False: No interpolation variables found """ if _check_is_string_has_variables(trans_expr_msg): interpolate_tag, html_interpolated = _is_html_interpolated(trans_var_name_used, expressions) if not html_interpolated: _add_violations(self.results, self.ruleset.django_html_interpolation_missing, self) if interpolate_tag: interpolate_tag.validate_expression(template_file, expressions) return True return def find_filter_tag(self, template_file): """ Finds if there is force_filter tag applied Arguments: template_file: django template file Returns: (None, None): In case there is a violations (start, end): Found filter tag start and end position """ trans_expr_lineno = self.string_lines.index_to_line_number(self.start_index) escape_expr_start_pos = template_file.find('{{', self.end_index) if escape_expr_start_pos == -1: _add_violations(self.results, self.ruleset.django_trans_missing_escape, self) return None, None # {{ found but should be on the same line as trans tag trans_expr_filter_lineno = self.string_lines.index_to_line_number(escape_expr_start_pos) if trans_expr_filter_lineno != trans_expr_lineno: _add_violations(self.results, self.ruleset.django_trans_missing_escape, self) return None, None escape_expr_end_pos = template_file.find('}}', escape_expr_start_pos) # couldn't find matching }} if escape_expr_end_pos == -1: _add_violations(self.results, self.ruleset.django_trans_missing_escape, self) return None, None # }} should be also on the same line trans_expr_filter_lineno = self.string_lines.index_to_line_number(escape_expr_end_pos) if trans_expr_filter_lineno != trans_expr_lineno: _add_violations(self.results, self.ruleset.django_trans_missing_escape, self) return None, None return escape_expr_start_pos, escape_expr_end_pos def process_escape_filter_tag(self, **kwargs): """ Checks if the escape filter and process it for violations Arguments: kwargs: Having force_filter expression start, end, trans expression variable used and templates Returns: None: If found any violations """ template_file = kwargs['template_file'] escape_expr_start_pos = kwargs['escape_expr_start_pos'] escape_expr_end_pos = kwargs['escape_expr_end_pos'] trans_var_name_used = kwargs['trans_var_name_used'] escape_expr = template_file[escape_expr_start_pos + len('{{'): escape_expr_end_pos].strip(' ') # check escape expression has the right variable and its escaped properly # with force_escape filter if '|' not in escape_expr or len(escape_expr.split('|')) != 2: _add_violations(self.results, self.ruleset.django_trans_invalid_escape_filter, self) return escape_expr_var_used, escape_filter = \ escape_expr.split('|')[0].strip(' '), escape_expr.split('|')[1].strip(' ') if trans_var_name_used != escape_expr_var_used: _add_violations(self.results, self.ruleset.django_trans_escape_variable_mismatch, self) return if escape_filter != 'force_escape': _add_violations(self.results, self.ruleset.django_trans_invalid_escape_filter, self) return class BlockTransExpression(Expression): """ The expression handling blocktrans tag """ def __init__(self, ruleset, results, *args, **kwargs): super().__init__(*args, **kwargs) self.string_lines = StringLines(kwargs['template']) self.ruleset = ruleset self.results = results def validate_expression(self, template_file, expressions=None): """ Validates blocktrans tag expression for missing escaping filter Arguments: template_file: The content of the Django template. results: Violations to be generated. Returns: None """ if not self._process_block(template_file, expressions): return filter_start_pos = template_file.rfind('{%', 0, self.start_index) if filter_start_pos == -1: _add_violations(self.results, self.ruleset.django_blocktrans_missing_escape_filter, self) return filter_end_pos = template_file.find('%}', filter_start_pos) if filter_end_pos > self.start_index: _add_violations(self.results, self.ruleset.django_blocktrans_escape_filter_parse_error, self) return escape_filter = template_file[filter_start_pos:filter_end_pos + 2] if len(escape_filter) < len('{%filter force_escape%}'): _add_violations(self.results, self.ruleset.django_blocktrans_missing_escape_filter, self) return escape_filter = escape_filter[2:-2].strip() escape_filter = escape_filter.split(' ') if len(escape_filter) != 2: _add_violations(self.results, self.ruleset.django_blocktrans_missing_escape_filter, self) return if escape_filter[0] != 'filter' or escape_filter[1] != 'force_escape': _add_violations(self.results, self.ruleset.django_blocktrans_missing_escape_filter, self) return def _process_block(self, template_file, expressions): """ Process blocktrans..endblocktrans block Arguments: template_file: The content of the Django template. Returns: None """ blocktrans_string = self._extract_translation_msg(template_file) # if no string extracted might have hit a parse error just return if not blocktrans_string: return if _check_is_string_has_html(blocktrans_string): _add_violations(self.results, self.ruleset.django_html_interpolation_missing, self) return # Checking if blocktrans tag has interpolated variables eg {} # in translations string. Would be tested for # possible html interpolation done somewhere else. if _check_is_string_has_variables(blocktrans_string): blocktrans_expr = self.expression_inner pos = blocktrans_expr.find('asvar') if pos == -1: _add_violations(self.results, self.ruleset.django_html_interpolation_missing, self) return trans_var_name_used = blocktrans_expr[pos + len('asvar'):].strip() # check for interpolate_html expression for the variable in trans expression interpolate_tag, html_interpolated = _is_html_interpolated(trans_var_name_used, expressions) if not html_interpolated: _add_violations(self.results, self.ruleset.django_html_interpolation_missing, self) if interpolate_tag: interpolate_tag.validate_expression(template_file, expressions) return return True def _extract_translation_msg(self, template_file): endblocktrans = re.compile(r'{%\s*endblocktrans.*?%}').search(template_file, self.end_index) if not endblocktrans.start(): _add_violations(self.results, self.ruleset.django_blocktrans_parse_error, self) return return template_file[self.end_index + 2: endblocktrans.start()].strip(' ') class HtmlInterpolateExpression(Expression): """ The expression handling interplate_html tag """ def __init__(self, ruleset, results, *args, **kwargs): super().__init__(*args, **kwargs) self.string_lines = StringLines(kwargs['template']) self.ruleset = ruleset self.results = results self.validated = False self.interpolated_string_var = None trans_expr = self.expression_inner # extracting interpolated variable string name expr_list = trans_expr.split(' ') if len(expr_list) < 2: _add_violations(self.results, self.ruleset.django_html_interpolation_invalid_tag, self) return self.interpolated_string_var = expr_list[1] def validate_expression(self, template_file, expressions=None): """ Validates interpolate_html tag expression for missing safe filter for html tags Arguments: template_file: The content of the Django template. results: Violations to be generated. Returns: None """ # if the expression is already validated, we would not be processing it again if not self.interpolated_string_var or self.validated: return self.validated = True trans_expr = self.expression_inner html_tags = re.finditer(r"""\s*['"]</?[a-zA-Z0-9 =\-'_"]+.*?>['"]""", trans_expr, re.I) for html_tag in html_tags: tag_end = html_tag.end() escape_filter = trans_expr[tag_end:tag_end + len('|safe')] if escape_filter != '|safe': _add_violations(self.results, self.ruleset.django_html_interpolation_missing_safe_filter, self) return return True def _check_is_string_has_html(trans_expr): html_tags = re.search(r"""</?[a-zA-Z0-9 =\-'_":]+>""", trans_expr, re.I) if html_tags: return True def _check_is_string_has_variables(trans_expr): var_tags = re.search(r"""(?<!{){(?!{)[a-zA-Z0-9 =\-'_":]+(?<!})}(?!})""", trans_expr, re.I) if var_tags: return True def _is_html_interpolated(trans_var_name_used, expressions): html_interpolated = False interpolate_tag_expr = None for expr in expressions: if isinstance(expr, HtmlInterpolateExpression): if expr.interpolated_string_var == trans_var_name_used: html_interpolated = True interpolate_tag_expr = expr return interpolate_tag_expr, html_interpolated def _add_violations(results, rule_violation, self): results.violations.append(ExpressionRuleViolation( rule_violation, self ))
StarcoderdataPython
296744
<reponame>chars32/edx_python #Write a function that takes a two-dimensional list (list of lists) of numbers as argument and returns a list #which includes the sum of each row. You can assume that the number of columns in each row is the same. def sum_of_two_lists_row(list2d): final_list = [] for list_numbers in list2d: sum_list = 0 for number in list_numbers: sum_list += number final_list.append(sum_list) return final_list print(sum_of_two_lists([[1,2],[3,4]]))
StarcoderdataPython
1926137
<gh_stars>0 # Copyright (c) 2018 Ansible, Inc. # All Rights Reserved. from ansiblelint import AnsibleLintRule class TaskHasNameRule(AnsibleLintRule): id = '502' shortdesc = 'All tasks should be named' description = 'All tasks should have a distinct name for readability ' + \ 'and for --start-at-task to work' tags = ['task'] _nameless_tasks = ['meta', 'debug', 'include_role', 'import_role', 'include_tasks', 'import_tasks'] def matchtask(self, file, task): return (not task.get('name') and task["action"]["__ansible_module__"] not in self._nameless_tasks)
StarcoderdataPython
259076
<reponame>muglyon/https-github.com-muglyon-DCOP-Decentralised-Control-of-Intelligent-Devices #! python3 # monitoring_area.py - Modelisation of a room import operator import abc import constants as c from random import randint class MonitoringArea(object): __metaclass__ = abc.ABCMeta def __init__(self, id_monitored_area): self.id = id_monitored_area self.front_neighbor = None self.right_neighbor = None self.left_neighbor = None self.current_v = 0 self.previous_v = 0 self.tau = randint(c.MIN_TAU_VALUE, c.INFINITY) def get_neighbors_id_sorted(self): """ Get all neighbors id of the agent sorted by degree (decreasing) :return: neighbors id list sorted by degree :rtype: list """ return self.get_neighbors_id_sorted_except(-1) def get_neighbors_id_sorted_except(self, agent_id): """ Get all neighbors id EXCEPT <agent_id> :param agent_id: id of the agent to ignore :type agent_id: integer :return: neighbors id list sorted by degree :rtype: list """ neighbors = {} if self.left_neighbor is not None and self.left_neighbor.id != int(agent_id): neighbors[str(self.left_neighbor.id)] = self.left_neighbor.get_degree() if self.right_neighbor is not None and self.right_neighbor.id != int(agent_id): neighbors[str(self.right_neighbor.id)] = self.right_neighbor.get_degree() if self.front_neighbor is not None and self.front_neighbor.id != int(agent_id): neighbors[str(self.front_neighbor.id)] = self.front_neighbor.get_degree() neighbors = sorted(neighbors.items(), key=lambda x: x[1], reverse=True) return [int(x) for x, _ in neighbors] def get_degree(self): count = 0 if self.left_neighbor is not None: count += 1 if self.right_neighbor is not None: count += 1 if self.front_neighbor is not None: count += 1 return count def to_string_neighbors(self): """ To String for Neighbors :return: neighbors in string format :rtype: string """ string = "monitored_area " + str(self.id) + " : \n" if self.left_neighbor is not None: string += " | LeftNeighbor : " + str(self.left_neighbor.id) + "\n" if self.right_neighbor is not None: string += " | RightNeighbor : " + str(self.right_neighbor.id) + "\n" if self.front_neighbor is not None: string += " | FrontNeighbor : " + str(self.front_neighbor.id) + "\n" return string def to_json_format(self): data = {"id": self.id, "tau": self.tau, "devices": []} for device in self.device_list: data["devices"].append(device.to_json_format()) return data @abc.abstractmethod def attach_observer(self, observer): return @abc.abstractmethod def add_or_update_device(self): return @abc.abstractmethod def pop_or_reprogram_devices(self): return @abc.abstractmethod def increment_time(self, minutes): return @abc.abstractmethod def has_no_devices(self): return @abc.abstractmethod def set_device_in_critic(self): return
StarcoderdataPython
220233
<filename>src/pycompiler/interpreter.py #!/usr/bin/env python ## # <NAME> # dave at drogers dot us # This software is for instructive purposes. Use at your own risk - not meant to be robust at all. # Feel free to use anything, credit is appreciated if warranted. ## import sys, os, StringIO parent_dir = os.path.abspath( os.path.join(__file__, '../..') ) if not parent_dir in sys.path: sys.path.append(parent_dir) __all__ =['PlhInterpreter'] from globals import * from util import * from translator import * from vm import * from scanner import * class PlhInterpreter: def __init__(self, vm=None, translator=None, scanner=None, outputdir=None): if not outputdir: self.outputdir = os.path.join(os.getcwd(), 'interpreter_files') else: self.outputdir = outputdir if not os.path.exists(outputdir): os.mkdir(outputdir) self.translator = translator self.vm = vm self.trans = translator self.scanner = scanner self.tokfile = os.path.join(self.outputdir, 'tokfile') self.codefile = os.path.join(self.outputdir, 'codefile') self.datafile = os.path.join(self.outputdir, 'datafile') self.tr_outfile = os.path.join(self.outputdir, 'tr_outfile') self.vm_outfile = os.path.join(self.outputdir, 'vm_outfile') def run_file(self, srcfile, interactive=True): """Run srcfile through the scanner, parser, and vm @param srcfile: a PL/H source code file @param interactive: if False, srcfile is run and any stdout is returned but stdin is not available via keyboard @return: string containing stdout from running program if interactive False """ self.scanner = Scanner(srcfile=srcfile, tokfile=self.tokfile) self.scanner.scan() self.trans = PlhTranslator(tokensource=self.tokfile, codefile=self.codefile, datafile=self.datafile, outfile=self.tr_outfile) self.trans.parse() self.vm = VM(outfile=self.vm_outfile, codefile=self.codefile, datafile=self.datafile) if interactive: self.vm.execute() else: sys.stdout.flush() old_stdout = sys.stdout retstring = '' try: sys.stdout = StringIO.StringIO() self.vm.execute() sys.stdout.flush() retstring = sys.stdout.getvalue() finally: sys.stdout = old_stdout return retstring if __name__ == '__main__': outputdir = os.path.join(tempdir, 'interp_main_files') plh = PlhInterpreter(outputdir=outputdir) srcfile = os.path.join(outputdir, 'interp_main.plh') src = \ """declare x(5); numtosort=5; i=1; :in: get x(i); i=i+1; if i<=numtosort then goto in; i=1; :nexti: j=i+1; :nextj: if x(j)<x(i) then do; temp=x(i); x(i)=x(j); x(j)=temp; end; j=j+1; if j<=numtosort then goto nextj; put x(i); i=i+1; if i<=numtosort-1 then goto nexti; put x(numtosort); stop; """ open(srcfile, 'w').write(src) plh.run_file(srcfile) print plh.trans.symbol_table_str()
StarcoderdataPython
8090771
<filename>python-client/swagger_client/models/com_github_appscode_stash_apis_stash_v1alpha1_recovery_spec.py # coding: utf-8 """ stash-server No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.com_github_appscode_stash_apis_stash_v1alpha1_backend import ComGithubAppscodeStashApisStashV1alpha1Backend # noqa: F401,E501 from swagger_client.models.com_github_appscode_stash_apis_stash_v1alpha1_local_spec import ComGithubAppscodeStashApisStashV1alpha1LocalSpec # noqa: F401,E501 from swagger_client.models.com_github_appscode_stash_apis_stash_v1alpha1_local_typed_reference import ComGithubAppscodeStashApisStashV1alpha1LocalTypedReference # noqa: F401,E501 from swagger_client.models.io_k8s_api_core_v1_local_object_reference import IoK8sApiCoreV1LocalObjectReference # noqa: F401,E501 class ComGithubAppscodeStashApisStashV1alpha1RecoverySpec(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'backend': 'ComGithubAppscodeStashApisStashV1alpha1Backend', 'image_pull_secrets': 'list[IoK8sApiCoreV1LocalObjectReference]', 'node_name': 'str', 'paths': 'list[str]', 'pod_ordinal': 'str', 'recovered_volumes': 'list[ComGithubAppscodeStashApisStashV1alpha1LocalSpec]', 'workload': 'ComGithubAppscodeStashApisStashV1alpha1LocalTypedReference' } attribute_map = { 'backend': 'backend', 'image_pull_secrets': 'imagePullSecrets', 'node_name': 'nodeName', 'paths': 'paths', 'pod_ordinal': 'podOrdinal', 'recovered_volumes': 'recoveredVolumes', 'workload': 'workload' } def __init__(self, backend=None, image_pull_secrets=None, node_name=None, paths=None, pod_ordinal=None, recovered_volumes=None, workload=None): # noqa: E501 """ComGithubAppscodeStashApisStashV1alpha1RecoverySpec - a model defined in Swagger""" # noqa: E501 self._backend = None self._image_pull_secrets = None self._node_name = None self._paths = None self._pod_ordinal = None self._recovered_volumes = None self._workload = None self.discriminator = None if backend is not None: self.backend = backend if image_pull_secrets is not None: self.image_pull_secrets = image_pull_secrets if node_name is not None: self.node_name = node_name if paths is not None: self.paths = paths if pod_ordinal is not None: self.pod_ordinal = pod_ordinal if recovered_volumes is not None: self.recovered_volumes = recovered_volumes if workload is not None: self.workload = workload @property def backend(self): """Gets the backend of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :return: The backend of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :rtype: ComGithubAppscodeStashApisStashV1alpha1Backend """ return self._backend @backend.setter def backend(self, backend): """Sets the backend of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. :param backend: The backend of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :type: ComGithubAppscodeStashApisStashV1alpha1Backend """ self._backend = backend @property def image_pull_secrets(self): """Gets the image_pull_secrets of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :return: The image_pull_secrets of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :rtype: list[IoK8sApiCoreV1LocalObjectReference] """ return self._image_pull_secrets @image_pull_secrets.setter def image_pull_secrets(self, image_pull_secrets): """Sets the image_pull_secrets of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. :param image_pull_secrets: The image_pull_secrets of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :type: list[IoK8sApiCoreV1LocalObjectReference] """ self._image_pull_secrets = image_pull_secrets @property def node_name(self): """Gets the node_name of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :return: The node_name of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :rtype: str """ return self._node_name @node_name.setter def node_name(self, node_name): """Sets the node_name of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. :param node_name: The node_name of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :type: str """ self._node_name = node_name @property def paths(self): """Gets the paths of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :return: The paths of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :rtype: list[str] """ return self._paths @paths.setter def paths(self, paths): """Sets the paths of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. :param paths: The paths of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :type: list[str] """ self._paths = paths @property def pod_ordinal(self): """Gets the pod_ordinal of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :return: The pod_ordinal of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :rtype: str """ return self._pod_ordinal @pod_ordinal.setter def pod_ordinal(self, pod_ordinal): """Sets the pod_ordinal of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. :param pod_ordinal: The pod_ordinal of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :type: str """ self._pod_ordinal = pod_ordinal @property def recovered_volumes(self): """Gets the recovered_volumes of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :return: The recovered_volumes of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :rtype: list[ComGithubAppscodeStashApisStashV1alpha1LocalSpec] """ return self._recovered_volumes @recovered_volumes.setter def recovered_volumes(self, recovered_volumes): """Sets the recovered_volumes of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. :param recovered_volumes: The recovered_volumes of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :type: list[ComGithubAppscodeStashApisStashV1alpha1LocalSpec] """ self._recovered_volumes = recovered_volumes @property def workload(self): """Gets the workload of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :return: The workload of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :rtype: ComGithubAppscodeStashApisStashV1alpha1LocalTypedReference """ return self._workload @workload.setter def workload(self, workload): """Sets the workload of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. :param workload: The workload of this ComGithubAppscodeStashApisStashV1alpha1RecoverySpec. # noqa: E501 :type: ComGithubAppscodeStashApisStashV1alpha1LocalTypedReference """ self._workload = workload def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ComGithubAppscodeStashApisStashV1alpha1RecoverySpec): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
StarcoderdataPython
9668258
<reponame>GeorgeVelikov/Surffee<filename>surveys/views/annotation/operation_add_one.py<gh_stars>0 from django.core.exceptions import PermissionDenied from django.shortcuts import redirect from django.views.generic import UpdateView from ...models.survey import Survey, Choice from ...models.annotation import Annotation, Classification, Word from ..helper import check_existing_word_dominates_new_word, check_overwrite_existing_word, create_new_classification, \ delete_overlay_word_classifications class AddOne(UpdateView): def get(self, request, *args, **kwargs): if not request.user.pk: raise PermissionDenied("You are not logged in") self.object = None survey = Survey.objects.get(pk=self.kwargs.get('survey_id')) annotation = Annotation.objects.get(pk=self.kwargs.get('annotation_id')) choice = Choice.objects.get(pk=self.kwargs.get('choice_id')) if request.user.pk != survey.creator.pk: raise PermissionDenied("You do not own the survey") if request.user.pk != annotation.creator.pk: raise PermissionDenied("You do not own the annotation") if request.user.pk != choice.question.survey.creator.pk: raise PermissionDenied("You do not own the choice") classification_name = self.kwargs.get('class') word_text = self.kwargs.get('word_text') leftover_word = choice.choice_text word_count_track = 0 while leftover_word.find(word_text) >= 0: word_start = leftover_word.find(word_text) + word_count_track word_end = word_start + len(word_text) classification_annotation = Classification.objects.filter(name=classification_name, annotation=annotation) if classification_annotation.exists(): check_overwrite_existing_word(choice, classification_annotation, word_text) check_existing_word_dominates_new_word(choice, classification_annotation, annotation, word_text, survey.id) classification = Classification.objects.get(name=classification_name, annotation=annotation) else: classification = create_new_classification(classification_name, annotation) classification.save() delete_overlay_word_classifications(choice, word_start, word_end) word = Word.objects.create(text=word_text, start=word_start, end=word_end, choice=choice, classification=classification) leftover_word = choice.choice_text[word_end::] word_count_track += (word_end - word_count_track) word.save() return redirect('/surveys/'+str(survey.id)+'/annotate/'+str(annotation.id))
StarcoderdataPython
3340539
<gh_stars>0 version = "3.28"
StarcoderdataPython
3214514
import argparse import pandas as pd from tqdm import tqdm from PIL import Image import numpy as np from contextualized_topic_models.datasets.dataset import CTMDataset from sklearn.metrics.pairwise import cosine_similarity from utils import load_model from sentence_transformers import SentenceTransformer, util import pickle import scipy import numpy as np import os os.environ["TOKENIZERS_PARALLELISM"] = "false" parser = argparse.ArgumentParser() parser.add_argument("--text_model", type=str, required=True) parser.add_argument("--image_model", type=str, required=True) parser.add_argument("--tp", type=str, required=True) args = parser.parse_args() text_list = pd.read_csv(open("./Data2021/MediaEvalNewsImagesBatch04articles.tsv", "r"), sep="\t") image_list = pd.read_csv(open("./Data2021/MediaEvalNewsImagesBatch04images.tsv", "r"), sep="\t") texts = [] text_ids = [] for _, r in tqdm(text_list.iterrows(), desc="Loading texts"): if not pd.isnull(r.text): texts.append(r.title + ". " + r.text) text_ids.append(r.articleID) images = [] image_ids = [] for _, r in tqdm(image_list.iterrows(), desc="loading images"): if not pd.isnull(r.imgFile) and os.path.exists(os.path.join("./Data2021/images", r.imgFile)): img = Image.open(os.path.join("./Data2021/images", r.imgFile)) img = img.convert("RGB") images.append(img) image_ids.append(r.imgFile) tp = pickle.load(open(args.tp, "rb")) ctm = load_model(args.text_model, len(tp.vocab)) vctm = load_model(args.image_model, len(tp.vocab)) testing_dataset = tp.transform(text_for_contextual=texts) img_model = SentenceTransformer('clip-ViT-B-32') img_emb = img_model.encode(images, batch_size=128, convert_to_tensor=True, show_progress_bar=True) img_emb = np.array(img_emb.cpu()) image_test_bow_embeddings = scipy.sparse.csr_matrix(np.zeros((len(img_emb), 1))) image_testing_dataset = CTMDataset(X_contextual = img_emb, X_bow=image_test_bow_embeddings ,idx2token = testing_dataset.idx2token) test_topic_dist = ctm.get_doc_topic_distribution(testing_dataset, n_samples=20) v_test_topic_dist = vctm.get_doc_topic_distribution(image_testing_dataset, n_samples=20) dist_sim = cosine_similarity(test_topic_dist, v_test_topic_dist) model_type, n_topics = os.path.basename(args.text_model).split("_")[:2] with open(model_type+"_"+n_topics+"_submission.csv", "w") as out: for doc in tqdm(range(len(texts)), desc="Searching images"): ind_sims = sorted([(s,i) for i, s in enumerate(dist_sim[doc])], reverse=True) ind_sims = [i[1] for i in ind_sims] img_ids = [image_ids[i] for i in ind_sims] print(str(int(text_ids[doc]))+"\t"+"\t".join(img_ids), file=out)
StarcoderdataPython
1804103
<reponame>AndreaVoltan/MyKratos7.0 from __future__ import print_function, absolute_import, division # makes KratosMultiphysics backward compatible with python 2.6 and 2.7 # Importing the Kratos Library import KratosMultiphysics # Import applications import KratosMultiphysics.StructuralMechanicsApplication as StructuralMechanicsApplication # Import base class file import structural_mechanics_solver def CreateSolver(main_model_part, custom_settings): return FormfindingMechanicalSolver(main_model_part, custom_settings) class FormfindingMechanicalSolver(structural_mechanics_solver.MechanicalSolver): """The structural mechanics formfinding solver. This class creates the mechanical solver for formdinding. Public member variables: formfinding_settings -- settings for the formfinding solver. See structural_mechanics_solver.py for more information. """ def __init__(self, main_model_part, custom_settings): # Set defaults and validate custom settings. self.formfinding_settings = KratosMultiphysics.Parameters(""" { "print_formfinding_iterations": false } """) self.validate_and_transfer_matching_settings(custom_settings, self.formfinding_settings) # Validate the remaining settings in the base class. # Construct the base solver. super(FormfindingMechanicalSolver, self).__init__(main_model_part, custom_settings) self.print_on_rank_zero("::[FormfindingMechanicalSolver]:: ", "Construction finished") def _create_solution_scheme(self): return KratosMultiphysics.ResidualBasedIncrementalUpdateStaticScheme() def _create_mechanical_solution_strategy(self): computing_model_part = self.GetComputingModelPart() mechanical_scheme = self.get_solution_scheme() linear_solver = self.get_linear_solver() mechanical_convergence_criterion = self.get_convergence_criterion() builder_and_solver = self.get_builder_and_solver() return StructuralMechanicsApplication.FormfindingUpdatedReferenceStrategy( computing_model_part, mechanical_scheme, linear_solver, mechanical_convergence_criterion, builder_and_solver, self.settings["max_iteration"].GetInt(), self.settings["compute_reactions"].GetBool(), self.settings["reform_dofs_at_each_step"].GetBool(), self.settings["move_mesh_flag"].GetBool(), self.formfinding_settings["print_formfinding_iterations"].GetBool(), self.settings["line_search"].GetBool())
StarcoderdataPython
5045887
<reponame>yuchun1214/Working-Shift-Arrangement-System<gh_stars>1-10 import json import os import csv from django.shortcuts import render from django.template import loader from django.http import HttpResponse, Http404, HttpResponseRedirect from django.views.decorators.csrf import csrf_exempt from django.conf import settings import datetime from . import utils def get_client_ip(request): x_forward_for = request.META.get('HTTP_X_FORWARDED_FOR') if x_forward_for: ip = x_forwarded_for.split(',')[-1].strip() else: ip = request.META.get('REMOTE_ADDR') return ip def set_cookie(response, key, value, days_expire = 7): if days_expire is None: max_age = 365 * 24 * 60 * 60 #one year else: max_age = days_expire * 24 * 60 * 60 expires = datetime.datetime.strftime(datetime.datetime.utcnow() + datetime.timedelta(seconds=max_age), "%a, %d-%b-%Y %H:%M:%S GMT") response.set_cookie(key, value, max_age=max_age, expires=expires, domain=settings.SESSION_COOKIE_DOMAIN, secure=settings.SESSION_COOKIE_SECURE or None) def checkIfLogin(request): username = request.COOKIES.get("username") ip = get_client_ip(request) token = request.COOKIES.get("token") if username == None or token == None: return False expectedToken = utils.md5Hash(ip + username) return token == expectedToken def loginPage(request): if(checkIfLogin(request)): return HttpResponseRedirect('/overview?year=2018') print("======%s=====" % request.COOKIES) template = loader.get_template('Shift/login.html') return HttpResponse(template.render({},request)) @csrf_exempt def login(request): data = json.loads(request.body) if utils.checkLogin(data): # must set the cookie value # In the next version, I'll set the cookie feature just because I'm lazy response = HttpResponse('Ok') set_cookie(response, "username", data["username"],1) ip = get_client_ip(request) token = utils.md5Hash(ip + data["username"]) set_cookie(response, "token", token, 1) return response else: return HttpResponse('Not Ok') def overview(request): # check the query of year is legal if(not checkIfLogin(request)): return HttpResponseRedirect("/index/") rules = utils.getRule(request.GET) if rules != None: months = utils.getCollection(request.GET['year']) rules['monthAttr'] = months template = loader.get_template('Shift/overview.html') return HttpResponse(template.render(rules, request)) else: raise Http404("Overview Page Not Found") def shift(request): # step 1 : check year and month is legal if not checkIfLogin(request): return HttpResponseRedirect("/index/") result = utils.checkYearMonthLegal(request.GET) quality = utils.uploadQuality(result['year'], result['month']) if result != None: shift = utils.getShift('shift' + result['year'] + result['month']) shift['year'] = result['year'] shift['mon'] = request.GET['month'] shift['quality'] = quality template = loader.get_template('Shift/shift.html') return HttpResponse(template.render(shift, request)) else: raise Http404("Shift Page Not Found") @csrf_exempt def postShift(request): # check post mode year = request.GET['year'] month = request.GET['month'] mode = request.GET['mode'] try: data = json.loads(request.body, encoding=False) except: data = {} if mode == 'computing': # step 1 : generate the current month calendar(csv) utils.generateTheCalendarCSV(data,year,month) # step 2 : generate next month calendar(csv) utils.generateNextMonthCSV(year, month) # step 3 : generate holiday(csv) utils.generateHolidayCSV(data, year, month) # step 4 : calculate the shift utils.executeProgram(year, month) # step 5 : update database utils.updateDataBase(year,month) return shift(request) elif mode == 'saving': utils.saveShift(data, year, month) return HttpResponse('Ok') elif mode == 'clear': utils.clearSchedule(year, month) return HttpResponse('Ok') def saveShift(request): year = request.GET['year'] month = request.GET['month'] data = json.loads(request.body, encoding='utf-8') utils.saveShift(data, year, month); # save data to the database return HttpResponse('Ok') # Create your views here.
StarcoderdataPython
8017189
<gh_stars>0 # FILE: vscp.py # # This file is part of the VSCP (https://www.vscp.org) # # The MIT License (MIT) # # Copyright (c) 2000-2017 <NAME>, <NAME>is AB <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import time import struct import socket import sys import datetime from ctypes import * VSCP_DEFAULT_UDP_PORT = 33333 VSCP_DEFAULT_TCP_PORT = 9598 VSCP_ANNNOUNCE_MULTICAST_PORT = 9598 VSCP_MULTICAST_IPV4_ADDRESS_STR = "172.16.31.10" VSCP_DEFAULT_MULTICAST_PORT = 44444 VSCP_DEFAULT_MULTICAST_TTL = 1 VSCP_ADDRESS_SEGMENT_CONTROLLER = 0x00 VSCP_ADDRESS_NEW_NODE = 0xff #VSCP levels VSCP_LEVEL1 = 0 VSCP_LEVEL2 = 1 # VSCP priority VSCP_PRIORITY_0 = 0x00 VSCP_PRIORITY_1 = 0x20 VSCP_PRIORITY_2 = 0x40 VSCP_PRIORITY_3 = 0x60 VSCP_PRIORITY_4 = 0x80 VSCP_PRIORITY_5 = 0xA0 VSCP_PRIORITY_6 = 0xC0 VSCP_PRIORITY_7 = 0xE0 VSCP_PRIORITY_HIGH = 0x00 VSCP_PRIORITY_LOW = 0xE0 VSCP_PRIORITY_MEDIUM = 0xC0 VSCP_PRIORITY_NORMAL = 0x60 VSCP_HEADER_PRIORITY_MASK = 0xE0 VSCP_HEADER_HARD_CODED = 0x10 # If set node nickname is hardcoded VSCP_HEADER_NO_CRC = 0x08 # Don't calculate CRC VSCP_NO_CRC_CALC = 0x08 # If set no CRC is calculated VSCP_MASK_PRIORITY = 0xE0 VSCP_MASK_HARDCODED = 0x10 VSCP_MASK_NOCRCCALC = 0x08 VSCP_LEVEL1_MAXDATA = 8 VSCP_LEVEL2_MAXDATA = (512 - 25) VSCP_NOCRC_CALC_DUMMY_CRC = 0xAA55 # If no CRC cal bit is set the CRC value # should be set to this value for the CRC # calculation to be skipped. VSCP_CAN_ID_HARD_CODED = 0x02000000 # Hard coded bit in CAN frame id # GUID byte positions VSCP_GUID_MSB = 0 VSCP_GUID_LSB = 15 # VSCP event structure class vscpEvent(Structure): _fields_ = [("crc", c_ushort), ("obid", c_ulong), ("timestamp", c_ulong), ("head", c_ushort), ("year", c_ushort), ("month", c_ubyte), ("day", c_ubyte), ("hour", c_ubyte), ("minute", c_ubyte), ("second", c_ubyte), ("vscpclass", c_ushort), ("vscptype", c_ushort), ("guid", c_ubyte * 16), ("sizeData", c_ushort), ("pdata", c_void_p)] # VSCP event ex structure class vscpEventEx(Structure): _fields_ = [("crc", c_ushort), ("obid", c_ulong), ("timestamp", c_ulong), ("head", c_ushort), ("year", c_ushort), ("month", c_ubyte), ("day", c_ubyte), ("hour", c_ubyte), ("minute", c_ubyte), ("second", c_ubyte), ("vscpclass", c_ushort), ("vscptype", c_ushort), ("guid", c_ubyte * 16), ("sizeData", c_ushort), ("data", c_ubyte * VSCP_LEVEL2_MAXDATA)] # Event filter class vscpEventFilter(Structure): _fields_ = [("filter_priority", c_ubyte), ("mask_priority", c_ubyte), ("filter_class", c_ubyte), ("mask_class", c_ubyte), ("filter_type", c_ubyte), ("mask_type", c_ubyte), ("filter_guid", c_ubyte * 16), ("mask_guid", c_ubyte * 16) ] # Transmission statistics structure class VSCPStatistics(Structure): _fields_ = [("cntReceiveFrames", c_long), ("cntTransmitFrames", c_long), ("cntReceiveData", c_long), ("cntTransmitData", c_long), ("cntOverruns", c_long), ("x", c_long), ("y", c_long), ("z", c_long) ] class VSCPStatus(Structure): _fields_ = [("channel_status", c_ulong), ("lasterrorcode", c_ulong), ("lasterrorsubcode", c_ulong)] class VSCPChannelInfo(Structure): _fields_ = [("channelType", c_ubyte), ("channel", c_ushort), ("guid", c_ubyte * 16)] # VSCP Encryption types VSCP_ENCRYPTION_NONE = 0 VSCP_ENCRYPTION_AES128 = 1 VSCP_ENCRYPTION_AES192 = 2 VSCP_ENCRYPTION_AES256 = 3 # VSCP Encryption tokens VSCP_ENCRYPTION_TOKEN_0 = "" VSCP_ENCRYPTION_TOKEN_1 = "AES128" VSCP_ENCRYPTION_TOKEN_2 = "AES192" VSCP_ENCRYPTION_TOKEN_3 = "AES256" # Packet frame format type = 0 # without byte0 and CRC # total frame size is 1 + 34 + 2 + data-length VSCP_MULTICAST_PACKET0_HEADER_LENGTH = 35 # Multicast packet ordinals VSCP_MULTICAST_PACKET0_POS_PKTTYPE = 0 VSCP_MULTICAST_PACKET0_POS_HEAD = 1 VSCP_MULTICAST_PACKET0_POS_HEAD_MSB = 1 VSCP_MULTICAST_PACKET0_POS_HEAD_LSB = 2 VSCP_MULTICAST_PACKET0_POS_TIMESTAMP = 3 VSCP_MULTICAST_PACKET0_POS_YEAR = 7 VSCP_MULTICAST_PACKET0_POS_YEAR_MSB = 7 VSCP_MULTICAST_PACKET0_POS_YEAR_LSB = 8 VSCP_MULTICAST_PACKET0_POS_MONTH = 9 VSCP_MULTICAST_PACKET0_POS_DAY = 10 VSCP_MULTICAST_PACKET0_POS_HOUR = 11 VSCP_MULTICAST_PACKET0_POS_MINUTE = 12 VSCP_MULTICAST_PACKET0_POS_SECOND = 13 VSCP_MULTICAST_PACKET0_POS_VSCP_CLASS = 14 VSCP_MULTICAST_PACKET0_POS_VSCP_CLASS_MSB = 14 VSCP_MULTICAST_PACKET0_POS_VSCP_CLASS_LSB = 15 VSCP_MULTICAST_PACKET0_POS_VSCP_TYPE = 16 VSCP_MULTICAST_PACKET0_POS_VSCP_TYPE_MSB = 16 VSCP_MULTICAST_PACKET0_POS_VSCP_TYPE_LSB = 17 VSCP_MULTICAST_PACKET0_POS_VSCP_GUID = 18 VSCP_MULTICAST_PACKET0_POS_VSCP_SIZE = 34 VSCP_MULTICAST_PACKET0_POS_VSCP_SIZE_MSB = 34 VSCP_MULTICAST_PACKET0_POS_VSCP_SIZE_LSB = 35 VSCP_MULTICAST_PACKET0_POS_VSCP_DATA = 36 # Two byte CRC follow here and if the frame is encrypted # the initialization vector follows. # VSCP multicast packet types VSCP_MULTICAST_TYPE_EVENT = 0 # Multicast proxy CLASS=1026, TYPE=3 https://www.vscp.org/docs/vscpspec/doku.php?id=class2.information#type_3_0x0003_level_ii_proxy_node_heartbeat VSCP_MULTICAST_PROXY_HEARTBEAT_DATA_SIZE = 192 VSCP_MULTICAST_PROXY_HEARTBEAT_POS_REALGUID = 0 # The real GUID for the node VSCP_MULTICAST_PROXY_HEARTBEAT_POS_IFGUID = 32 # GUID for interface node is on VSCP_MULTICAST_PROXY_HEARTBEAT_POS_IFLEVEL = 48 # 0=Level I node, 1=Level II node VSCP_MULTICAST_PROXY_HEARTBEAT_POS_NODENAME = 64 # Name of node VSCP_MULTICAST_PROXY_HEARTBEAT_POS_IFNAME = 128 # Name of interface # Default key for VSCP Server # Change if other key is used VSCP_DEFAULT_KEY16 = '<KEY>' VSCP_DEFAULT_KEY24 = '<KEY>' VSCP_DEFAULT_KEY32 = '<KEY>' # Bootloaders VSCP_BOOTLOADER_VSCP = 0x00 # VSCP boot loader algorithm VSCP_BOOTLOADER_PIC1 = 0x01 # PIC algorithm 0 VSCP_BOOTLOADER_AVR1 = 0x10 # AVR algorithm 0 VSCP_BOOTLOADER_LPC1 = 0x20 # NXP/Philips LPC algorithm 0 VSCP_BOOTLOADER_ST = 0x30 # ST STR algorithm 0 VSCP_BOOTLOADER_FREESCALE = 0x40 # Freescale Kinetics algorithm 0 VSCP_BOOTLOADER_NONE = 0xff # * * * Data Coding for VSCP packets * * * # Data format masks VSCP_MASK_DATACODING_TYPE = 0xE0 # Bits 5,6,7 VSCP_MASK_DATACODING_UNIT = 0x18 # Bits 3,4 VSCP_MASK_DATACODING_INDEX = 0x07 # Bits 0,1,2 # These bits are coded in the three MSB bytes of the first data byte # in a packet and tells the type of the data that follows. VSCP_DATACODING_BIT = 0x00 VSCP_DATACODING_BYTE = 0x20 VSCP_DATACODING_STRING = 0x40 VSCP_DATACODING_INTEGER = 0x60 VSCP_DATACODING_NORMALIZED = 0x80 VSCP_DATACODING_SINGLE = 0xA0 # single precision float VSCP_DATACODING_RESERVED1 = 0xC0 VSCP_DATACODING_RESERVED2 = 0xE0 # These bits are coded in the four least significant bits of the first data byte # in a packet and tells how the following data should be interpreted. For a flow sensor # the default format can be litres/minute. Other formats such as m3/second can be defined # by the node if it which. However it must always be able to report in the default format. VSCP_DATACODING_INTERPRETION_DEFAULT = 0 # CRC8 Constants VSCP_CRC8_POLYNOMIAL = 0x18 VSCP_CRC8_REMINDER = 0x00 # CRC16 Constants VSCP_CRC16_POLYNOMIAL = 0x1021 VSCP_CRC16_REMINDER = 0xFFFF # CRC32 Constants VSCP_CRC32_POLYNOMIAL = 0x04C11DB7 VSCP_CRC32_REMINDER = 0xFFFFFFFF # Node data - the required registers are fetched from this # structure class vscpMyNode(Structure): _fields_ = [ ("guid", c_ubyte * 16), ("nicknameID", c_ubyte ) ] # * * * Standard VSCP registers * * * # Register defines above 0x7f VSCP_STD_REGISTER_ALARM_STATUS = 0x80 VSCP_STD_REGISTER_MAJOR_VERSION = 0x81 VSCP_STD_REGISTER_MINOR_VERSION = 0x82 VSCP_STD_REGISTER_SUB_VERSION = 0x83 # 0x84 - 0x88 VSCP_STD_REGISTER_USER_ID = 0x84 # 0x89 - 0x8C VSCP_STD_REGISTER_USER_MANDEV_ID = 0x89 # 0x8D -0x90 VSCP_STD_REGISTER_USER_MANSUBDEV_ID = 0x8D # Nickname VSCP_STD_REGISTER_NICKNAME_ID = 0x91 # Selected register page VSCP_STD_REGISTER_PAGE_SELECT_MSB = 0x92 VSCP_STD_REGISTER_PAGE_SELECT_LSB = 0x93 # Firmware version VSCP_STD_REGISTER_FIRMWARE_MAJOR = 0x94 VSCP_STD_REGISTER_FIRMWARE_MINOR = 0x95 VSCP_STD_REGISTER_FIRMWARE_SUBMINOR = 0x96 VSCP_STD_REGISTER_BOOT_LOADER = 0x97 VSCP_STD_REGISTER_BUFFER_SIZE = 0x98 VSCP_STD_REGISTER_PAGES_COUNT = 0x99 # 0xd0 - 0xdf GUID VSCP_STD_REGISTER_GUID = 0xD0 # 0xe0 - 0xff MDF VSCP_STD_REGISTER_DEVICE_URL = 0xE0 # Level I Decision Matrix VSCP_LEVEL1_DM_ROW_SIZE = 8 VSCP_LEVEL1_DM_OFFSET_OADDR = 0 VSCP_LEVEL1_DM_OFFSET_FLAGS = 1 VSCP_LEVEL1_DM_OFFSET_CLASS_MASK = 2 VSCP_LEVEL1_DM_OFFSET_CLASS_FILTER = 3 VSCP_LEVEL1_DM_OFFSET_TYPE_MASK = 4 VSCP_LEVEL1_DM_OFFSET_TYPE_FILTER = 5 VSCP_LEVEL1_DM_OFFSET_ACTION = 6 VSCP_LEVEL1_DM_OFFSET_ACTION_PARAM = 7 # Bits for VSCP server 64/16-bit capability code # used by CLASS1.PROTOCOL, HIGH END SERVER RESPONSE # and low end 16-bits for # CLASS2.PROTOCOL, HIGH END SERVER HEART BEAT VSCP_SERVER_CAPABILITY_TCPIP = (1<<15) VSCP_SERVER_CAPABILITY_UDP = (1<<14) VSCP_SERVER_CAPABILITY_MULTICAST_ANNOUNCE = (1<<13) VSCP_SERVER_CAPABILITY_RAWETH = (1<<12) VSCP_SERVER_CAPABILITY_WEB = (1<<11) VSCP_SERVER_CAPABILITY_WEBSOCKET = (1<<10) VSCP_SERVER_CAPABILITY_REST = (1<<9) VSCP_SERVER_CAPABILITY_MULTICAST_CHANNEL = (1<<8) VSCP_SERVER_CAPABILITY_RESERVED = (1<<7) VSCP_SERVER_CAPABILITY_IP6 = (1<<6) VSCP_SERVER_CAPABILITY_IP4 = (1<<5) VSCP_SERVER_CAPABILITY_SSL = (1<<4) VSCP_SERVER_CAPABILITY_TWO_CONNECTIONS = (1<<3) VSCP_SERVER_CAPABILITY_AES256 = (1<<2) VSCP_SERVER_CAPABILITY_AES192 = (1<<1) VSCP_SERVER_CAPABILITY_AES128 = 1 # Offsets into the data of the capabilities event # VSCP_CLASS2_PROTOCOL, Type=20/VSCP2_TYPE_PROTOCOL_HIGH_END_SERVER_CAPS VSCP_CAPABILITY_OFFSET_CAP_ARRAY = 0 VSCP_CAPABILITY_OFFSET_GUID = 8 VSCP_CAPABILITY_OFFSET_IP_ADDR = 24 VSCP_CAPABILITY_OFFSET_SRV_NAME = 40 VSCP_CAPABILITY_OFFSET_NON_STD_PORTS = 104 # Error Codes VSCP_ERROR_SUCCESS = 0 # All is OK VSCP_ERROR_ERROR = -1 # Error VSCP_ERROR_CHANNEL = 7 # Invalid channel VSCP_ERROR_FIFO_EMPTY = 8 # FIFO is empty VSCP_ERROR_FIFO_FULL = 9 # FIFI is full VSCP_ERROR_FIFO_SIZE = 10 # FIFO size error VSCP_ERROR_FIFO_WAIT = 11 VSCP_ERROR_GENERIC = 12 # Generic error VSCP_ERROR_HARDWARE = 13 # Hardware error VSCP_ERROR_INIT_FAIL = 14 # Initialization failed VSCP_ERROR_INIT_MISSING = 15 VSCP_ERROR_INIT_READY = 16 VSCP_ERROR_NOT_SUPPORTED = 17 # Not supported VSCP_ERROR_OVERRUN = 18 # Overrun VSCP_ERROR_RCV_EMPTY = 19 # Receive buffer empty VSCP_ERROR_REGISTER = 20 # Register value error VSCP_ERROR_TRM_FULL = 21 # Transmit buffer full VSCP_ERROR_LIBRARY = 28 # Unable to load library VSCP_ERROR_PROCADDRESS = 29 # Unable get library proc. address VSCP_ERROR_ONLY_ONE_INSTANCE = 30 # Only one instance allowed VSCP_ERROR_SUB_DRIVER = 31 # Problem with sub driver call VSCP_ERROR_TIMEOUT = 32 # Time-out VSCP_ERROR_NOT_OPEN = 33 # The device is not open. VSCP_ERROR_PARAMETER = 34 # A parameter is invalid. VSCP_ERROR_MEMORY = 35 # Memory exhausted. VSCP_ERROR_INTERNAL = 36 # Some kind of internal program error VSCP_ERROR_COMMUNICATION = 37 # Some kind of communication error VSCP_ERROR_USER = 38 # Login error user name VSCP_ERROR_PASSWORD = 39 # Login error password VSCP_ERROR_CONNECTION = 40 # Could not connect VSCP_ERROR_INVALID_HANDLE = 41 # The handle is not valid VSCP_ERROR_OPERATION_FAILED = 42 # Operation failed for some reason VSCP_ERROR_BUFFER_TO_SMALL = 43 # Supplied buffer is to small to fit content VSCP_ERROR_UNKNOWN_ITEM = 44 # Requested item (remote variable) is unknown VSCP_ERROR_ALREADY_DEFINED = 45 # The name is already in use. # # Template for VSCP XML event data # # data: datetime,head,obid,datetime,timestamp,class,type,guid,sizedata,data,note # #<event> # <head>3</head> # <obid>1234</obid> # <datetime>2017-01-13T10:16:02</datetime> # <timestamp>50817</timestamp> # <class>10</class> # <type>6</type> # <guid>00:00:00:00:00:00:00:00:00:00:00:00:00:01:00:02</guid> # <sizedata>7</sizedata> # <data>0x48,0x34,0x35,0x2E,0x34,0x36,0x34</data> # <note></note> #</event> # VSCP_XML_EVENT_TEMPLATE = "<event>\n"\ "<head>%d</head>\n"\ "<obid>%lu</obid>\n"\ "<datetime>%s</datetime>\n"\ "<timestamp>%lu</timestamp>\n"\ "<class>%d</class>\n"\ "<type>%d</type>\n"\ "<guid>%s</guid>\n"\ "<sizedata>%d</sizedata>\n"\ "<data>%s</data>\n"\ "<note>%s</note>\n"\ "</event>" # # # Template for VSCP JSON event data # data: datetime,head,obid,datetime,timestamp,class,type,guid,data,note # # # "head": 2, # "obid"; 123, # "datetime": "2017-01-13T10:16:02", # "timestamp":50817, # "class": 10, # "type": 8, # "guid": "00:00:00:00:00:00:00:00:00:00:00:00:00:01:00:02", # "data": [1,2,3,4,5,6,7], # "note": "This is some text" # # VSCP_JSON_EVENT_TEMPLATE = "{\n"\ "\"head\": %d,\n"\ "\"obid\": %lu,\n"\ "\"datetime\": \"%s\",\n"\ "\"timestamp\": %lu,\n"\ "\"class\": %d,\n"\ "\"type\": %d,\n"\ "\"guid\": \"%s\",\n"\ "\"data\": [%s],\n"\ "\"note\": \"%s\"\n"\ "}" # # # Template for VSCP HTML event data # # data: datetime,class,type,data-count,data,guid,head,timestamp,obid,note # #<h2>VSCP Event</h2> #<p> # Time: 2017-01-13T10:16:02 <br> #</p> #<p> # Class: 10 <br> # Type: 6 <br> #</p> #<p> # Data count: 6<br> # Data: 1,2,3,4,5,6,7<br> #</p> #<p> # From GUID: 00:00:00:00:00:00:00:00:00:00:00:00:00:01:00:02<br> #</p> #<p> # Head: 6 <br> # DateTime: 2013-11-02T12:34:22Z # Timestamp: 1234 <br> # obid: 1234 <br> # note: This is a note <br> #</p> # VSCP_HTML_EVENT_TEMPLATE = "<h2>VSCP Event</h2> "\ "<p>"\ "Class: %d <br>"\ "Type: %d <br>"\ "</p>"\ "<p>"\ "Data count: %d<br>"\ "Data: %s<br>"\ "</p>"\ "<p>"\ "From GUID: %s<br>"\ "</p>"\ "<p>"\ "Head: %d <br>"\ "<p>"\ "DateTime: %s <br>"\ "</p>"\ "Timestamp: %lu <br>"\ "obid: %lu <br>"\ "note: %s <br>"\ "</p>" # Set packet type part of multicast packet type def SET_VSCP_MULTICAST_TYPE( type, encryption ) : return ( ( type << 4 ) | encryption ) # Get packet type part of multicast packet type def GET_VSCP_MULTICAST_PACKET_TYPE( type) : return ( ( type >> 4 ) & 0x0f ) # Get encryption part if multicast packet type def GET_VSCP_MULTICAST_PACKET_ENCRYPTION( type ) : return ( ( type ) & 0x0f ) # Get data coding type def VSCP_DATACODING_TYPE( b ) : return ( VSCP_MASK_DATACODING_TYPE & b ) # Get data coding unit def VSCP_DATACODING_UNIT( b ) : return ( ( VSCP_MASK_DATACODING_UNIT & b ) >> 3 ) # Get data coding sensor index def VSCP_DATACODING_INDEX( b ) : return ( VSCP_MASK_DATACODING_INDEX & b )
StarcoderdataPython
3341763
<gh_stars>10-100 """Хромосомы и гены параметров модели.""" from poptimizer.evolve.evolve import Evolution from poptimizer.evolve.forecaster import get_forecasts
StarcoderdataPython
8096695
<filename>atemon/__init__.py """ Various packages provided by Atemon Technology Consultants. Website: http://www.atemon.com Git Hub: https://github.com/atemon Twitter: https://twitter.com/atemonastery Author: <NAME> <EMAIL> Copyright 2016 Atemon Technology Consultants LLP Each package may have different opensource licence(s), Please refer to LICENSE.txt in each package/or top of the file. This file is part of SMS library and distributed under the MIT license (MIT). THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the Atemon Technology Consultants LLP shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the Atemon Technology Consultants LLP. """
StarcoderdataPython
12843335
# -*- coding: utf-8 -*- """ This file is part of pyCMBS. (c) 2012- <NAME> For COPYING and LICENSE details, please refer to the LICENSE file """ """ module to compile the required python extensions This is for development purposes only! Later on it might be integrated into the standard setup.py """ # http://docs.cython.org/src/tutorial/cython_tutorial.htmlfrom # distutils.core import setup from distutils.core import setup from Cython.Build import cythonize import numpy setup( ext_modules=cythonize( ["./pycmbs/geostatistic/variogram_base.pyx"]), # this is needed to get proper information on numpy headers include_dirs=[numpy.get_include()] ) # run as ... to build extension # $ python setup_extensions.py build_ext --inplace
StarcoderdataPython
1632203
<gh_stars>0 from django.shortcuts import render, redirect from django.contrib.auth.decorators import login_required from .models import * import cloudinary import cloudinary.uploader import cloudinary.api from django.http import JsonResponse from rest_framework import status from django.http import Http404 from rest_framework.response import Response from rest_framework.views import APIView from .serializer import ProfileSerializer,ProjectSerializer from .permissions import IsAdminOrReadOnly @login_required(login_url="/accounts/login/") def index(request): # Home page project = Project.objects.all() # get the latest project from the database latest_project = project.first() # get project rating rating = Rating.objects.filter(project_id=latest_project).first() # print(latest_project.id) return render( request, "index.html", {"projects": project, "project_home": latest_project, "rating": rating} ) # single project page def project_details(request,id): project = Project.objects.get(id=id) # get project rating rating = Rating.objects.filter(project=project) return render(request, "project.html", {"project": project, "rating": rating}) @login_required(login_url="/accounts/login/") def profile(request): # view profile current_user = request.user profile = Profile.objects.filter(user_id=current_user.id).first() # get profile project = Project.objects.filter(user_id=current_user.id).all() # get all projects return render(request, "profile.html", {"profile": profile, "images": project}) @login_required(login_url="/accounts/login/") def update_profile(request): if request.method == "POST": current_user = request.user first_name = request.POST["first_name"] last_name = request.POST["last_name"] username = request.POST["username"] email = request.POST["email"] bio = request.POST["bio"] contact = request.POST["contact"] profile_image = request.FILES["profile_pic"] profile_image = cloudinary.uploader.upload(profile_image) profile_url = profile_image["url"] user = User.objects.get(id=current_user.id) # check if user exists in profile table and if not create a new profile if Profile.objects.filter(user_id=current_user.id).exists(): profile = Profile.objects.get(user_id=current_user.id) profile.profile_photo = profile_url profile.bio = bio profile.contact = contact profile.save() else: profile = Profile( user_id=current_user.id, profile_photo=profile_url, bio=bio, contact=contact, ) profile.save_profile() user.first_name = first_name user.last_name = last_name user.username = username user.email = email user.save() return redirect("/profile/", {"success": "Profile Updated Successfully"}) # return render(request, 'profile.html', {'success': 'Profile Updated Successfully'}) else: return render(request, "profile.html", {"danger": "Profile Update Failed"}) # save project @login_required(login_url="/accounts/login/") def save_project(request): if request.method == "POST": current_user = request.user title = request.POST["title"] location = request.POST["location"] description = request.POST["description"] url = request.POST["url"] image = request.FILES["image"] # crop image to square image = cloudinary.uploader.upload(image, crop="limit", width=500, height=500) # image = cloudinary.uploader.upload(image) image_url = image["url"] project = Project( user_id=current_user.id, title=title, location=location, description=description, url=url, image=image_url, ) project.save_project() return redirect("/profile/", {"success": "Project Saved Successfully"}) else: return render(request, "profile.html", {"danger": "Project Save Failed"}) # delete project @login_required(login_url="/accounts/login/") def delete_project(request, id): project = Project.objects.get(id=id) project.delete_project() return redirect("/profile/", {"success": "Project Deleted Successfully"}) # rate_project @login_required(login_url="/accounts/login/") def rate_project(request, id): if request.method == "POST": project = Project.objects.get(id=id) current_user = request.user design_rate=request.POST["design"] usability_rate=request.POST["usability"] content_rate=request.POST["content"] Rating.objects.create( project=project, user=current_user, design_rate=design_rate, usability_rate=usability_rate, content_rate=content_rate, avg_rate=round((float(design_rate)+float(usability_rate)+float(content_rate))/3,2), ) # get the avarage rate of the project for the three rates avg_rating= (int(design_rate)+int(usability_rate)+int(content_rate))/3 # update the project with the new rate project.rate=avg_rating project.update_project() return render(request, "project.html", {"success": "Project Rated Successfully", "project": project, "rating": Rating.objects.filter(project=project)}) else: project = Project.objects.get(id=id) return render(request, "project.html", {"danger": "Project Rating Failed", "project": project}) # search projects def search_project(request): if 'search_term' in request.GET and request.GET["search_term"]: search_term = request.GET.get("search_term") searched_projects = Project.objects.filter(title__icontains=search_term) message = f"Search For: {search_term}" return render(request, "search.html", {"message": message, "projects": searched_projects}) else: message = "You haven't searched for any term" return render(request, "search.html", {"message": message}) # rest api ==================================== class ProfileList(APIView): # get all profiles permission_classes = (IsAdminOrReadOnly,) def get(self, request, format=None): all_profiles = Profile.objects.all() serializers = ProfileSerializer(all_profiles, many=True) return Response(serializers.data) # def post(self, request, format=None): # serializers = MerchSerializer(data=request.data) class ProjectList(APIView): # get all projects permission_classes = (IsAdminOrReadOnly,) def get(self, request, format=None): all_projects = Project.objects.all() serializers = ProjectSerializer(all_projects, many=True) return Response(serializers.data)
StarcoderdataPython
35750
<reponame>GPXenergy/gpx_server_api<filename>smart_meter/apps.py from django.apps import AppConfig class SmartMeterConfig(AppConfig): name = 'smart_meter'
StarcoderdataPython
9600190
<gh_stars>0 #!/usr/bin/python3.7 __doc__ = """Small module to process data and take appropriate action from programs that produce output on a line-by-line basis.""" import subprocess, sys, time, re, os, shlex ansi_re = re.compile("\x1b\[[0-9;]*[mGKHF]") def filter_ansi(string_): return ansi_re.sub("", string_) def tail_command_old(command): stdout = tempfile.mktemp() stderr = tempfile.mktemp() command = "/bin/sh -c '%s 1> %s 2> %s &'" % (command, stdout, stderr) result = subprocess.run(command, shell=True) stdout_f = open(stdout, 'r') stderr_f = open(stderr, 'r') while True: line = stdout_f.readline() if line: yield line else: time.sleep(0.01) def tail_command(command): command = shlex.split(command) result = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) count = 0 while True: line = result.stdout.readline().decode() if line: yield line else: count += 1 if result.returncode == None: if count % 10: time.sleep(0.01) else: if os.system("ps -%s > /dev/null " % result.pid): return else: return class GotEOF(Exception): "Exception raised when EOF of file is found, by empty readline" pass def tail(filename): return tail_f(filename, follow=False) def tail_f(filename, follow=True): file = open(filename, 'r') try: for line in _tail_f(file, follow=follow, signal_wait=True): yield line except GotEOF: for line in _tail_f(file, follow=follow): yield line def _tail_f(file, follow=True, signal_wait=False): line = '' while True: line = file.readline() if line: yield line else: if not follow: return if signal_wait: raise GotEOF() time.sleep(0.1) def get_tail_of_tail_f(filename, follow=True, tail_size=10): file = open(filename, 'r') lines = [] try: for line in _tail_f(file, follow=follow, signal_wait=True): lines.append(line) except GotEOF: for line in lines[len(lines) - tail_size:]: yield line # If it's a huuuge file with lots of lines, free up that memory as this # function may run "forever". del lines for line in _tail_f(file, follow=follow): yield line class Listener: """Instances of this 'listen' to each line produced by tail commands.""" def __init__(self): self.lines = [] def add(self, line): self.lines.append(time.time(), line) if __name__ == '__main__': #for line in tail_command("cat %s" % sys.argv[0]): # print(line) for line in tail_command("ls --color -l"): print(filter_ansi(line)) for line in tail_command("./output_ansi.py"): print(filter_ansi(line)) for line in get_tail_of_tail_f("/var/log/syslog"): print(line, end='')
StarcoderdataPython
8189860
""" Provides the ``SSHSession`` dictionary, which maps host to :py:class:`paramiko.transport.Transport`. """ from __future__ import absolute_import from .log import ArcError SSHSession = {} def ssh_connect(host, user, pkey, window_size = (2 << 15) - 1): """ Creates a :py:class:`paramiko.Transport` object and adds it to ``SSHSession``. :param str host: remote host :param str user: username at remote host :param str pkey: path to private RSA key :param int window_size: TCP window size :note: if command execution times out and output is truncated, it is likely that the TCP window is too small """ from paramiko.transport import Transport from paramiko import RSAKey global SSHSession try: SSHSession[host] = Transport((host, 22)) SSHSession[host].window_size = window_size pkey = RSAKey.from_private_key_file(pkey, '') SSHSession[host].connect(username = user, pkey = pkey) SSHSession[host].__del__ = SSHSession[host].close except Exception as e: raise ArcError('Failed to connect to host %s:\n%s' % (host, str(e)), 'common.ssh')
StarcoderdataPython
6516569
<reponame>Kaufi-Jonas/VaRA-Tool-Suite """Plot module for util functionality.""" import typing as tp from pathlib import Path import pandas as pd from matplotlib.axes import Axes from varats.mapping.commit_map import CommitMap from varats.utils.git_util import FullCommitHash, ShortCommitHash def find_missing_revisions( data: tp.Iterable[tp.Tuple[tp.Any, pd.Series]], git_path: Path, cmap: CommitMap, should_insert_revision: tp.Callable[[tp.Any, tp.Any], tp.Tuple[bool, float]], to_commit_hash: tp.Callable[[tp.Any], ShortCommitHash], are_neighbours: tp.Callable[[ShortCommitHash, ShortCommitHash], bool] ) -> tp.Set[FullCommitHash]: """Calculate a set of revisions that could be missing because the changes between certain points are to steep.""" new_revs: tp.Set[FullCommitHash] = set() _, last_row = next(data) for _, row in data: should_insert, gradient = should_insert_revision(last_row, row) if should_insert: lhs_cm = to_commit_hash(last_row) rhs_cm = to_commit_hash(row) if are_neighbours(lhs_cm, rhs_cm): print( "Found steep gradient between neighbours " + f"{lhs_cm} - {rhs_cm}: {round(gradient, 5)}" ) print(f"Investigate: git -C {git_path} diff {lhs_cm} {rhs_cm}") else: print( "Unusual gradient between " + f"{lhs_cm} - {rhs_cm}: {round(gradient, 5)}" ) new_rev_id = round( (cmap.short_time_id(lhs_cm) + cmap.short_time_id(rhs_cm)) / 2.0 ) new_rev = cmap.c_hash(new_rev_id) print(f"-> Adding {new_rev} as new revision to the sample set") new_revs.add(new_rev) last_row = row return new_revs def pad_axes( ax: Axes, pad_x: tp.Optional[float] = None, pad_y: tp.Optional[float] = None ) -> None: """Add some padding to the axis limits.""" if pad_x: x_min, x_max = ax.get_xlim() padding_x = (x_max - x_min) * pad_x ax.set_xlim(x_min - padding_x, x_max + padding_x) if pad_y: y_min, y_max = ax.get_ylim() padding_y = (y_max - y_min) * pad_y ax.set_ylim(y_min - padding_y, y_max + padding_y) def align_yaxis(ax1: Axes, value1: float, ax2: Axes, value2: float) -> None: """ Adjust ax2 ylimit so that value2 in ax2 is aligned to value1 in ax1. See https://stackoverflow.com/a/26456731 """ _, y_ax1 = ax1.transData.transform((0, value1)) _, y_ax2 = ax2.transData.transform((0, value2)) adjust_yaxis(ax2, (y_ax1 - y_ax2) / 2, value2) adjust_yaxis(ax1, (y_ax2 - y_ax1) / 2, value1) def adjust_yaxis(ax: Axes, ydif: float, value: float) -> None: """ Shift axis ax by ydiff, maintaining point value at the same location. See https://stackoverflow.com/a/26456731 """ inv = ax.transData.inverted() _, delta_y = inv.transform((0, 0)) - inv.transform((0, ydif)) miny, maxy = ax.get_ylim() miny, maxy = miny - value, maxy - value if -miny > maxy or (-miny == maxy and delta_y > 0): nminy = miny nmaxy = miny * (maxy + delta_y) / (miny + delta_y) else: nmaxy = maxy nminy = maxy * (miny + delta_y) / (maxy + delta_y) ax.set_ylim(nminy + value, nmaxy + value)
StarcoderdataPython
3324107
<gh_stars>0 from itertools import groupby import datetime import os.path import bisect import iso8601 from flask import url_for MIN_YEAR = 2006 ICONS = { "member": "bill-introduced.png", "committee": "committee-discussion.png", "house": "house.png", "president": "signed-by-president.png", "unknown": "bill-introduced.png", } def get_location(event): if event.get('type') in ['bill-signed', 'bill-act-commenced', 'bill-enacted']: return { 'name': 'Office of the President', 'class': 'president', } if event.get('house'): return { 'name': event['house']['name'], 'class': event['house']['short_name'], } if event.get('committee'): if 'house' in event['committee']: return { 'name': event['committee']['house']['name'], 'class': event['committee']['house']['short_name'], } return { 'name': event['committee']['name'], 'url': url_for('committee_detail', committee_id=event['committee']['id']), 'class': '', } return {'name': 'Unknown', 'class': ''} def get_agent(event, bill): info = None if event.get('type') in ['bill-signed', 'bill-act-commenced', 'bill-enacted']: info = { 'name': '<NAME>', 'type': 'president', } elif event.get('type') == 'bill-introduced': info = { 'name': bill['introduced_by'] or (bill.get('place_of_introduction') or {}).get('name'), 'type': 'member', } elif event.get('member'): info = { 'name': event['member']['name'], 'type': 'member', 'url': url_for('member', member_id=event['member']['id']) } elif event.get('committee'): info = { 'name': event['committee']['name'], 'type': 'committee', 'url': url_for('committee_detail', committee_id=event['committee']['id']) } elif event.get('house'): info = { 'name': event['house']['name'], 'type': 'house', } else: info = {'name': 'Unknown', 'type': 'unknown'} info['icon'] = ICONS[info['type']] return info def bill_history(bill): """ Work out the history of a bill and return a description of it. """ history = [] events = bill.get('events', []) events.sort(key=lambda e: [ iso8601.parse_date(e['date']), get_location(e), get_agent(e, bill)]) for location, location_events in groupby(events, get_location): location_history = [] for agent, agent_events in groupby(location_events, lambda e: get_agent(e, bill)): info = {'events': list(agent_events)} info.update(agent) location_history.append(info) info = {'events': location_history} info.update(location) history.append(info) history = hansard_linking(history) return history def match_title(event_title): """ Match bill title against the following possible titles """ bill_titles = [ "Bill passed by National Assembly", "Bill passed by both Houses", "Bill revived on this date", "The NCOP rescinded", "Bill remitted", ] for title in bill_titles: if title in event_title: return True return False def match_dates(hansard_date, event_date): hansard_iso_date = iso8601.parse_date(hansard_date) event_iso_date = iso8601.parse_date(event_date) if hansard_iso_date.date() == event_iso_date.date(): return True return False def hansard_linking(bill_history): """ We need to link certain bill events to hansards Hansrds will always be linked to a house (NA or NCOP) The Date of the bill event and the hansard will be the same. Bill Titles we are looking for: * Bill passed by National Assembly * Bill passed by both Houses * Bill revived on this date * The NCOP rescinded * Bill remitted If the event(bill_passed etc) is matched, a new dict is created with the matching hansard id. The Hansard event is not modified. """ for class_history in bill_history: for event_history in class_history["events"]: if event_history["type"] == "house": for event in event_history["events"]: if event["type"] == "plenary": for bill_event in event_history["events"]: if match_title(bill_event["title"]) and match_dates( event["date"], bill_event["date"] ): bill_event["hansard"] = {"id": event["id"]} return bill_history def count_parliamentary_days(date_from, date_to): """ Count the number of parliamentary days between two dates, inclusive. """ i = bisect.bisect(PARLIAMENTARY_DAYS, date_from) j = bisect.bisect(PARLIAMENTARY_DAYS, date_to) return j - i + 1 def load_parliamentary_days(): """ Load the dates when parliament sat from data/parliament-sitting-days.txt This file can be updated from a spreadsheet using bin/load_parliamentary_days.py """ with open(os.path.join(os.path.dirname(__file__), "../data/parliament-sitting-days.txt"), "r") as f: lines = f.readlines() dates = [datetime.date(*(int(x) for x in d.split("-"))) for d in lines] return sorted(dates) PARLIAMENTARY_DAYS = load_parliamentary_days()
StarcoderdataPython
11392261
#! /usr/bin/env python import argparse import sys import requests import simplejson import dict2xml from bs4 import BeautifulSoup class Json2xml(object): # ------------------------------- ## # @Synopsis This class could read a json file # from the filesystem or get a file from across # the Internet, and convert that json object to # xml # # @Param data : Data to be fed into the system. # # @Returns Null # --------------------------------- def __init__(self, data: str) -> None: self.data = data # ------------------------------- ## # @Synopsis Read JSON from a file in # the system # --------------------------------- @classmethod def fromjsonfile(cls, filename: str): try: json_data = open(filename) data = simplejson.load(json_data) json_data.close() except IOError as e: print("I/O error({0}): {1}".format(e.errno, e.strerror)) data = [] return cls(data) # ------------------------------- ## # @Synopsis Fetches the JSON # data from an URL Source. # # --------------------------------- @classmethod def fromurl(cls, url: str): response = requests.get(url) if response.status_code == 200: return cls(response.json()) else: raise Exception("Bad URl, Can't get JSON response") # ------------------------------- ## # @Synopsis This method actually # converts the json data that is converted # into dict into XML # # @Returns XML # --------------------------------- def json2xml(self): if self.data: xmldata = dict2xml.dict2xml(self.data) xml = BeautifulSoup(xmldata, "html.parser") return xml def main(argv=None): parser = argparse.ArgumentParser(description='Utility to convert json to valid xml.') parser.add_argument('--url', dest='url', action='store') parser.add_argument('--file', dest='file', action='store') args = parser.parse_args() if args.url: url = args.url data = Json2xml.fromurl(url) print(Json2xml.json2xml(data)) if args.file: file = args.file data = Json2xml.fromjsonfile(file) print(Json2xml.json2xml(data)) if __name__ == "__main__": main(sys.argv)
StarcoderdataPython
1969169
<filename>experiments/rpi/dojo/dojo_display7.py #!/usr/bin/env python # -*- coding: utf-8 -*- import atexit import time import RPi.GPIO as GPIO import spi # assegurar que a função cleanup será chamada na saída do script atexit.register(GPIO.cleanup) # usar numeração lógica dos pinos GPIO.setmode(GPIO.BCM) DISPLAY = [17, 4, 9, 11, 7, 27, 22, 10] SPI_CLK = 18 SPI_MISO = 23 SPI_MOSI = 24 SPI_CS = 25 conversor_ad = spi.Mcp3008(SPI_CLK, SPI_MISO, SPI_MOSI, SPI_CS) CANAL_POTENCIOMETRO = 1 for led in DISPLAY[:6]: GPIO.setup(led, GPIO.OUT) GPIO.output(led, 0) while True: for led in DISPLAY[:6]: GPIO.output(led, 1) atraso = conversor_ad.read(CANAL_POTENCIOMETRO)/1000.0 time.sleep(atraso) GPIO.output(led, 0)
StarcoderdataPython
1788722
from . import connection class KafkaProducerPipeline(object): """ Publish serialize item to configured topic """ def __init__(self, producer): self.producer = producer self.topic = None def open_spider(self, spider): if not hasattr(spider, 'produce_item_topic'): return ValueError('produce_item_topic name is not provided') self.topic = spider.produce_item_topic def process_item(self, item, spider): """ This method has overridden for pipeline to process the item :param item: :param spider: :return: """ """ send(self, topic, value=None, key=None, headers=None, partition=None, timestamp_ms=None): """ self.producer.send(topic=self.topic, value=item) return item @classmethod def from_settings(cls, settings): """ This :param settings: the current scrapy spider settings :return: KafkaProducerPipeline instance """ producer = connection.producer_from_settings({}) return cls(producer) @classmethod def from_crawler(cls, crawler): return cls.from_settings(crawler.settings) def close_spider(self, spider): if self.producer: self.producer.close()
StarcoderdataPython
4991482
from .. import hook, bar, manager import base from pythonwifi.iwlibs import Wireless, Iwstats class Wlan(base._TextBox): """ Displays Wifi ssid and quality. """ defaults = manager.Defaults( ("font", "Arial", "Font"), ("fontsize", None, "Pixel size. Calculated if None."), ("padding", None, "Padding. Calculated if None."), ("background", "000000", "Background colour"), ("foreground", "ffffff", "Foreground colour") ) def __init__(self, interface="wlan0", width=bar.CALCULATED, **config): """ - interface: Wlan interface name. - width: A fixed width, or bar.CALCULATED to calculate the width automatically (which is recommended). """ self.interface = interface base._TextBox.__init__(self, " ", width, **config) def _configure(self, qtile, bar): base._TextBox._configure(self, qtile, bar) self.timeout_add(1, self.update) def update(self): interface = Wireless(self.interface) stats = Iwstats(self.interface) quality = stats.qual.quality essid = interface.getEssid() text = "{} {}/70".format(essid, quality) if self.text != text: self.text = text self.bar.draw() return True
StarcoderdataPython
5186617
from algos.deepobfuscator import DeepObfuscator from utils.metrics import MetricLoader class EntropyLoss(_Loss): def __init__(self, size_average=None, reduce=None, reduction='mean'): super(EntropyLoss, self).__init__(size_average, reduce, reduction) # input is probability distribution of output classes def forward(self, input): if (input < 0).any() or (input > 1).any(): print(input) raise Exception('Entropy Loss takes probabilities 0<=input<=1') input = input + 1e-16 # for numerical stability while taking log H = torch.mean(torch.sum(input * torch.log(input), dim=1)) return H class maxentropy(DeepObfuscator): """ The only difference between maxentropy and Deepobfuscator is the loss function for the proxy adversary and the label is the private attribute instead of reconstruction. """ def __init__(self, config, utils) -> None: super(maxentropy, self).__init__(config, utils) self.update_loss() def update_loss(self): self.loss = EntropyLoss().forward def get_adv_loss(self): # Since it is L1, it has to be minimized return self.adv_loss
StarcoderdataPython
169991
from django.contrib.auth.models import User, Group from django.http.response import Http404 from django.shortcuts import get_object_or_404 from rest_framework.parsers import MultiPartParser, FormParser, FileUploadParser, JSONParser from rest_framework import generics, permissions, status, views from rest_framework.response import Response from oauth2_provider.contrib.rest_framework import TokenHasReadWriteScope, TokenHasScope from api import custompermission from accounts.api.serializers import AccountProfileSerializer, FollowStoriesSerializer, FollowUserSerializer, SignupSerializer, GroupSerializer from fanfics.api.serializers import UserFanficSerializer, SocialSerializer, FanficSerializer, UserSerializer from accounts.models import AccountProfile, FollowUser, FollowStories, Social from fanfics.models import Fanfic class UserFanficDetailView(generics.RetrieveAPIView): """ Retrieve an user formatted """ queryset = User.objects.all() serializer_class = UserFanficSerializer lookup_field = 'username' permission_classes = ( permissions.AllowAny, ) class UserDetailView(generics.RetrieveUpdateDestroyAPIView): """ Retrieve an user """ queryset = User.objects.all() serializer_class = UserSerializer permission_classes = ( permissions.IsAuthenticated, custompermission.IsUserOrReadonly, ) def put(self, request, *args, **kwargs): return self.partial_update(request, *args, **kwargs) class AccountProfileDetailView(generics.RetrieveUpdateDestroyAPIView): """ Retrieve and update a profile account """ queryset = AccountProfile.objects.all() serializer_class = AccountProfileSerializer permission_classes = ( permissions.AllowAny, custompermission.IsCurrentUserOrReadonly, ) lookup_field = ('user__username') parser_classes = (MultiPartParser, FormParser, JSONParser,) class SocialListApiView(generics.ListCreateAPIView): """ Retrieve a social account """ serializer_class = SocialSerializer pagination_class = None permission_classes = ( permissions.IsAuthenticatedOrReadOnly, ) def get_queryset(self): account = self.kwargs['account'] if account: return Social.objects.filter(account=account) else: return Social.objects.all() class SocialDestroyApiView(generics.DestroyAPIView): """ Destroy a social account """ queryset = Social.objects.all() serializer_class = SocialSerializer permission_classes = ( permissions.IsAuthenticated, ) class GroupListView(generics.ListAPIView): permission_classes = [permissions.IsAuthenticated, TokenHasScope] required_scopes = ['groups'] queryset = Group.objects.all() serializer_class = GroupSerializer class SignupView(generics.CreateAPIView): queryset = User.objects.all() serializer_class = SignupSerializer permission_classes = (custompermission.IsAuthenticatedOrCreate,) def liked_fanfic(request): fanfic_id = request.data.get('id') user_id = request.data.get('user') if fanfic_id and user_id: try: fanfic = Fanfic.objects.get(id=int(fanfic_id)) if fanfic: likes = fanfic.users_like.add(user_id) fanfic.users_like = likes fanfic.save() return Response({'status': 'ok'}, status=status.HTTP_201_CREATED) except: return Response({'status': 'nok'}, status=status.HTTP_400_BAD_REQUEST) class FavoritedFanficView(views.APIView): """ Favorite fanfic """ # serializer_class = FanficSerializer() authentication_classes = () permission_classes = () def post(self, request, *args, **kwargs): """ serializer = FollowUserSerializer(data=request.data) if serializer.is_valid(): serializer.save() """ serializer = FanficSerializer() if serializer.data: liked_fanfic(request) return Response(serializer.data, status=status.HTTP_200_OK) def unliked_fanfic(request): fanfic_id = request.data.get('id') user_id = request.data.get('user') if fanfic_id and user_id: try: fanfic = Fanfic.objects.get(id=int(fanfic_id)) if fanfic: likes = fanfic.users_like.remove(user_id) fanfic.users_like = likes fanfic.save() return Response({'status': 'ok'}, status=status.HTTP_200_OK) except: return Response({'status': 'nok'}, status=status.HTTP_400_BAD_REQUEST) class UnfavoritedFanficView(views.APIView): """ Unfavorite fanfic """ serializer_class = FanficSerializer() authentication_classes = () permission_classes = () def post(self, request, *args, **kwargs): serializer = FanficSerializer() if serializer.data: unliked_fanfic(request) return Response(serializer.data, status=status.HTTP_200_OK) class FollowUserView(views.APIView): """ Users followed """ serializer_class = FollowUserSerializer() authentication_classes = () permission_classes = (permissions.AllowAny,) def get(self, request, format=None): """ return list of all authors followed """ try: follow_users = FollowUser.objects.all() serializer = FollowUserSerializer(follow_users, many=True) return Response(serializer.data, status=status.HTTP_200_OK) except: return Response({'status': 'no content'}, status=status.HTTP_204_NO_CONTENT) def post(self, request, *args, **kwargs): serializer = FollowUserSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response({'status': 'ko'}, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, pk=None): follow_user_id = request.data.get('id') try: follow_user = FollowUser.objects.get(id=follow_user_id) follow_user.delete() return Response({'status': 'ok'}, status=status.HTTP_200_OK) except: return Response({'status': 'ko'}, status=status.HTTP_400_BAD_REQUEST) class FollowAuthorDeleteView(views.APIView): """ Author followed """ serializer_class = FollowUserSerializer() authentication_classes = () permission_classes = (permissions.AllowAny,) def get_object(self, request, user_to): user_from = request.data.get('user_from') try: return FollowUser.objects.get(user_to=user_to, user_from=user_from) except FollowUser.DoesNotExist: raise Http404 def get(self, request, user_to, format=None): author_followed = self.get_object(request, user_to) serializer = FollowUserSerializer(author_followed) return Response(serializer.data) def delete(self, request, user_to, format=None): author_followed = self.get_object(request, user_to) author_followed.delete() return Response(status=status.HTTP_204_NO_CONTENT) class FollowStoriesDeleteView(views.APIView): """ Author followed """ serializer_class = FollowStoriesSerializer() authentication_classes = () permission_classes = (permissions.AllowAny,) def get_object(self, request, to_fanfic): from_user = request.data.get('from_user') try: return FollowStories.objects.get(to_fanfic=to_fanfic, from_user=from_user) except FollowStories.DoesNotExist: raise Http404 def get(self, request, to_fanfic, format=None): story_followed = self.get_object(request, to_fanfic) serializer = FollowStoriesSerializer(story_followed) return Response(serializer.data) def delete(self, request, to_fanfic, format=None): story_followed = self.get_object(request, to_fanfic) story_followed.delete() return Response(status=status.HTTP_204_NO_CONTENT) class FollowStoriesView(views.APIView): """ Stories followed """ serializer_class = FollowStoriesSerializer() authentication_classes = () permission_classes = (permissions.AllowAny,) def get(self, request, format=None): """ return list of all stories followed """ try: stories = FollowStories.objects.all() serializer = FollowStoriesSerializer(stories, many=True) return Response(serializer.data, status=status.HTTP_200_OK) except: return Response({'status': 'no content'}, status=status.HTTP_204_NO_CONTENT) def post(self, request): serializer = FollowStoriesSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response({'status': 'ko'}, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, pk=None): follow_story_id = request.data.get('id') try: follow_story = FollowStories.objects.get(id=follow_story_id) follow_story.delete() return Response({'status': 'ok'}, status=status.HTTP_200_OK) except: return Response({'status': 'ko'}, status=status.HTTP_400_BAD_REQUEST) class DeleteAccountView(views.APIView): """ Disable user account """ serializer_class = UserSerializer() authentication_classes = () permission_classes = (permissions.IsAuthenticated,) def get(self, request, *args, **kwargs): user = request.user user.is_active = False user.save() return Response({"status": "ok"}, status=status.HTTP_200_OK)
StarcoderdataPython
8195186
#!/usr/bin/env python # # Copyright 2010 Los Alamos National Security, LLC # Written by <NAME> (CCS-2) # ''' Functions for running a simulation. ''' _usage = ''' Usage: %s [options] input_file where, input_file : The input file. If the extension on the file name is ".xml", then the executable reads this file directly. Otherwise, the file is assumed to be a Python front-end input file, which is then converted to an xml file, after which the executable is run. Options [default]: -d, --doc Dump input variable documentation to stdout and exit. Unavailable if input_file is an xml file. [false] -h, --help Print this message and exit. [false] -n, --procs Run on this many processors. [1] -p, --python Dump input variables, in python format, to stdout and exit. Some editing may be required in order to use this dump as an input file. Unavailable if input_file is an xml file. [false] -x, --xml Convert input_file to xml and exit. [false] Options -d and -x may be combined; if either of these 2 options are specified, the executable is not run. The -d and -p options do not document all possible input combinations. For example, a linear solver type could allow CG or GMRES. If the solver type is set to CG in input_file, only CG related input variables will be documented with the -d option. There is no way from the -d or -p options to know that GMRES is available as a solver option. Example: %s --procs=4 input.py ''' import subprocess import getopt import sys import os from py_siminput.input_interface import Dump_XML, Dump_Doc, Dump_Python # global variables prefix_default = 'time %s' script_name = os.path.basename(sys.argv[0]) build_type = 'host' def Usage(mesg): ''' Prints documentation and exits. ''' print(mesg) print(_usage % (script_name, script_name)) sys.exit(0) def system(command, debug): ''' Runs command on the underlying operating system. ''' if debug: print(" " + command) # for debugging else: r = os.system(command) if r != 0: # alternatively, "if not os.WIFEXITED(r)" print("Error running: " + command) sys.exit(1) def append_to_file(file): ''' Can be used to append items to a file, in a system() call. ''' return " 1>> " + file + " 2>&1" def mpi_only_run_string(num_pes,exe,inputfile): ''' This function may be used to define a default run string for mpi runs, dependent on the platform. ''' machine = subprocess.getoutput('uname') if machine == "AIX": # IBM AIX (with poe) s = "poe %s -procs %d -rmpool 2 -retry 1" % (exe,num_pes,inputfile) elif machine == "OSF1": # COMPAQ s = "prun -n %d %s %s" % (num_pes,exe,inputfile) else: # Set the default s = "mpirun -np %d %s %s" % (num_pes,exe,inputfile) return s def mcmpi_run_string(num_pes,exe1,exe2,inputfile): ''' This function defines a run string for mcmpi runs. only has default. platforms should be added a la mpi_run_string as needed. ''' s = "mpirun -np %d %s %s : -np %d %s" % (num_pes,exe2,inputfile, num_pes,exe1) return s def mpidacs_run_string(num_pes,exe1,exe2,inputfile): ''' This function defines a run string for mpidacs runs. only has default. platforms should be added a la mpi_run_string as needed. ''' s = "mpiexec --mca mpi_paffinity_alone 1 -np %d %s %s %s" % (num_pes,exe2, exe1, inputfile) return s def run_string(num_pes,exe1,exe2,inputfile): if build_type == 'host' and num_pes > 1: return mpi_only_run_string(num_pes,exe1,inputfile) elif build_type == 'host' and num_pes == 1: return exe1 + " " + inputfile elif build_type == 'mcmpi': return mcmpi_run_string(num_pes,exe1,exe2,inputfile) elif build_type == 'ppe': return mpidacs_run_string(num_pes,exe1,exe2,inputfile) def unit_test_args(exe1,exe2,input,args): ''' This is a utility function that parses the command-line arguments from dracos launchtest and returns the pair (number_of_procs, run_string). Typically, args is sys.argv. ''' # serial default rs = "%s" num_pes = 1 # check for --procs, i.e., a parallel run. if len(args) > 1: try: optlist, args = getopt.getopt(args[1:], 'n:', ['procs=']) except getopt.error as val: print('ERROR ' + val.msg) sys.exit(1) for o, a in optlist: if o in ('-n', '--procs'): num_pes = int(a) rs = run_string(num_pes,exe1,exe2,input) # all done return (num_pes, rs) def get_root(input): input_dict = {} exec(compile(open(input).read(), input, 'exec'), input_dict) if 'root' not in input_dict: Usage("No 'root' variable defined in input file %s" % (input)) return input_dict['root'] def run_root(root, input_xml, command, debug = 0): ''' This is a low-level function, used by the run() function. Also, it may be useful in more sophisticated scripts. root = Root of input tree. input_xml = File name where xml is dumped. command = Command string. debug = Print the action to be taken, but do not actually do it. ''' Dump_XML(root, input_xml) system(command, debug) def run(exe1,exe2): ''' Runs exes. See _usage string for more information on the actions of this function. ''' prefix = prefix_default debug = 0 dump_doc = 0 dump_python = 0 dump_xml = 0 input = 'input.xml' num_pes = 1 # Parse command line options try: optlist, args = getopt.getopt(sys.argv[1:], 'dhn:px', ['doc', 'help', 'procs=', 'python', 'xml']) except getopt.error as val: Usage('ERROR: ' + val.msg) for o, a in optlist: if o in ('-d', '--doc'): dump_doc = 1 elif o in ('-h', '--help'): Usage("") elif o in ('-p', '--python'): dump_python = 1 elif o in ('-n', '--procs'): num_pes = int(a) elif o in ('-x', '--xml'): dump_xml = 1 if len(args) > 1: Usage("Too many arguments.") if len(args) < 1: Usage("Must supply input filename.") input = args[0] # Make sure input exists if not os.path.isfile(input): Usage("Unable to find input file: %s" % (input)) # Create the xml filename input_base = os.path.basename(input) input_is_xml = False if input_base[-4:] == ".xml": input_is_xml = True input_xml = input_base elif len(input_base) < 3 or input_base[-3:] != ".py": input_xml = input_base + ".xml" else: input_xml = input_base[0:-3] + ".xml" # Filter input file through python. The input file must generate # an input interface named 'root'. if input_is_xml: if dump_xml: Usage('--xml specified when input is already xml.') if dump_python: Usage('--python unavailable when input is xml.') if dump_doc: Usage('--doc unavailable when input is xml.') command = run_string(num_pes,exe1,exe2,input_xml) print('Running: %s ...' % (command)) system(command,debug) else: print('Generating %s from %s ...' % (input_xml, input)) root = get_root(input) run_sim = 1 # if true, run simulation. if dump_xml: run_sim = 0 if dump_doc: # Dump documentation Dump_Doc(root) run_sim = 0 if dump_python: # Dump python d = Dump_Python(1) d.dump(root, 'root') run_sim = 0 if run_sim: # Run the solver command = run_string(num_pes,exe1,exe2,input_xml) print('Running: %s ...' % (command)) run_root(root, input_xml, command, debug) elif dump_xml: # just dump the xml Dump_XML(root, input_xml)
StarcoderdataPython
3203104
import uuid import django.contrib.postgres.indexes import django.contrib.postgres.search import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("backend", "0001"), ] operations = [ migrations.CreateModel( name="Item", fields=[ ( "id", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, ), ), ("created", models.DateTimeField(auto_now_add=True, db_index=True)), ("updated", models.DateTimeField(auto_now=True, db_index=True)), ("name", models.TextField()), ("description", models.TextField()), ( "search_vector", django.contrib.postgres.search.SearchVectorField(null=True), ), ], ), migrations.CreateModel( name="User", fields=[ ( "id", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, ), ), ("created", models.DateTimeField(auto_now_add=True, db_index=True)), ("updated", models.DateTimeField(auto_now=True, db_index=True)), ("full_name", models.TextField()), ("email", models.TextField()), ("hashed_password", models.TextField()), ( "search_vector", django.contrib.postgres.search.SearchVectorField(null=True), ), ], ), migrations.AddIndex( model_name="user", index=models.Index(fields=["email"], name="backend_use_email_db66b5_idx"), ), migrations.AddIndex( model_name="user", index=django.contrib.postgres.indexes.GinIndex( fields=["search_vector"], name="backend_use_search__6cf6bf_gin" ), ), migrations.AddConstraint( model_name="user", constraint=models.UniqueConstraint(fields=("email",), name="unique_email"), ), migrations.AddField( model_name="item", name="owner", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="backend.user", ), ), migrations.AddIndex( model_name="item", index=models.Index( fields=["name", "owner"], name="backend_ite_name_c0732e_idx" ), ), migrations.AddIndex( model_name="item", index=django.contrib.postgres.indexes.GinIndex( fields=["search_vector"], name="backend_ite_search__4170f7_gin" ), ), migrations.AddConstraint( model_name="item", constraint=models.UniqueConstraint( fields=("name", "owner"), name="unique_owner_and_name" ), ), ]
StarcoderdataPython
8101593
'''============================================================= c:/1work/Python/djcode/pjtk2/migration/get_project_dates.py Created: 14 Jan 2015 15:43:57 DESCRIPTION: This script was developed from get_spatial_data.py (and should be merged with it to faciliate annual/frequent updates). This scripts gets the start and end date for every project in the master databases and then updates prj_date0 and prj_date1 in project tracker. This script should be run each time a project is merged into a master set. Project start and end dates are required fields when a project is created, but can't be known until the project is complete. This script ensures that project tracker reflects what is in the databases. <NAME> ============================================================= ''' import csv import pyodbc import datetime from dateutil import parser import psycopg2 PG_USER = 'adam' PG_DB = 'pjtk2' PG_HOST = '192.168.127.12' #PG_HOST = '127.0.0.1' masters = { 'offshore': { 'path': 'Z:/Data Warehouse/Assessment/Index/Offshore/IA_OFFSHORE.mdb', 'table': 'Offshore_FN121', 'sam': 'SAM', 'ddlat': 'dd_lat', 'ddlon': 'dd_lon', 'effdt0': 'effdt0', 'effdt1': 'effdt1', 'groupby': False, }, 'nearshore': { 'path': 'Z:/Data Warehouse/Assessment/Index/Nearshore/IA_NEARSHORE.mdb', 'table': 'IA121', 'sam': 'SAM', 'ddlat': 'DD_LAT', 'ddlon': 'DD_LON', 'effdt0': 'effdt0', 'effdt1': 'effdt1', 'groupby': False, }, 'smallfish': { 'path': ('Z:/Data Warehouse/Assessment/Index/Nearshore/' + 'Small_Fish/COA_Nearshore_Smallfish.mdb'), 'table': '121', 'sam': 'SAM', 'ddlat': 'dd_lat', 'ddlon': 'dd_lon', 'effdt0': 'effdt0', 'effdt1': 'effdt1', 'groupby': False, }, 'fishway': { 'path': 'Z:\Data Warehouse\Assessment\Fishway\Fishway_Master.mdb', 'table': 'IM_121', 'sam': 'SAM', 'ddlat': 'DD_LAT', 'ddlon': 'DD_LON', 'effdt0': 'effdt0', 'effdt1': 'effdt1', 'groupby': True, }, 'sturgeon': { 'path': ('Z:/Data Warehouse/Assessment/Index/Sturgeon/' + 'SturgeonMaster.mdb'), 'table': 'Sturgeon_FN121', 'sam': 'SAM', 'ddlat': 'dd_lat', 'ddlon': 'dd_lon', 'effdt0': 'effdt0', 'effdt1': 'effdt1', 'groupby': False, }, 'comcatch': { 'path':('Z:/Data Warehouse/Commercial Fisheries/Catch Sampling/' + 'CF_Master.mdb'), 'table': 'Final_FN121', 'sam': 'SAM', 'ddlat': 'DD_LAT', 'ddlon': 'DD_LON', 'effdt0': 'DATE', 'effdt1': 'DATE', 'groupby': False, }, 'stocking': { 'path':('Y:/Information Resources/Dataset_Utilities/FS_Maker/' + 'FS_Master.mdb'), 'table': 'FS_Events', 'sam': 'EVENT', 'ddlat': 'DD_LAT', 'ddlon': 'DD_LON', 'effdt0': 'Event_Date', 'effdt1': 'Event_Date', 'groupby': False, }, 'creel': { 'path':('Z:/Data Warehouse/Recreational Fisheries/Creel/SC/' + 'SC_Master.mdb'), 'table': 'FINAL_FN121', 'sam': 'SAM', 'ddlat': 'DD_LAT', 'ddlon': 'DD_LON', 'effdt0': 'EFFDT0', 'effdt1': 'EFFDT0', 'groupby': True, }, 'sportfish':{ 'path':('Z:/Data Warehouse/Recreational Fisheries/Angler Diary/Sf/' + 'SF_MASTER.mdb'), 'table': 'FN121', 'sam': 'SAM', 'ddlat': 'DD_LAT', 'ddlon': 'DD_LON', 'effdt0': 'EFFDT0', 'effdt1': 'EFFDT0', 'groupby': True, }, 'benthic': { 'path':('Z:/Data Warehouse/Derived Datasets/UNIT PROJECTS/Benthics/' + 'Lake Huron Benthics.mdb'), #'path':'Y:/File Transfer/Lake Huron Benthics.mdb', 'table': 'LH_benthics', 'sam': 'Station ID', 'ddlat': 'DD Latitude', 'ddlon': 'DD Longitude', 'effdt0': 'Date', 'effdt1': 'Date', 'groupby': False, }, } def build_sql2(db_dict): '''a little helper function that will build the sql statement to get the start and end data of each project in the table (database)''' sql_base="""SELECT PRJ_CD, Min([{effdt0}]) AS PRJ_Start, Max([{effdt1}]) AS PRJ_END FROM [{table}] GROUP BY PRJ_CD;""" sql = sql_base.format(**db_dict) return sql prj_dates = [] #loop over our database dictionary and query each one for the project info. for db in masters.keys(): dbase = masters[db] constr = r"DRIVER={{Microsoft Access Driver (*.mdb)}};DBQ={0}" constr = constr.format(dbase['path']) mdbconn = pyodbc.connect(constr) mdbcur = mdbconn.cursor() # create a cursor #try the lookup tables first - keep things simple mdbcur = mdbconn.cursor() sql = build_sql2(dbase) try: mdbcur.execute(sql) result = mdbcur.fetchall() print("There were {0} records found in {1}".format(len(result), db)) except: print('Problem with {}'.format(db)) mdbconn.close() for row in result: prj_dates.append([row[0], row[1], row[2]]) #convert the list of tuples returned by the db to a list of lists prj_list = [[x[0], x[1], x[2]] for x in prj_dates] #now covert each of dates to datetime objects (if they aren't already') and #capture any that can't be converted bad_start = [] bad_end = [] for prj in prj_list: if prj[1] and prj[1].__class__ != datetime.datetime: try: prj[1] = parser.parse(prj[1]) except TypeError: bad_start.append(prj) if prj[2] and prj[2].__class__ != datetime.datetime: try: prj[2] = parser.parse(prj[2]) except TypeError: bad_end.append(prj) print("There were {} bad start dates found.".format(len(bad_start))) print("There were {} bad end dates found.".format(len(bad_end))) #now write prj_dates into a temporary table in project tracker #and compare project start and end dates # update those where they are different. constr = "host={0} dbname={1} user={2}".format(PG_HOST, PG_DB, PG_USER) pgconn = psycopg2.connect(constr) pgcur = pgconn.cursor() print('Making temporary project dates table...') sql = """DROP TABLE IF EXISTS prj_dates_tmp""" pgcur.execute(sql) sql = """CREATE TABLE prj_dates_tmp ( id serial NOT NULL, prj_cd character(13) NOT NULL, prj_start DATE, prj_end DATE ) """ pgcur.execute(sql) pgconn.commit() print('Inserting project dates into temporary table...') args = ([{'prj_cd': x[0], 'prj_start':x[1], 'prj_end':x[2]} for x in prj_list]) sql = """INSERT INTO prj_dates_tmp (prj_cd, prj_start, prj_end) VALUES(%(prj_cd)s, %(prj_start)s, %(prj_end)s);""" pgcur.executemany(sql, args) pgconn.commit() #============================================================= #write out some basic information about project that have start # dates different than the master: sql = """-- start dates that differ SELECT master_database as dbase, prj.year, dates.prj_cd, prj_start AS master_start, prj_date0 AS tracker_start, prj_start - prj_date0 AS diff FROM prj_dates_tmp dates JOIN pjtk2_project prj ON prj.prj_cd = dates.prj_cd join pjtk2_database db on db.id=prj.master_database_id WHERE prj.prj_date0 != dates.prj_start --and db.master_database = 'Fish Stocking' ORDER BY dbase, prj.year DESC, prj.prj_cd;""" pgcur.execute(sql) rs = pgcur.fetchall() fname = 'c:/1work/Python/djcode/pjtk2/migration/start_dates.csv' with open(fname, 'w') as f: writer = csv.writer(f) writer.writerow([x[0] for x in pgcur.description]) writer.writerows(rs) #============================================================= #write out some basic information about project that have ends #different than the master: sql = """-- end dates that differ SELECT master_database as dbase, prj.year, prj.year, dates.prj_cd, prj_end AS master_end, prj_date1 AS tracker_end, prj_end - prj_date1 AS diff FROM prj_dates_tmp dates JOIN pjtk2_project prj ON prj.prj_cd = dates.prj_cd join pjtk2_database db on db.id=prj.master_database_id WHERE prj.prj_date1 != dates.prj_end --and db.master_database = 'Fish Stocking' ORDER BY dbase, prj.year DESC, prj.prj_cd;""" pgcur.execute(sql) rs = pgcur.fetchall() fname = 'c:/1work/Python/djcode/pjtk2/migration/end_dates.csv' with open(fname, 'w') as f: writer = csv.writer(f) writer.writerow([x[0] for x in pgcur.description]) writer.writerows(rs) #============================================================= # update project tracker: print('Updating START dates....') sql = """-- update the project start dates from the masters: UPDATE pjtk2_project SET prj_date0 = prj_start FROM prj_dates_tmp WHERE prj_dates_tmp.prj_cd = pjtk2_project.prj_cd and prj_date0 != prj_start;""" pgcur.execute(sql) print('Updating END dates....') sql = """-- update the project End dates from the masters: UPDATE pjtk2_project SET prj_date1 = prj_end FROM prj_dates_tmp WHERE prj_dates_tmp.prj_cd = pjtk2_project.prj_cd and prj_date1 != prj_end;""" pgcur.execute(sql) print('Cleaning up...') sql = """DROP TABLE prj_dates_tmp""" pgcur.execute(sql) pgconn.commit() pgcur.close() pgconn.close() print('Done updating project dates!!')
StarcoderdataPython
268999
# Example running ManFit import manfit as mf import numpy as np import matplotlib.pyplot as plt # write function with parameters as parameters t = np.linspace(0,5,100) ydata = np.exp(-t/3)*np.sin(2*np.pi*0.7*t) + np.random.uniform(low=-0.5,high=0.5, size=len(t)) def sine(t, freq, tau): return np.exp(-t/tau)*np.sin(2*np.pi*freq*t) def cosine(t, freq, phi): return np.cos(2*np.pi*freq*t + phi) # Initialize Parameters params = [mf.Parameter(-1,1, name='Frequency'), mf.Parameter(0.1,3, name='Tau')] # setup plot figure, axes = plt.subplots(1,1,figsize=(6,4), dpi=96) line1, = axes.plot(t,sine(t, *[param.val for param in params])) line2, = axes.plot(t,ydata) # start ManFit # mf.manfit(figure, parameter_list, lines_to_update, xdata, ydata, fit_func) mf.manfit(figure, params, {line1:sine}, t, ydata, sine)
StarcoderdataPython
3361456
""" lambdata - a collection of data science helper functions """ import pandas as pd import numpy as np # sample code ONE = pd.DataFrame(np.ones(10)) Zeros = pd.DataFrame(np.zeros(50))
StarcoderdataPython
310397
<reponame>thitta/Someone.tw-Blog from django.contrib.auth import get_user_model from django.core.exceptions import ObjectDoesNotExist from django.test import TestCase, Client from cms.models import Post, Collection from cms.utils import reset_post_relations USER1 = {"username": "john", "password": "<PASSWORD>"} USER2 = {"username": "mary", "password": "<PASSWORD>"} class IntegrationTest(TestCase): @classmethod def setUpClass(cls): super().setUpClass() # create user User = get_user_model() user1 = User.objects.create_user(**USER1) user2 = User.objects.create_user(**USER2) # create mock data posts = [None] * 6 posts[0] = Post.create_mock_instance(user1, IsPublic=True, IsOnList=True, RankingIndex=0, ) posts[1] = Post.create_mock_instance(user1, IsPublic=True, IsOnList=True, RankingIndex=2, ) posts[2] = Post.create_mock_instance(user1, IsPublic=True, IsOnList=True, RankingIndex=0, ) posts[3] = Post.create_mock_instance(user1, IsPublic=True, IsOnList=True, RankingIndex=0, IsTop=True) posts[4] = Post.create_mock_instance(user1, IsPublic=True, IsOnList=False) posts[5] = Post.create_mock_instance(user1, IsPublic=False, IsOnList=False) reset_post_relations() # Collections collections = [None] * 3 collections[0] = Collection.create_mock_instance(IsPublic=True) collections[1] = Collection.create_mock_instance(IsPublic=False) collections[0].Posts.add(posts[0], posts[1], posts[4], posts[5]) # ------------------------------ # post:read # ------------------------------ def test_ok_GET_post_list(self): c = Client() res = c.get("/") # status code exp = 200 act = res.status_code self.assertEqual(exp, act) # posts length exp = 4 act = len(res.context["posts"]) self.assertEqual(exp, act) def test_ok_GET_post_detail(self): # ok c = Client() res = c.get("/post/1/title") exp = 200 act = res.status_code self.assertEqual(exp, act) # none public post: return 404 c = Client() res = c.get("/post/6/title") exp = 404 act = res.status_code self.assertEqual(exp, act) # none existent post: return 404 c = Client() res = c.get("/post/999/title") exp = 404 act = res.status_code self.assertEqual(exp, act) # ------------------------------ # post:create/update/delete # ------------------------------ def test_ok_GET_create_post(self): # ok c = Client() c.login(**USER1) res = c.get("/post/create") exp = 200 act = res.status_code self.assertEqual(exp, act) # not login: return redirect c = Client() res = c.get("/post/create") exp = 302 act = res.status_code self.assertEqual(exp, act) def test_ok_GET_update_post(self): # ok c = Client() c.login(**USER1) res = c.get("/post/1/update") exp = 200 act = res.status_code self.assertEqual(exp, act) # not login: return redirect c = Client() res = c.get("/post/1/update") exp = 302 act = res.status_code self.assertEqual(exp, act) # login but not author: return forbidden c = Client() c.login(**USER2) res = c.get("/post/1/update") exp = 403 act = res.status_code self.assertEqual(exp, act) def test_ok_POST_create_update_delete_post(self): # prepare: login c = Client() User = get_user_model() c.login(**USER1) user = User.objects.get(username=USER1["username"]) mock_post_created = {"Title": "Created Post", "Subtitle": "xxx", "BodyMarkdown": "xxx", "User": user, "IsOnList": True, "IsPublic": True, "IsTop": True, "RankingIndex": 0} # create_ok: redirect 302 res = c.post(f"/post/create", data=mock_post_created, follow=True) final_url, status_code = res.redirect_chain[-1] exp = 302 act = status_code self.assertEqual(exp, act) # create_ok: post is correctly created created_post_id = int(final_url.split("/")[2]) created_post = Post.objects.get(PostId=created_post_id) exp = mock_post_created["Title"] act = created_post.Title self.assertEqual(exp, act) # update_ok: redirect 302 mock_post_updated = mock_post_created.copy() mock_post_updated["Title"] = "Updated Post" res = c.post(f"/post/{created_post_id}/update", data=mock_post_updated, follow=True) final_url, status_code = res.redirect_chain[-1] exp = 302 act = status_code self.assertEqual(exp, act) # update_ok: post is correctly updated updated_post_id = int(final_url.split("/")[2]) updated_post = Post.objects.get(PostId=updated_post_id) exp = mock_post_updated["Title"] act = updated_post.Title self.assertEqual(exp, act) # update_ok: the created and updated post should be the same post self.assertEqual(created_post_id, updated_post_id) # delete_ok: redirect 302 res = c.post(f"/post/{created_post_id}/delete", data=mock_post_updated, follow=True) final_url, status_code = res.redirect_chain[-1] exp = 302 act = status_code self.assertEqual(exp, act) # delete_raise: post is no longer exists with self.assertRaises(ObjectDoesNotExist): Post.objects.get(PostId=created_post_id) # ------------------------------ # collection: read # ------------------------------ def test_ok_collection_post_list(self): c = Client() res = c.get("/collection/1/collectionTitle") # http status exp = 200 act = res.status_code self.assertEqual(exp, act) # posts length exp = 3 act = len(res.context["posts"]) self.assertEqual(exp, act)
StarcoderdataPython
339275
def f(): x = 5 return x
StarcoderdataPython
3536044
import json import requests import os from flask import (request, jsonify, make_response, render_template, Blueprint, send_file, url_for, abort) from logzero import logger from config import config from extensions import cache from base.forms import VBrowserForm from base.utils.auth import jwt_required from caendr.api.strain import query_strains from caendr.api.isotype import get_isotypes from caendr.models.datastore import DatasetRelease from caendr.models.sql import Strain, StrainAnnotatedVariant from caendr.services.cloud.storage import generate_blob_url from caendr.services.dataset_release import get_all_dataset_releases, get_release_path, get_browser_tracks_path, get_release_bucket from caendr.models.error import NotFoundError releases_bp = Blueprint('data_releases', __name__, template_folder='templates') # ============= # # Data Page # # ============= # @releases_bp.route('/release/latest') @releases_bp.route('/release/<string:release_version>') @cache.memoize(60*60) def data_releases(release_version=None): """ Default data page - lists available releases. """ title = "Genomic Data" alt_parent_breadcrumb = {"title": "Data", "url": url_for('data.landing')} RELEASES = get_all_dataset_releases(order='-version') # Get the requested release and throw an error if it doesn't exist RELEASE = None if release_version: for r in RELEASES: if r.version == release_version: RELEASE = r break if not RELEASE: raise NotFoundError(f'Release Version: {release_version} Not Found') else: RELEASE = RELEASES[0] if RELEASE.report_type == 'V2': return data_v02(RELEASE, RELEASES) elif RELEASE.report_type == 'V1': return data_v01(RELEASE, RELEASES) return render_template('data/releases.html', **locals()) @cache.memoize(60*60) def data_v02(RELEASE, RELEASES): title = "Genomic Data" alt_parent_breadcrumb = {"title": "Data", "url": url_for('data.landing')} release_version = RELEASE.version strain_listing = query_strains(release_version=release_version) release_bucket = get_release_bucket() release_path = get_release_path(release_version) browser_tracks_path = get_browser_tracks_path() browser_tracks_url = generate_blob_url(release_bucket, browser_tracks_path) files = RELEASE.get_report_data_urls_map() return render_template('data/releases.html', **locals()) @cache.memoize(60*60) def data_v01(RELEASE, RELEASES): # Legacy releases (Pre 20200101) title = "Genomic Data" alt_parent_breadcrumb = {"title": "Data", "url": url_for('data.landing')} release_version = RELEASE.version strain_listing = query_strains(release_version=release_version) release_bucket = get_release_bucket() release_path = get_release_path(release_version) browser_tracks_path = get_browser_tracks_path() site_bucket_public_name = config.get('MODULE_SITE_BUCKET_PUBLIC_NAME', 'NONE') files = RELEASE.get_report_data_urls_map() try: vcf_summary_url = files.get('vcf_summary_url') vcf_summary = requests.get(vcf_summary_url).json() except json.JSONDecodeError: vcf_summary = None return render_template('data/releases.html', **locals()) # ======================= # # Alignment Data Page # # ======================= # @releases_bp.route('/release/latest/alignment') @releases_bp.route('/release/<string:release_version>/alignment') @cache.memoize(60*60) def alignment_data(release_version=''): RELEASES = get_all_dataset_releases(order='-version') # Get the requested release and throw an error if it doesn't exist RELEASE = None if release_version: for r in RELEASES: if r.version == release_version: RELEASE = r break if not RELEASE: raise NotFoundError(f'Release Version: {release_version} Not Found') else: RELEASE = RELEASES[0] # Pre-2020 releases don't have data organized the same way if RELEASE.report_type == 'V1': return # Post-2020 releases title = "Alignment Data" alt_parent_breadcrumb = {"title": "Data", "url": url_for('data.landing')} strain_listing = query_strains(release_version=release_version) ''' DATASET_RELEASE, WORMBASE_VERSION = list(filter(lambda x: x[0] == release_version, RELEASES))[0] REPORTS = ["alignment"] ''' return render_template('data/alignment.html', **locals()) # =========================== # # Strain Issues Data Page # # =========================== # @releases_bp.route('/release/latest/strain_issues') @releases_bp.route('/release/<string:release_version>/strain_issues') @cache.memoize(60*60) def strain_issues(release_version=None): """ Strain Issues page """ RELEASES = get_all_dataset_releases(order='-version') # Get the requested release and throw an error if it doesn't exist RELEASE = None if release_version: for r in RELEASES: if r.version == release_version: RELEASE = r break if not RELEASE: raise NotFoundError(f'Release Version: {release_version} Not Found') else: RELEASE = RELEASES[0] # Pre-2020 releases don't have data organized the same way if RELEASE.report_type == 'V1': return # Post-2020 releases title = "Strain Issues" alt_parent_breadcrumb = {"title": "Data", "url": url_for('data.landing')} strain_listing_issues = query_strains(release_version=release_version, issues=True) return render_template('strain/issues.html', **locals())
StarcoderdataPython
3277001
<reponame>coderzh/pywasm3 #!/usr/bin/env python3 import wasm3 import os, time scriptpath = os.path.dirname(os.path.realpath(__file__)) wasm_fn = os.path.join(scriptpath, "./wasm/coremark-minimal.wasm") print("Initializing Wasm3 engine...") def clock_ms(): return int(round(time.time() * 1000)) env = wasm3.Environment() rt = env.new_runtime(4096) with open(wasm_fn, "rb") as f: mod = env.parse_module(f.read()) rt.load(mod) mod.link_function("env", "clock_ms", "I()", clock_ms) wasm_run = rt.find_function("run") print("Running CoreMark 1.0...") res = wasm_run() if res > 1: print(f"Result: {res:.3f}") else: print("Error")
StarcoderdataPython
1839772
<gh_stars>0 # -*- coding:utf-8 -*- # author: Xinge """ SemKITTI dataloader """ import os import numpy as np import torch import random import time import numba as nb import yaml from torch.utils import data import pickle REGISTERED_DATASET_CLASSES = {} def register_dataset(cls, name=None): global REGISTERED_DATASET_CLASSES if name is None: name = cls.__name__ assert name not in REGISTERED_DATASET_CLASSES, f"exist class: {REGISTERED_DATASET_CLASSES}" REGISTERED_DATASET_CLASSES[name] = cls return cls def get_model_class(name): global REGISTERED_DATASET_CLASSES assert name in REGISTERED_DATASET_CLASSES, f"available class: {REGISTERED_DATASET_CLASSES}" return REGISTERED_DATASET_CLASSES[name] @register_dataset class voxel_dataset(data.Dataset): def __init__(self, in_dataset, grid_size, rotate_aug=False, flip_aug=False, ignore_label=255, return_test=False, fixed_volume_space=False, max_volume_space=[50, 50, 1.5], min_volume_space=[-50, -50, -3]): 'Initialization' self.point_cloud_dataset = in_dataset self.grid_size = np.asarray(grid_size) self.rotate_aug = rotate_aug self.ignore_label = ignore_label self.return_test = return_test self.flip_aug = flip_aug self.fixed_volume_space = fixed_volume_space self.max_volume_space = max_volume_space self.min_volume_space = min_volume_space def __len__(self): 'Denotes the total number of samples' return len(self.point_cloud_dataset) def __getitem__(self, index): 'Generates one sample of data' data = self.point_cloud_dataset[index] if len(data) == 2: xyz, labels = data elif len(data) == 3: xyz, labels, sig = data if len(sig.shape) == 2: sig = np.squeeze(sig) else: raise Exception('Return invalid data tuple') # random data augmentation by rotation if self.rotate_aug: rotate_rad = np.deg2rad(np.random.random() * 360) c, s = np.cos(rotate_rad), np.sin(rotate_rad) j = np.matrix([[c, s], [-s, c]]) xyz[:, :2] = np.dot(xyz[:, :2], j) # random data augmentation by flip x , y or x+y if self.flip_aug: flip_type = np.random.choice(4, 1) if flip_type == 1: xyz[:, 0] = -xyz[:, 0] elif flip_type == 2: xyz[:, 1] = -xyz[:, 1] elif flip_type == 3: xyz[:, :2] = -xyz[:, :2] max_bound = np.percentile(xyz, 100, axis=0) min_bound = np.percentile(xyz, 0, axis=0) if self.fixed_volume_space: max_bound = np.asarray(self.max_volume_space) min_bound = np.asarray(self.min_volume_space) # get grid index crop_range = max_bound - min_bound cur_grid_size = self.grid_size intervals = crop_range / (cur_grid_size - 1) if (intervals == 0).any(): print("Zero interval!") grid_ind = (np.floor((np.clip(xyz, min_bound, max_bound) - min_bound) / intervals)).astype(np.int) # process voxel position voxel_position = np.zeros(self.grid_size, dtype=np.float32) dim_array = np.ones(len(self.grid_size) + 1, int) dim_array[0] = -1 voxel_position = np.indices(self.grid_size) * intervals.reshape(dim_array) + min_bound.reshape(dim_array) # process labels processed_label = np.ones(self.grid_size, dtype=np.uint8) * self.ignore_label label_voxel_pair = np.concatenate([grid_ind, labels], axis=1) label_voxel_pair = label_voxel_pair[np.lexsort((grid_ind[:, 0], grid_ind[:, 1], grid_ind[:, 2])), :] processed_label = nb_process_label(np.copy(processed_label), label_voxel_pair) data_tuple = (voxel_position, processed_label) # center data on each voxel for PTnet voxel_centers = (grid_ind.astype(np.float32) + 0.5) * intervals + min_bound return_xyz = xyz - voxel_centers return_xyz = np.concatenate((return_xyz, xyz), axis=1) if len(data) == 2: return_fea = return_xyz elif len(data) == 3: return_fea = np.concatenate((return_xyz, sig[..., np.newaxis]), axis=1) if self.return_test: data_tuple += (grid_ind, labels, return_fea, index) else: data_tuple += (grid_ind, labels, return_fea) return data_tuple # transformation between Cartesian coordinates and polar coordinates def cart2polar(input_xyz): rho = np.sqrt(input_xyz[:, 0] ** 2 + input_xyz[:, 1] ** 2) phi = np.arctan2(input_xyz[:, 1], input_xyz[:, 0]) return np.stack((rho, phi, input_xyz[:, 2]), axis=1) def polar2cat(input_xyz_polar): # print(input_xyz_polar.shape) x = input_xyz_polar[0] * np.cos(input_xyz_polar[1]) y = input_xyz_polar[0] * np.sin(input_xyz_polar[1]) return np.stack((x, y, input_xyz_polar[2]), axis=0) @register_dataset class cylinder_dataset(data.Dataset): def __init__(self, in_dataset, grid_size, rotate_aug=False, flip_aug=False, ignore_label=255, return_test=False, fixed_volume_space=False, max_volume_space=[50, np.pi, 2], min_volume_space=[0, -np.pi, -4], scale_aug=False, transform_aug=False, trans_std=[0.1, 0.1, 0.1], min_rad=-np.pi / 4, max_rad=np.pi / 4): self.point_cloud_dataset = in_dataset self.grid_size = np.asarray(grid_size) self.rotate_aug = rotate_aug self.flip_aug = flip_aug self.scale_aug = scale_aug self.ignore_label = ignore_label self.return_test = return_test self.fixed_volume_space = fixed_volume_space self.max_volume_space = max_volume_space self.min_volume_space = min_volume_space self.transform = transform_aug self.trans_std = trans_std self.noise_rotation = np.random.uniform(min_rad, max_rad) def __len__(self): 'Denotes the total number of samples' return len(self.point_cloud_dataset) def rotation_points_single_angle(self, points, angle, axis=0): # points: [N, 3] rot_sin = np.sin(angle) rot_cos = np.cos(angle) if axis == 1: rot_mat_T = np.array( [[rot_cos, 0, -rot_sin], [0, 1, 0], [rot_sin, 0, rot_cos]], dtype=points.dtype) elif axis == 2 or axis == -1: rot_mat_T = np.array( [[rot_cos, -rot_sin, 0], [rot_sin, rot_cos, 0], [0, 0, 1]], dtype=points.dtype) elif axis == 0: rot_mat_T = np.array( [[1, 0, 0], [0, rot_cos, -rot_sin], [0, rot_sin, rot_cos]], dtype=points.dtype) else: raise ValueError("axis should in range") return points @ rot_mat_T def __getitem__(self, index): 'Generates one sample of data' data = self.point_cloud_dataset[index] if len(data) == 2: xyz, labels = data elif len(data) == 3: xyz, labels, sig = data if len(sig.shape) == 2: sig = np.squeeze(sig) elif len(data) == 4: xyz, labels, sig, origin_len = data else: raise Exception('Return invalid data tuple') # random data augmentation by rotation if self.rotate_aug: rotate_rad = np.deg2rad(np.random.random() * 90) - np.pi / 4 c, s = np.cos(rotate_rad), np.sin(rotate_rad) j = np.matrix([[c, s], [-s, c]]) xyz[:, :2] = np.dot(xyz[:, :2], j) # random data augmentation by flip x , y or x+y if self.flip_aug: flip_type = np.random.choice(4, 1) if flip_type == 1: xyz[:, 0] = -xyz[:, 0] elif flip_type == 2: xyz[:, 1] = -xyz[:, 1] elif flip_type == 3: xyz[:, :2] = -xyz[:, :2] if self.scale_aug: noise_scale = np.random.uniform(0.95, 1.05) xyz[:, 0] = noise_scale * xyz[:, 0] xyz[:, 1] = noise_scale * xyz[:, 1] # convert coordinate into polar coordinates if self.transform: noise_translate = np.array([np.random.normal(0, self.trans_std[0], 1), np.random.normal(0, self.trans_std[1], 1), np.random.normal(0, self.trans_std[2], 1)]).T xyz[:, 0:3] += noise_translate xyz_pol = cart2polar(xyz) max_bound_r = np.percentile(xyz_pol[:, 0], 100, axis=0) min_bound_r = np.percentile(xyz_pol[:, 0], 0, axis=0) max_bound = np.max(xyz_pol[:, 1:], axis=0) min_bound = np.min(xyz_pol[:, 1:], axis=0) max_bound = np.concatenate(([max_bound_r], max_bound)) min_bound = np.concatenate(([min_bound_r], min_bound)) if self.fixed_volume_space: max_bound = np.asarray(self.max_volume_space) min_bound = np.asarray(self.min_volume_space) # get grid index crop_range = max_bound - min_bound cur_grid_size = self.grid_size intervals = crop_range / (cur_grid_size - 1) if (intervals == 0).any(): print("Zero interval!") grid_ind = (np.floor((np.clip(xyz_pol, min_bound, max_bound) - min_bound) / intervals)).astype(np.int) voxel_position = np.zeros(self.grid_size, dtype=np.float32) dim_array = np.ones(len(self.grid_size) + 1, int) dim_array[0] = -1 voxel_position = np.indices(self.grid_size) * intervals.reshape(dim_array) + min_bound.reshape(dim_array) voxel_position = polar2cat(voxel_position) processed_label = np.ones(self.grid_size, dtype=np.uint8) * self.ignore_label label_voxel_pair = np.concatenate([grid_ind, labels], axis=1) label_voxel_pair = label_voxel_pair[np.lexsort((grid_ind[:, 0], grid_ind[:, 1], grid_ind[:, 2])), :] processed_label = nb_process_label(np.copy(processed_label), label_voxel_pair) data_tuple = (voxel_position, processed_label) # center data on each voxel for PTnet voxel_centers = (grid_ind.astype(np.float32) + 0.5) * intervals + min_bound return_xyz = xyz_pol - voxel_centers return_xyz = np.concatenate((return_xyz, xyz_pol, xyz[:, :2]), axis=1) if len(data) == 2: return_fea = return_xyz elif len(data) == 3: return_fea = np.concatenate((return_xyz, sig[..., np.newaxis]), axis=1) elif len(data) == 4: return_fea = np.concatenate((return_xyz, sig[..., np.newaxis]), axis=1) if self.return_test: data_tuple += (grid_ind, labels, return_fea, index) else: data_tuple += (grid_ind, labels, return_fea) return data_tuple @register_dataset class polar_dataset(data.Dataset): def __init__(self, in_dataset, grid_size, rotate_aug=False, flip_aug=False, ignore_label=255, return_test=False, fixed_volume_space=False, max_volume_space=[50, np.pi, 2], min_volume_space=[0, -np.pi, -4], scale_aug=False): self.point_cloud_dataset = in_dataset self.grid_size = np.asarray(grid_size) self.rotate_aug = rotate_aug self.flip_aug = flip_aug self.scale_aug = scale_aug self.ignore_label = ignore_label self.return_test = return_test self.fixed_volume_space = fixed_volume_space self.max_volume_space = max_volume_space self.min_volume_space = min_volume_space def __len__(self): 'Denotes the total number of samples' return len(self.point_cloud_dataset) def __getitem__(self, index): 'Generates one sample of data' data = self.point_cloud_dataset[index] if len(data) == 2: xyz, labels = data elif len(data) == 3: xyz, labels, sig = data if len(sig.shape) == 2: sig = np.squeeze(sig) else: raise Exception('Return invalid data tuple') # random data augmentation by rotation if self.rotate_aug: rotate_rad = np.deg2rad(np.random.random() * 45) - np.pi / 8 c, s = np.cos(rotate_rad), np.sin(rotate_rad) j = np.matrix([[c, s], [-s, c]]) xyz[:, :2] = np.dot(xyz[:, :2], j) # random data augmentation by flip x , y or x+y if self.flip_aug: flip_type = np.random.choice(4, 1) if flip_type == 1: xyz[:, 0] = -xyz[:, 0] elif flip_type == 2: xyz[:, 1] = -xyz[:, 1] elif flip_type == 3: xyz[:, :2] = -xyz[:, :2] if self.scale_aug: noise_scale = np.random.uniform(0.95, 1.05) xyz[:, 0] = noise_scale * xyz[:, 0] xyz[:, 1] = noise_scale * xyz[:, 1] xyz_pol = cart2polar(xyz) max_bound_r = np.percentile(xyz_pol[:, 0], 100, axis=0) min_bound_r = np.percentile(xyz_pol[:, 0], 0, axis=0) max_bound = np.max(xyz_pol[:, 1:], axis=0) min_bound = np.min(xyz_pol[:, 1:], axis=0) max_bound = np.concatenate(([max_bound_r], max_bound)) min_bound = np.concatenate(([min_bound_r], min_bound)) if self.fixed_volume_space: max_bound = np.asarray(self.max_volume_space) min_bound = np.asarray(self.min_volume_space) # get grid index crop_range = max_bound - min_bound cur_grid_size = self.grid_size intervals = crop_range / (cur_grid_size - 1) if (intervals == 0).any(): print("Zero interval!") grid_ind = (np.floor((np.clip(xyz_pol, min_bound, max_bound) - min_bound) / intervals)).astype(np.int) voxel_position = np.zeros(self.grid_size, dtype=np.float32) dim_array = np.ones(len(self.grid_size) + 1, int) dim_array[0] = -1 voxel_position = np.indices(self.grid_size) * intervals.reshape(dim_array) + min_bound.reshape(dim_array) voxel_position = polar2cat(voxel_position) processed_label = np.ones(self.grid_size, dtype=np.uint8) * self.ignore_label label_voxel_pair = np.concatenate([grid_ind, labels], axis=1) label_voxel_pair = label_voxel_pair[np.lexsort((grid_ind[:, 0], grid_ind[:, 1], grid_ind[:, 2])), :] processed_label = nb_process_label(np.copy(processed_label), label_voxel_pair) data_tuple = (voxel_position, processed_label) # center data on each voxel for PTnet voxel_centers = (grid_ind.astype(np.float32) + 0.5) * intervals + min_bound return_xyz = xyz_pol - voxel_centers return_xyz = np.concatenate((return_xyz, xyz_pol, xyz[:, :2]), axis=1) if len(data) == 2: return_fea = return_xyz elif len(data) == 3: return_fea = np.concatenate((return_xyz, sig[..., np.newaxis]), axis=1) if self.return_test: data_tuple += (grid_ind, labels, return_fea, index) else: data_tuple += (grid_ind, labels, return_fea) return data_tuple @nb.jit('u1[:,:,:](u1[:,:,:],i8[:,:])', nopython=True, cache=True, parallel=False) def nb_process_label(processed_label, sorted_label_voxel_pair): label_size = 256 counter = np.zeros((label_size,), dtype=np.uint16) counter[sorted_label_voxel_pair[0, 3]] = 1 cur_sear_ind = sorted_label_voxel_pair[0, :3] for i in range(1, sorted_label_voxel_pair.shape[0]): cur_ind = sorted_label_voxel_pair[i, :3] if not np.all(np.equal(cur_ind, cur_sear_ind)): processed_label[cur_sear_ind[0], cur_sear_ind[1], cur_sear_ind[2]] = np.argmax(counter) counter = np.zeros((label_size,), dtype=np.uint16) cur_sear_ind = cur_ind counter[sorted_label_voxel_pair[i, 3]] += 1 processed_label[cur_sear_ind[0], cur_sear_ind[1], cur_sear_ind[2]] = np.argmax(counter) return processed_label def collate_fn_BEV(data): data2stack = np.stack([d[0] for d in data]).astype(np.float32) label2stack = np.stack([d[1] for d in data]).astype(np.int) grid_ind_stack = [d[2] for d in data] point_label = [d[3] for d in data] xyz = [d[4] for d in data] return torch.from_numpy(data2stack), torch.from_numpy(label2stack), grid_ind_stack, point_label, xyz def collate_fn_BEV_test(data): data2stack = np.stack([d[0] for d in data]).astype(np.float32) label2stack = np.stack([d[1] for d in data]).astype(np.int) grid_ind_stack = [d[2] for d in data] point_label = [d[3] for d in data] xyz = [d[4] for d in data] index = [d[5] for d in data] return torch.from_numpy(data2stack), torch.from_numpy(label2stack), grid_ind_stack, point_label, xyz, index
StarcoderdataPython
8003746
<gh_stars>0 n1 = int(input('Primeiro Número: ')) n2 = int(input('Segundo Número: ')) if n1 > n2: print('Primeiro número é maior') elif n2 > n1: print('Segundo número é maior') else: print('ambos são iguais')
StarcoderdataPython
1962727
"""libpredweb"""
StarcoderdataPython
317502
#!/usr/bin/env python import sys if 'develop' in sys.argv: # use setuptools for develop, but nothing else from setuptools import setup else: from distutils.core import setup with open('README.rst') as file: long_description = file.read() with open('CHANGES') as file: long_description += file.read() execfile('agpy/__version__.py') setup(name='agpy', version=__version__, description='agpy, Adam Ginsburg\'s Python Code (in 0.1 for perpetuity - it won\'t bump up until I release something)', long_description=long_description, author='<NAME>', author_email='<EMAIL>', data_files=[('h2fit',['h2fit_support/atran.txt', 'h2fit_support/atran2000.fits', 'h2fit_support/atran_arcturus.txt', 'h2fit_support/atran_raw_arcturus.txt', 'h2fit_support/atran_solar.txt', 'h2fit_support/atran_tran.txt', 'h2fit_support/dalgarno1984_table5.txt', 'h2fit_support/h2pars.txt', 'h2fit_support/linelist.txt'])], url='http://code.google.com/p/agpy/', packages=['agpy','agpy/mpfit','AG_fft_tools','AG_image_tools','contributed','radex'], )
StarcoderdataPython
3277968
import numpy as np from scipy.optimize import minimize from scipy.io import loadmat from numpy.linalg import det, inv from math import sqrt, pi import scipy.io import matplotlib.pyplot as plt import pickle import sys def ldaLearn(X,y): # Inputs # X - a N x d matrix with each row corresponding to a training example # y - a N x 1 column vector indicating the labels for each training example # # Outputs # means - A d x k matrix containing learnt means for each of the k classes # covmat - A single d x d learnt covariance matrix c=np.hstack((X,y)) UE = np.unique (y[:,0]) mean = np.zeros ((np.shape(X)[1], len(UE))) #initializing mean matrix coVariance = np.zeros ((np.shape(X)[1], np.shape(X)[1])) #initialzing covariance matrix ## Calculation of mean for i in range (0,len(UE)): for j in range (0,np.shape(X)[1]): elemIndices = np.where (c[:,2] == UE[i]) classElem = X[elemIndices,j] mean[j,i]= np.mean(classElem[0,:]) ##Caculation covariance coVariance = np.cov(np.transpose(X)) return mean,coVariance def qdaLearn(X,y): # Inputs # X - a N x d matrix with each row corresponding to a training example # y - a N x 1 column vector indicating the labels for each training example # # Outputs # means - A d x k matrix containing learnt means for each of the k classes # covmats - A list of k d x d learnt covariance matrices for each of the k classes c=np.hstack((X,y)) UE = np.unique (y[:,0]) mean = np.zeros ((np.shape(X)[1], len(UE))) coVariance = [0]* len(UE) temp = np.zeros ((np.shape(X)[1], np.shape(X)[1])) ## Calculation of mean for i in range (0,len(UE)): for j in range (0,np.shape(X)[1]): elemIndices = np.where (c[:,2] == UE[i]) classElem = X[elemIndices,j] mu = sum (classElem[0,:]) mu = mu/np.shape (classElem)[1] mean[j,i] = mu ## Calulating covariance nu = np.matlib.repmat(mu,len(X),1) D = np.matmul(np.transpose(X-nu),(X - nu)) D = D/len(X) coVariance[i]=D return mean,coVariance def ldaTest(means,covmat,Xtest,ytest): classes, count = np.unique(ytest[:,0], return_counts = True) theta = np.zeros (np.shape(means)[1]) label = np.zeros([len(Xtest),1]) eff = np.zeros([len(Xtest),np.shape(means)[1]]) acc = np.zeros(len(Xtest)) D = np.zeros(np.shape(means)[1]) a = np.array([1,2,3,4,5]) for i in range (0,np.shape(means)[1]): X=Xtest nu=np.matlib.repmat(means[:,i],len(Xtest),1) sigma=inv(covmat) D=np.matmul(np.matmul((X-nu),sigma),np.transpose(X-nu)) #pdf for all samples for a specific class eff[:,i] = np.diagonal(D) for i in range (0,len(Xtest)): l=np.where(eff[i,:]==np.amin(eff[i,:])) label[i]=a[l] if label[i]==ytest[i]: acc[i]=1 else: acc[i]=0 # Calculating accuracy unique, counts = np.unique(acc, return_counts=True) accuracy=np.count_nonzero(acc==1)/len(acc)*100 return accuracy,label def qdaTest(means,covmats,Xtest,ytest): # Inputs # means, covmats - parameters of the QDA model # Xtest - a N x d matrix with each row corresponding to a test example # ytest - a N x 1 column vector indicating the labels for each test example # Outputs # acc - A scalar accuracy value # ypred - N x 1 column vector indicating the predicted labels classes, count = np.unique(ytest[:,0], return_counts = True) theta = np.zeros (np.shape(means)[1]) label = np.zeros([len(Xtest),1]) eff = np.zeros([len(Xtest),np.shape(means)[1]]) acc = np.zeros(len(Xtest)) D = np.zeros(np.shape(means)[1]) a = np.array([1,2,3,4,5]) for i in range (0,np.shape(means)[1]): X=Xtest nu=np.matlib.repmat(means[:,i],len(Xtest),1) sigma=inv(covmats[i]) D=np.matmul(np.matmul((X-nu),sigma),np.transpose(X-nu)) #pdf for all samples for a specific class eff[:,i] = np.diagonal(D) for i in range (0,len(Xtest)): l=np.where(eff[i,:]==np.amin(eff[i,:])) label[i]=a[l] if label[i]==ytest[i]: acc[i]=1 else: acc[i]=0 # Calculating accuracy unique, counts = np.unique(acc, return_counts=True) accuracy=np.count_nonzero(acc==1)/len(acc)*100 return accuracy,label def learnOLERegression(X,y): # Inputs: # X = N x d # y = N x 1 # Output: # w = d x 1 w = np.matmul(inv(np.matmul(np.transpose(X),X)),np.matmul(np.transpose(X),y)) return w def learnRidgeRegression(X,y,lambd): # Inputs: # X = N x d # y = N x 1 # lambd = ridge parameter (scalar) # Output: # w = d x 1 I= np.eye((np.shape(X)[1])) lambdI= I * lambd Inv=inv(lambdI+np.matmul(np.transpose(X),X)) w = np.matmul(Inv,np.matmul(np.transpose(X),y)) return w def testOLERegression(w,Xtest,ytest): # Inputs: # w = d x 1 # Xtest = N x d # ytest = X x 1 # Output: # mse mse =0 for i in range (0,np.shape(ytest[:,0])[0]): #w = np.squeeze((w)) #temp = Xtest[i] value = ytest[i] - np.dot(np.squeeze(np.asarray(w)),Xtest[i]) value = np.dot(value,value) if i == 0: mse = value; if i != 0: mse = mse +value mse = mse/len(ytest) return mse def regressionObjVal(w, X, y, lambd): # compute squared error (scalar) and gradient of squared error with respect # to w (vector) for the given data X and y and the regularization parameter # lambda if (np.shape(w)[0]==np.shape(Xtest)[1]): w=w else: w=np.transpose(w) A = np.subtract(y,np.reshape(np.dot(X,w),[len(y),1])) B = lambd * np.dot(np.transpose(w),w) Jw =np.dot(np.transpose(A),A) + B # Do not divide by 2 for smooth curve error=Jw error_grad= np.dot(-2 * np.transpose(X),A) + np.reshape(np.dot(2,np.dot(lambd, w)),[np.shape(X)[1],1]) error_grad=np.squeeze(np.asarray(error_grad)) return error, error_grad def mapNonLinear(x,p): # Inputs: # x - a single column vector (N x 1) # p - integer (>= 0) # Outputs: # Xp - (N x (p+1)) x=np.reshape(x,[len(x),1]) intercept=np.ones([len(x),1]) Xp= intercept for i in range(1,p+1): temp = np.reshape(np.power(x,i),[len(x),1]) Xp = np.concatenate((Xp,temp),axis=1) return Xp # Main script # Problem 1 print("######## PROBLEM 1 #########") # load the sample data if sys.version_info.major == 2: X,y,Xtest,ytest = pickle.load(open('sample.pickle','rb')) else: X,y,Xtest,ytest = pickle.load(open('sample.pickle','rb'),encoding = 'latin1') # LDA means,covmat = ldaLearn(X,y) ldaacc,ldares = ldaTest(means,covmat,Xtest,ytest) print('LDA Accuracy = '+str(ldaacc)) # QDA means,covmats = qdaLearn(X,y) qdaacc,qdares = qdaTest(means,covmats,Xtest,ytest) print('QDA Accuracy = '+str(qdaacc)) # plotting boundaries x1 = np.linspace(-5,20,100) x2 = np.linspace(-5,20,100) xx1,xx2 = np.meshgrid(x1,x2) xx = np.zeros((x1.shape[0]*x2.shape[0],2)) xx[:,0] = xx1.ravel() xx[:,1] = xx2.ravel() fig = plt.figure(figsize=[12,6]) plt.subplot(1, 2, 1) zacc,zldares = ldaTest(means,covmat,xx,np.zeros((xx.shape[0],1))) plt.contourf(x1,x2,zldares.reshape((x1.shape[0],x2.shape[0])),alpha=0.3) plt.scatter(Xtest[:,0],Xtest[:,1],c=ytest[:,0]) plt.title('LDA') plt.subplot(1, 2, 2) zacc,zqdares = qdaTest(means,covmats,xx,np.zeros((xx.shape[0],1))) plt.contourf(x1,x2,zqdares.reshape((x1.shape[0],x2.shape[0])),alpha=0.3) plt.scatter(Xtest[:,0],Xtest[:,1],c=ytest[:,0]) plt.title('QDA') plt.show() # Problem 2 print("######## PROBLEM 2 #########") if sys.version_info.major == 2: X,y,Xtest,ytest = pickle.load(open('diabetes.pickle','rb')) else: X,y,Xtest,ytest = pickle.load(open('diabetes.pickle','rb'),encoding = 'latin1') # add intercept X_i = np.concatenate((np.ones((X.shape[0],1)), X), axis=1) Xtest_i = np.concatenate((np.ones((Xtest.shape[0],1)), Xtest), axis=1) w = learnOLERegression(X,y) mle = testOLERegression(w,Xtest,ytest) w_i = learnOLERegression(X_i,y) mle_i = testOLERegression(w_i,Xtest_i,ytest) print('MSE without intercept '+str(mle)) print('MSE with intercept '+str(mle_i)) # Problem 3 print("######## PROBLEM 3 #########") k = 101 lambdas = np.linspace(0, 1, num=k) i = 0 mses3_train = np.zeros((k,1)) mses3 = np.zeros((k,1)) for lambd in lambdas: w_l = learnRidgeRegression(X_i,y,lambd) mses3_train[i] = testOLERegression(w_l,X_i,y) mses3[i] = testOLERegression(w_l,Xtest_i,ytest) if i==6: weight_ideal=w_l i = i + 1 fig = plt.figure(figsize=[12,6]) plt.subplot(1, 2, 1) plt.plot(lambdas,mses3_train) plt.title('MSE for Train Data') plt.subplot(1, 2, 2) plt.plot(lambdas,mses3) plt.title('MSE for Test Data') plt.show() # Problem 4 print("######## PROBLEM 4 #########") k = 101 lambdas = np.linspace(0, 1, num=k) i = 0 mses4_train = np.zeros((k,1)) mses4 = np.zeros((k,1)) opts = {'maxiter' : 20} # Preferred value. w_init = np.ones((X_i.shape[1],1)) for lambd in lambdas: args = (X_i, y, lambd) w_l = minimize(regressionObjVal, w_init, jac=True, args=args,method='CG', options=opts) w_l = np.transpose(np.array(w_l.x)) w_l = np.reshape(w_l,[len(w_l),1]) mses4_train[i] = testOLERegression(w_l,X_i,y) mses4[i] = testOLERegression(w_l,Xtest_i,ytest) i = i + 1 fig = plt.figure(figsize=[12,6]) plt.subplot(1, 2, 1) plt.plot(lambdas,mses4_train) plt.plot(lambdas,mses3_train) plt.title('MSE for Train Data') plt.legend(['Using scipy.minimize','Direct minimization']) plt.subplot(1, 2, 2) plt.plot(lambdas,mses4) plt.plot(lambdas,mses3) plt.title('MSE for Test Data') plt.legend(['Using scipy.minimize','Direct minimization']) plt.show() # Problem 5 print("######## PROBLEM 5 #########") pmax = 7 lambda_opt = lambdas[np.argmin(mses3)] # lambda_opt estimated from Problem 3 mses5_train = np.zeros((pmax,2)) mses5 = np.zeros((pmax,2)) for p in range(pmax): Xd = mapNonLinear(X[:,2],p) Xdtest = mapNonLinear(Xtest[:,2],p) w_d1 = learnRidgeRegression(Xd,y,0) mses5_train[p,0] = testOLERegression(w_d1,Xd,y) mses5[p,0] = testOLERegression(w_d1,Xdtest,ytest) w_d2 = learnRidgeRegression(Xd,y,lambda_opt) mses5_train[p,1] = testOLERegression(w_d2,Xd,y) mses5[p,1] = testOLERegression(w_d2,Xdtest,ytest) fig = plt.figure(figsize=[12,6]) plt.subplot(1, 2, 1) plt.plot(range(pmax),mses5_train) plt.title('MSE for Train Data') plt.legend(('No Regularization','Regularization')) plt.subplot(1, 2, 2) plt.plot(range(pmax),mses5) plt.title('MSE for Test Data') plt.legend(('No Regularization','Regularization')) plt.show()
StarcoderdataPython
1903500
<filename>args_parser/hyunjungkim_01.py<gh_stars>0 import os os.getcwd() pass
StarcoderdataPython
9766781
<gh_stars>1-10 import os from .helpers import get_user from shutil import copyfile def enable_vhosts(): tmp = [] conf_path = "/usr/local/etc/httpd/httpd.conf" with open(conf_path, 'r') as input_file: for line in input_file.readlines(): if line == "#Include /usr/local/etc/httpd/extra/httpd-vhosts.conf\n": line = line.replace("#", "") tmp.append(line) input_file.close() with open(conf_path, 'w') as output_file: for line in tmp: output_file.write(line) output_file.close() def generate_hosts(): data_path = os.path.dirname(__file__) + "/../files/hosts" hosts_path = "/private/etc/hosts" copyfile(data_path, hosts_path) def generate_vhosts(): tmp = [] data_path = os.path.dirname(__file__) + "/../files/vhosts" vhosts_path = "/usr/local/etc/httpd/extra/httpd-vhosts.conf" user = get_user() with open(data_path, 'r') as vhost_template: for line in vhost_template.readlines(): tmp.append(line.replace("{USERNAME}", user)) vhost_template.close() print(tmp) # with open(vhosts_path, 'w') as output_file: # for line in tmp: # output_file.write(line) # # output_file.close()
StarcoderdataPython
6677435
<filename>weights/tools/keras_model_tools.py # Python script of tools for operations on Keras models import argparse import h5py class KModelTools: def __init__(self, h5_path=None): self.h5_path = h5_path self.f_h5 = h5py.File(h5_path) def print_h5_wegiths(self): for layer, g in self.f_h5.items(): print("{}".format(layer)) for key, value in g.attrs.items(): print("{}: {}".format(key, value)+'\n') if __name__ == '__main__': parser = argparse.ArgumentParser(description='tool set for Keras model') parser.add_argument('--h5', type=str, required=True, help='Path to the Keras model') args = parser.parse_args() k_model_tools = KModelTools(args.h5) k_model_tools.print_h5_wegiths()
StarcoderdataPython
1847242
from os import terminal_size from typing import Text import cv2 import numpy as np #? Drawing a circle by mouse click def draw_circle(event, x, y, flags, param): if event==cv2.EVENT_LBUTTONDOWN: cv2.circle(image, (x,y), 30, (255, 0, 70), -1) # create blank image and window image = np.zeros(shape=(512,512,3), dtype=np.uint8) cv2.namedWindow("Circle") cv2.setMouseCallback("Circle", draw_circle) while True: cv2.imshow("Circle", image) if cv2.waitKey(1)==ord('q'): break cv2.destroyAllWindows() # ---------------------------------------------------------------------------- # #? Drawing Rectangles / Squares drawing = False x1, y1 = -1, -1 def draw_shape(event, x, y, flags, param): global x1, y1, drawing if event==cv2.EVENT_LBUTTONDOWN: drawing = True x1, y1 = x, y if event==cv2.EVENT_MOUSEMOVE: if drawing: cv2.rectangle(image, (x1, y1), (x, y), (255,255,255), -1) if event==cv2.EVENT_LBUTTONUP: drawing = False # create blank image and window image = np.zeros((512,512,3), np.uint8) cv2.namedWindow('rectangle') cv2.setMouseCallback('rectangle', draw_shape) while True: cv2.imshow("rectangle", image) if cv2.waitKey(1)==ord('q'): break cv2.destroyAllWindows()
StarcoderdataPython
338159
<filename>error_reporting/google/cloud/error_reporting/util.py # Copyright 2016 Google LLC All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for Stackdriver Error Reporting.""" from google.cloud.error_reporting.client import HTTPContext def build_flask_context(request): """Builds an HTTP context object from a Flask (Werkzeug) request object. This helper method extracts the relevant HTTP context from a Flask request object into an object ready to be sent to Error Reporting. .. code-block:: python >>> @app.errorhandler(HTTPException) ... def handle_error(exc): ... client.report_exception( ... http_context=build_flask_context(request)) ... # rest of error response code here :type request: :class:`werkzeug.wrappers.request` :param request: The Flask request object to convert. :rtype: :class:`~google.cloud.error_reporting.client.HTTPContext` :returns: An HTTPContext object ready to be sent to the Stackdriver Error Reporting API. """ return HTTPContext( url=request.url, method=request.method, user_agent=request.user_agent.string, referrer=request.referrer, remote_ip=request.remote_addr, )
StarcoderdataPython
9783887
from typing import TYPE_CHECKING from sqlalchemy import Column, Integer, String, ARRAY, Float, REAL from sqlalchemy.orm import relationship from sqlalchemy.sql.schema import ForeignKey from app.db.base_class import Base if TYPE_CHECKING: from .embedding_model import Embedding_Model # noqa: F401 class Embedding(Base): id = Column(Integer, primary_key=True, index=True) track_id = Column(Integer, ForeignKey("track.id")) track = relationship("Track", back_populates="embeddings") embedding_model_id = Column(Integer, ForeignKey("embedding_model.id")) embedding_model = relationship("Embedding_Model", back_populates="embeddings") values = Column(ARRAY(REAL), nullable=False)
StarcoderdataPython
9726143
""" This is a WIP and a learning experience. Flask Documentation: http://flask.pocoo.org/docs/0.12/patterns/fileuploads/ """ print("BEGIN") # TODO: Add security. Some password/token passed along with ALL requests. (mandate HTTPS!!!) # NOTE: Server permissions should (SHALL) be set to mitigate issues/keep shenanigans low. # TODO: View page. Show all uploads, require password/token. import os from flask import Flask, request, render_template, redirect, url_for, send_from_directory from werkzeug.utils import secure_filename UPLOAD_FOLDER = '/var/www/html/dingle/' ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif']) def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS app = Flask(__name__) app.config["UPLOAD_FOLDER"] = UPLOAD_FOLDER @app.route("/up", methods=["POST"]) def up(): if request.method == "POST": # Check not neccessarily needed. Later feature? DELETE? if 'file' not in request.files: return "Bad request. no file", 400 # 400 -> Bad Request. sent_file = request.files["file"] # Should be a non issue for my purpose --- but mind as well handle something weird. if sent_file.filename == '': return "Bad request.", 400 # 400 -> Bad Request. if sent_file and allowed_file(sent_file.filename): file_name = secure_filename(sent_file.filename) sent_file.save(os.path.join( app.config["UPLOAD_FOLDER"], file_name)) return redirect(url_for("upped", file_name=file_name)) @app.route("/up/upped/<file_name>") def upped(file_name): return send_from_directory(app.config['UPLOAD_FOLDER'], file_name) # MISC / RANDOM stuff. @app.route("/echoer", methods=["POST", "GET"]) def index(): return """<form action="/echo" method="GET"><input name="text"><input type="submit" value="Echo"></form>""" @app.route("/echoer/echo", methods=["POST"]) def echo(): return "You said: " + request.form['text'] + "\n" + str(request.form) + "\n" @app.route("/greet/") @app.route("/greet/<user>") def greet(user=None): return render_template("home.html", method=request.method, user=user) # vars from address specified with < > @app.route("/user/<name>") def user(name): return "Howdy, {}".format(name) # For int in URL var specify int data type @app.route("/post/<int:post_id>") def post(post_id): return "Howdy, {}".format(post_id) if __name__ == "__main__": app.run() # app.run(debug=True)
StarcoderdataPython
9668886
# The questions is askin us to find the articulation points # We'll use modified DFS to detect ariculation points time = 0 def criticalRouters(numRouters, numLinks, links): # WRITE YOUR CODE HERE adjList = dict() for i in range(1,numRouters + 1): adjList[i] = list() for link in links: node1, node2 = link[0], link[1] adjList[node1].append(node2) adjList[node2].append(node1) ap = DFSTraversal(adjList) result = [] for index, val in enumerate(ap): if val == True: result.append(index) return result def DFSTraversal(adjList): # maintain visited nodes, parent of visited nodes numNodes = len(adjList) + 1 visited = [False] * numNodes parent = [-1] * numNodes # discovered stores the time of discovery discovered = [float('inf')] * numNodes # stores the ancestor with lowest doscovered time ancestorWithLowest = [float('inf')] * numNodes articulationPoint = [False] * numNodes # start the traversal for node in adjList.keys(): if visited[node] == False: DFSTravesalRecursive(adjList, node, visited, articulationPoint, parent, ancestorWithLowest, discovered) return articulationPoint def DFSTravesalRecursive(adjList, node, visited, articulationPoint, parent, ancestorWithLowest, discovered): children = 0 visited[node] = True # init discover time and andestor low global time discovered[node] = time ancestorWithLowest[node] = time time += 1 for neighbor in adjList[node]: if visited[neighbor] == False: parent[neighbor] = node children += 1 DFSTravesalRecursive(adjList, neighbor, visited, articulationPoint, parent, ancestorWithLowest, discovered) ancestorWithLowest[node] = min(ancestorWithLowest[node], ancestorWithLowest[neighbor]) # if node is root and has two or more children, it is AP if parent[node] == -1 and children > 1: articulationPoint[node] = True # if node is not root and low value of children is more than discoery of node then it is AP if parent[node] != -1 and ancestorWithLowest[neighbor] > discovered[node]: articulationPoint[node] = True elif neighbor != parent[node]: ancestorWithLowest[node] = min(ancestorWithLowest[node], discovered[neighbor]) print(criticalRouters(7,7,[[1,2],[1,3],[2,4],[3,4],[3,6],[6,7],[4,5]]))
StarcoderdataPython
6427483
""" Copyright (c) Facebook, Inc. and its affiliates. """ import os import unittest import logging from droidlet.dialog.dialogue_manager import DialogueManager from droidlet.memory.dialogue_stack import DialogueStack from droidlet.dialog.droidlet_nsp_model_wrapper import DroidletNSPModelWrapper from agents.loco_mc_agent import LocoMCAgent from droidlet.interpreter.tests.all_test_commands import * from agents.craftassist.tests.fake_agent import MockOpt # FIXME agent this test needs to move to the interpreter folder after # dialogue_manager is properly split between agent and intepreter class AttributeDict(dict): __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ class FakeMemory: pass class FakeAgent(LocoMCAgent): def __init__(self, opts): super(FakeAgent, self).__init__(opts) self.opts = opts def init_memory(self): m = FakeMemory() stack = DialogueStack() m.dialogue_stack = stack self.memory = m def init_physical_interfaces(self): pass def init_perception(self): pass def init_controller(self): dialogue_object_classes = {} self.dialogue_manager = DialogueManager( memory=self.memory, dialogue_object_classes=dialogue_object_classes, semantic_parsing_model_wrapper=DroidletNSPModelWrapper, opts=self.opts, ) # NOTE: The following commands in locobot_commands can't be supported # right away but we'll attempt them in the next round: # "push the chair", # "find the closest red thing", # "copy this motion", # "topple the pile of notebooks", locobot_commands = list(GROUND_TRUTH_PARSES) + [ "push the chair", "find the closest red thing", "copy this motion", "topple the pile of notebooks", ] TTAD_MODEL_DIR = os.path.join( os.path.dirname(__file__), "../../../../agents/craftassist/models/semantic_parser/" ) TTAD_BERT_DATA_DIR = os.path.join( os.path.dirname(__file__), "../../../../agents/craftassist/datasets/annotated_data/" ) GROUND_TRUTH_DATA_DIR = os.path.join( os.path.dirname(__file__), "../../../../agents/craftassist/datasets/ground_truth/" ) class TestDialogueManager(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestDialogueManager, self).__init__(*args, **kwargs) opts = MockOpt() opts.nsp_data_dir = TTAD_BERT_DATA_DIR opts.ground_truth_data_dir = GROUND_TRUTH_DATA_DIR opts.nsp_models_dir = TTAD_MODEL_DIR opts.no_ground_truth = False self.agent = FakeAgent(opts) def test_parses(self): logging.info( "Printing semantic parsing for {} locobot commands".format(len(locobot_commands)) ) for command in locobot_commands: ground_truth_parse = GROUND_TRUTH_PARSES.get(command, None) model_prediction = self.agent.dialogue_manager.semantic_parsing_model_wrapper.parsing_model.query_for_logical_form( command ) logging.info( "\nCommand -> '{}' \nGround truth -> {} \nParse -> {}\n".format( command, ground_truth_parse, model_prediction ) ) def test_validate_bad_json(self): # Don't print debug info on failure since it will be misleading is_valid_json = self.agent.dialogue_manager.semantic_parsing_model_wrapper.validate_parse_tree( parse_tree={}, debug=False ) self.assertFalse(is_valid_json) def test_validate_array_span_json(self): action_dict = { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "action_type": "BUILD", "schematic": { "text_span": [0, [5, 5]], "filters": { "triples": [{"pred_text": "has_name", "obj_text": [0, [5, 5]]}] }, }, } ], } is_valid_json = self.agent.dialogue_manager.semantic_parsing_model_wrapper.validate_parse_tree( action_dict ) self.assertTrue(is_valid_json) def test_validate_string_span_json(self): action_dict = { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "action_type": "DANCE", "dance_type": { "look_turn": { "location": { "reference_object": { "filters": { "triples": [{"pred_text": "has_name", "obj_text": "cube"}] } } } } }, } ], } is_valid_json = self.agent.dialogue_manager.semantic_parsing_model_wrapper.validate_parse_tree( action_dict ) self.assertTrue(is_valid_json) if __name__ == "__main__": unittest.main()
StarcoderdataPython
11252652
from setuptools import find_packages, setup with open('README.md', 'r') as readme: long_description = readme.read() setup( name='webshell', version='1.0', packages=find_packages(), zip_safe=False, install_requires=[ 'flask', ], author='<NAME>', author_email='<EMAIL>', description='Flask application which allows the user to execute ' 'arbitrary shell commands on the remote web server via ' 'browser.', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/swiewiora/python-webshell', license='MIT', )
StarcoderdataPython
1819232
# Generated by Django 3.0.4 on 2020-03-12 11:21 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('localusers', '0004_auto_20200310_1649'), ('posts', '0002_auto_20200312_1113'), ] operations = [ migrations.AddField( model_name='event', name='server', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='disco_server', to='localusers.DiscoServer'), ), ]
StarcoderdataPython
3472852
# coding: utf-8 """ Control-M Services Provides access to BMC Control-M Services # noqa: E501 OpenAPI spec version: 9.20.215 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from clients.ctm_api_client.configuration import Configuration class OrderFolderResultItem(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { "errored_count": "int", "folder_name": "str", "not_met_criteria_count": "int", "order_folder_status": "str", "ordered_count": "int", "ordered_list": "list[OrderedItemItem]", } attribute_map = { "errored_count": "errored_count", "folder_name": "folder_name", "not_met_criteria_count": "not_met_criteria_count", "order_folder_status": "order_folder_status", "ordered_count": "ordered_count", "ordered_list": "ordered_list", } def __init__( self, errored_count=None, folder_name=None, not_met_criteria_count=None, order_folder_status=None, ordered_count=None, ordered_list=None, _configuration=None, ): # noqa: E501 """OrderFolderResultItem - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._errored_count = None self._folder_name = None self._not_met_criteria_count = None self._order_folder_status = None self._ordered_count = None self._ordered_list = None self.discriminator = None if errored_count is not None: self.errored_count = errored_count if folder_name is not None: self.folder_name = folder_name if not_met_criteria_count is not None: self.not_met_criteria_count = not_met_criteria_count if order_folder_status is not None: self.order_folder_status = order_folder_status if ordered_count is not None: self.ordered_count = ordered_count if ordered_list is not None: self.ordered_list = ordered_list @property def errored_count(self): """Gets the errored_count of this OrderFolderResultItem. # noqa: E501 :return: The errored_count of this OrderFolderResultItem. # noqa: E501 :rtype: int """ return self._errored_count @errored_count.setter def errored_count(self, errored_count): """Sets the errored_count of this OrderFolderResultItem. :param errored_count: The errored_count of this OrderFolderResultItem. # noqa: E501 :type: int """ self._errored_count = errored_count @property def folder_name(self): """Gets the folder_name of this OrderFolderResultItem. # noqa: E501 :return: The folder_name of this OrderFolderResultItem. # noqa: E501 :rtype: str """ return self._folder_name @folder_name.setter def folder_name(self, folder_name): """Sets the folder_name of this OrderFolderResultItem. :param folder_name: The folder_name of this OrderFolderResultItem. # noqa: E501 :type: str """ self._folder_name = folder_name @property def not_met_criteria_count(self): """Gets the not_met_criteria_count of this OrderFolderResultItem. # noqa: E501 :return: The not_met_criteria_count of this OrderFolderResultItem. # noqa: E501 :rtype: int """ return self._not_met_criteria_count @not_met_criteria_count.setter def not_met_criteria_count(self, not_met_criteria_count): """Sets the not_met_criteria_count of this OrderFolderResultItem. :param not_met_criteria_count: The not_met_criteria_count of this OrderFolderResultItem. # noqa: E501 :type: int """ self._not_met_criteria_count = not_met_criteria_count @property def order_folder_status(self): """Gets the order_folder_status of this OrderFolderResultItem. # noqa: E501 :return: The order_folder_status of this OrderFolderResultItem. # noqa: E501 :rtype: str """ return self._order_folder_status @order_folder_status.setter def order_folder_status(self, order_folder_status): """Sets the order_folder_status of this OrderFolderResultItem. :param order_folder_status: The order_folder_status of this OrderFolderResultItem. # noqa: E501 :type: str """ allowed_values = [ "OrderFolderStatusSuccess", "FolderNotFound", "UnKnownError", "UNRECOGNIZED", ] # noqa: E501 if ( self._configuration.client_side_validation and order_folder_status not in allowed_values ): raise ValueError( "Invalid value for `order_folder_status` ({0}), must be one of {1}".format( # noqa: E501 order_folder_status, allowed_values ) ) self._order_folder_status = order_folder_status @property def ordered_count(self): """Gets the ordered_count of this OrderFolderResultItem. # noqa: E501 :return: The ordered_count of this OrderFolderResultItem. # noqa: E501 :rtype: int """ return self._ordered_count @ordered_count.setter def ordered_count(self, ordered_count): """Sets the ordered_count of this OrderFolderResultItem. :param ordered_count: The ordered_count of this OrderFolderResultItem. # noqa: E501 :type: int """ self._ordered_count = ordered_count @property def ordered_list(self): """Gets the ordered_list of this OrderFolderResultItem. # noqa: E501 :return: The ordered_list of this OrderFolderResultItem. # noqa: E501 :rtype: list[OrderedItemItem] """ return self._ordered_list @ordered_list.setter def ordered_list(self, ordered_list): """Sets the ordered_list of this OrderFolderResultItem. :param ordered_list: The ordered_list of this OrderFolderResultItem. # noqa: E501 :type: list[OrderedItemItem] """ self._ordered_list = ordered_list def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value if issubclass(OrderFolderResultItem, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OrderFolderResultItem): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, OrderFolderResultItem): return True return self.to_dict() != other.to_dict()
StarcoderdataPython
4810495
from unittest import TestCase from cloudshell.cli.service.node import Node, NodeOperations try: from unittest.mock import Mock, patch except ImportError: from mock import Mock, patch class NodeImplementation(Node): def step_down(self, *args, **kwargs): pass def step_up(self, *args, **kwargs): pass class TestNode(TestCase): def setUp(self): self._node = NodeImplementation() def test_attribute_parent_node_exist(self): self.assertTrue(hasattr(self._node, "parent_node")) def test_attribute_child_nodes_exist(self): self.assertTrue(hasattr(self._node, "child_nodes")) def test_add_child_node_append_child(self): child_node = NodeImplementation() self._node.add_child_node(child_node) self.assertTrue(child_node in self._node.child_nodes) def test_add_child_node_set_parent(self): child_node = NodeImplementation self._node.add_child_node(child_node) self.assertTrue(child_node.parent_node == self._node) class TestNodeOperations(TestCase): def setUp(self): pass def test_path_to_the_root_single_node(self): node = NodeImplementation() self.assertTrue(len(NodeOperations.path_to_the_root(node)) == 1) def test_path_to_the_root_multiple_node(self): node1 = NodeImplementation() node2 = NodeImplementation() node3 = NodeImplementation() node1.add_child_node(node2) node2.add_child_node(node3) self.assertTrue(len(NodeOperations.path_to_the_root(node3)) == 3) @patch("cloudshell.cli.service.node.NodeOperations.path_to_the_root") def test_calculate_route_steps_source_node_root_path_call(self, path_to_the_root): source_node = Mock() dest_node = Mock() path_to_the_root.side_effect = [ [source_node, dest_node], [dest_node, source_node], ] NodeOperations.calculate_route_steps(source_node, dest_node) path_to_the_root.assert_any_call(source_node) path_to_the_root.assert_any_call(dest_node) self.assertEqual(2, path_to_the_root.call_count) @patch("cloudshell.cli.service.node.NodeOperations.path_to_the_root") def test_calculate_route_steps_dest_node_root_path_call(self, path_to_the_root): source_node = Mock() dest_node = Mock() path_to_the_root.side_effect = [ [source_node, dest_node], [dest_node, source_node], ] NodeOperations.calculate_route_steps(source_node, dest_node) path_to_the_root.assert_any_call(source_node) path_to_the_root.assert_any_call(dest_node) self.assertEqual(2, path_to_the_root.call_count)
StarcoderdataPython
8051459
# -*- coding: utf-8 -*- #Версия Python 2.7 from cart_page import CartPage from product_page import ProductPage from selenium import webdriver from start_page import StartPage #Класс добавления продукта class Aplication: def __init__(self): self.driver = webdriver.Chrome() self.start_pg = StartPage(self.driver) self.product_pg = ProductPage(self.driver) self.cart_pg = CartPage(self.driver) def quit(self): self.driver.quit() def st_open(self): self.start_pg.op_start() def add_duck(self,dk_s): self.start_pg.find_duck(dk_s) self.product_pg.add_duck_pg(dk_s) self.product_pg.go_start() def d_all_duck(self): self.start_pg.go_cart() self.cart_pg.dl_dick()
StarcoderdataPython
9713962
<reponame>BobbyZhouZijian/AI-Algo-Implmentations<filename>deep_learning/criterions/focal_loss.py """Implements Focal Loss""" import torch import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self): super(FocalLoss, self).__init__() def forward(self, x, targets, alpha=0.8, gamma=2): x = F.sigmoid(x) alpha = torch.tensor([alpha, 1 - alpha]) # flatten x = x.view(-1) targets = targets.view(-1) BCE = F.binary_cross_entropy(x, targets, reduction='mean') BCE_exp = torch.exp(-BCE) focal_loss = alpha * (1 - BCE_exp) ** gamma * BCE return focal_loss
StarcoderdataPython
234923
<reponame>vbillys/reading-group-serialization<filename>examples/python/ExampleIdlData/_ExampleIdlData.py """ Generated by Eclipse Cyclone DDS idlc Python Backend Cyclone DDS IDL version: v0.9.0 Module: ExampleIdlData IDL file: ExampleIdlData.idl """ from enum import auto from typing import TYPE_CHECKING, Optional from dataclasses import dataclass import cyclonedds.idl as idl import cyclonedds.idl.annotations as annotate import cyclonedds.idl.types as types # root module import for resolving types import ExampleIdlData BytesArray = types.typedef['ExampleIdlData.BytesArray', types.sequence[types.uint8]] @dataclass @annotate.final @annotate.autoid("sequential") class Msg(idl.IdlStruct, typename="ExampleIdlData.Msg"): id: types.int32 annotate.key("id") message: str payloadEigen: 'ExampleIdlData.BytesArray' payloadOpenCVImage: 'ExampleIdlData.BytesArray' payloadPCLPointCloud: 'ExampleIdlData.BytesArray'
StarcoderdataPython
4835498
# Generated by Django 2.0.3 on 2018-05-16 13:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0010_auto_20180509_2126'), ] operations = [ migrations.CreateModel( name='Mail', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('email', models.EmailField(db_index=True, max_length=254, unique=True)), ], ), ]
StarcoderdataPython
9619281
# # Copyright (c) 2016-2022 Deephaven Data Labs and Patent Pending # """ This module supports writing Deephaven application mode Python scripts. """ from typing import Dict import jpy from deephaven import DHError from deephaven._wrapper import JObjectWrapper, wrap_j_object, unwrap _JApplicationContext = jpy.get_type("io.deephaven.appmode.ApplicationContext") _JApplicationState = jpy.get_type("io.deephaven.appmode.ApplicationState") class ApplicationState(JObjectWrapper): """ The ApplicationState represents the state of an application. """ j_object_type = _JApplicationState @property def j_object(self) -> jpy.JType: return self.j_app_state def __init__(self, j_app_state): self.j_app_state = j_app_state def __repr__(self): return f"id: {self.j_app_state.id()}, name: {self.j_app_state.name()}" def __str__(self): return repr(self) def __getitem__(self, item): item = str(item) j_field = self.j_app_state.getField(item) if not j_field: raise KeyError(item) return wrap_j_object(j_field.value()) def __setitem__(self, key, value): key = str(key) self.j_app_state.setField(key, unwrap(value)) def __delitem__(self, key): key = str(key) value = self.j_app_state.removeField(key) if not value: raise KeyError(key) @property def fields(self) -> Dict[str, object]: fields = {} j_fields = self.j_app_state.listFields() for i in range(j_fields.size()): j_field = j_fields.get(i) fields[j_field.name()] = wrap_j_object(j_field.value()) return fields def get_app_state(): """ Get the current application state object. Raises: DHError """ try: return ApplicationState(j_app_state=_JApplicationContext.get()) except Exception as e: raise DHError(e, "failed to get the application state.") from e
StarcoderdataPython
11312463
<reponame>QMSS-G5072-2021/SelinaDing from SelinaDing import SelinaDing def test_cipher(): result = cipher(text = 'ding', shift = 1, encrypt = True) assert(result) == 'ejoh'
StarcoderdataPython
1993784
<gh_stars>0 from pathlib import Path import tensorflow as tf import horovod.tensorflow.keras as hvd hvd.init() config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = str(hvd.local_rank()) tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config)) def main() -> None: ### to expose LR = 0.001 epochs = 5 checkpoint_prefix = Path(".") ### mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train / 255.0 model = get_model(learning_rate=LR) def on_state_reset(): tf.keras.backend.set_value(model.optimizer.lr, LR * hvd.size()) state = hvd.elastic.KerasState(model, batch=100, epoch=0) state.register_reset_callbacks([on_state_reset]) callbacks = [ hvd.elastic.CommitStateCallback(state), hvd.elastic.UpdateBatchStateCallback(state), hvd.elastic.UpdateEpochStateCallback(state), ] if hvd.rank() == 0: callbacks.append( tf.keras.callbacks.ModelCheckpoint( str(checkpoint_prefix) + "/checkpoint-{epoch}.h5" ) ) @hvd.elastic.run def train(state): model.fit( x_train, y_train, steps_per_epoch=500 // hvd.size(), callbacks=callbacks, epochs=epochs - state.epoch, verbose=1 if hvd.rank() == 0 else 0, ) train(state) def get_model(learning_rate: float) -> tf.keras.Model: model = tf.keras.models.Sequential( [ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10), ] ) optimizer = tf.keras.optimizers.Adam(learning_rate * hvd.size()) optimizer = hvd.DistributedOptimizer(optimizer) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss_fn, metrics=["accuracy"]) return model if __name__ == "__main__": main()
StarcoderdataPython
11317403
<reponame>sprij/scrapy-rethinkdb<filename>tests/test_pipeline.py<gh_stars>1-10 import unittest from mock import Mock, MagicMock, patch from itertools import combinations_with_replacement from scrapy_rethinkdb.pipeline import RethinkDBPipeline, NotConfigured, Item class RethinkDBPipelineTest(unittest.TestCase): def setUp(self): # default pipeline under test self.driver = Mock() self.table_name = Mock() self.insert_options = MagicMock() self.pipeline = RethinkDBPipeline( self.driver, self.table_name, self.insert_options ) # patch for driver self.driver_patcher = patch('scrapy_rethinkdb.pipeline.' 'RethinkDBDriver') # patcher for the pipeline constructor self.pipeline_cls_patcher = patch('scrapy_rethinkdb.pipeline.' 'RethinkDBPipeline.__init__') # returns iterator for all possible combinations for 3 arguments # which values can be either a Mock or None self.init_mocks_iter = lambda: \ combinations_with_replacement((None, Mock()), 3) # returns settings dictionary self.get_pipeline_settings = \ lambda conn_sett, table_name, insert_options: \ {'RETHINKDB_TABLE': table_name, 'RETHINKDB_CONNECTION': conn_sett, 'RETHINKDB_INSERT_OPTIONS': insert_options} def test_init_not_configured(self): # asserts constructor will raise NotConfigured id any of the arguments # is None comb_iter = self.init_mocks_iter() for driver, table_name, insert_options in comb_iter: if not driver or not table_name or not insert_options: self.assertRaises(NotConfigured, RethinkDBPipeline, driver, table_name, insert_options) def test_init_empty_table_name(self): # asserts constructor will raise NotConfigured if table_name is empty self.assertRaises(NotConfigured, RethinkDBPipeline, Mock(), '', Mock()) def test_init_configured(self): # asserts that the default pipeline under test tried to get the table self.assertEqual(self.pipeline.table, self.driver.get_table.return_value) self.driver.get_table.assert_called_once_with(self.table_name) def test_from_crawler_configured(self): # asserts that from_crawler will return a pipeline instance if the # constructor returns None, as expected crawler = Mock() comb_iter = self.init_mocks_iter() for conn_sett, table_name, insert_options in comb_iter: crawler.settings = self.get_pipeline_settings( conn_sett, table_name, insert_options ) with self.pipeline_cls_patcher as pipeline_cls, \ self.driver_patcher as driver_klass: pipeline_cls.return_value = None pipeline = RethinkDBPipeline.from_crawler(crawler) self.assertIsInstance(pipeline, RethinkDBPipeline) driver_klass.assert_called_once_with(conn_sett) pipeline_cls.assert_called_once_with( driver_klass.return_value, table_name, insert_options ) def test_from_crawler_not_configured(self): # asserts that from_crawler will raise NotConfigured the # constructor raises NotConfigured exception crawler = Mock() for conn_sett, table_name, insert_options in self.init_mocks_iter(): crawler.settings = self.get_pipeline_settings( conn_sett, table_name, insert_options ) with self.pipeline_cls_patcher as pipeline_cls, \ self.driver_patcher as driver_klass: pipeline_cls.side_effect = NotConfigured self.assertRaises(NotConfigured, RethinkDBPipeline.from_crawler, crawler) driver_klass.assert_called_once_with(conn_sett) pipeline_cls.assert_called_once_with( driver_klass.return_value, table_name, insert_options ) def test_process_item_not_an_item(self): # asserts that a non-item is just returned spider = Mock() # mocking before_insert to check that it won't be called in this test self.pipeline.before_insert = Mock() self.pipeline.process_item(Mock(), spider) self.assertTrue(spider.log.msg.called) self.assertFalse(self.pipeline.before_insert.called) def test_process_item_success(self): # asserts that a item is processed item = Mock(spec=Item) item._values = {} # mocking extension points self.pipeline.before_insert = Mock() self.pipeline.after_insert = Mock() self.pipeline.process_item(item, Mock()) self.pipeline.before_insert.assert_called_once_with( item ) self.pipeline.table.insert.assert_called_once_with( item._values ) self.pipeline.driver.execute.assert_called_once_with( self.pipeline.table.insert.return_value ) self.pipeline.after_insert.assert_called_once_with( item, self.pipeline.driver.execute.return_value )
StarcoderdataPython
11311796
# imports import altair as alt import requests import streamlit as st import urllib import pandas as pd # import the page-generating functions from your pages module. from pages.predictions import predict_page from pages.why_streamlit import why_streamlit_page from pages.index import index_page from pages.exploration import exploration_page # create lists of the display names of pages, and the # functions that generate those pages. pagenames = ['index','exploration','prediction','why streamlit?'] pagefuncs = [index_page, exploration_page, predict_page, why_streamlit_page] # zip those lists together into a dictionary. pagedict = dict(zip(pagenames,pagefuncs)) def main(): """The main function executes your app.""" # this'll put a title in the sidebar. st.sidebar.title("streamlit app demo") # here we'll use our page lists and the dictionary to display # a dropdown menu of pages in the sidebar, and allow the user to pick one. page_to_load = st.sidebar.selectbox("choose a page.", pagenames) # get the corresponding function out of the dictionary. Call it. pagedict[page_to_load]() # this'll put text in the sidebar. bio = st.sidebar.markdown("""this sidebar is also a good place for you to summarize your project and maybe write some things about yourself.""") if __name__ == "__main__": # run the app main()
StarcoderdataPython
4839515
from WPTParser.JSONParser.DataExtracter import DataExtracter class ObjectListDataExtracter(DataExtracter): def __init__(self): super().__init__() def extract(self, obj_list: list, key: str): try: key = key.replace(' ', '') dict_key, dict_value = key.split('=') for obj in obj_list: if obj.get(dict_key, None) is not None and obj.get(dict_key) == dict_value: return obj return None except Exception as ex: return None
StarcoderdataPython
304955
from .info import QUERY as info from .bypass import QUERY as bypass from .decode_invoice import QUERY as decode_invoice from .check_macaroon import QUERY as check_macaroon QUERY = [ info, bypass, decode_invoice, check_macaroon ]
StarcoderdataPython
9649503
import re from unittest.mock import Mock, call, patch import pytest from civic_scraper.base.asset import Asset, AssetCollection from .conftest import file_lines @pytest.fixture def asset_collection(asset_inputs): return AssetCollection([Asset(**kwargs) for kwargs in asset_inputs]) def test_asset_methods(): # extend extended = AssetCollection([1, 2]) extended.extend([3, 4]) assert extended == AssetCollection([1, 2, 3, 4]) # append appended = AssetCollection([1, 2]) appended.append([3, 4]) assert appended == AssetCollection([1, 2, [3, 4]]) # indexing indexed = AssetCollection([1, 2]) assert indexed[1] == 2 def test_csv_export(tmpdir, asset_collection): "csv_export should write standard filename to a target_dir" outfile = asset_collection.to_csv(target_dir=tmpdir) pattern = re.compile(r".+civic_scraper_assets_meta_\d{8}T\d{4}z.csv") assert re.match(pattern, outfile) contents = file_lines(outfile) assert len(contents) == 3 # Check header and contents assert contents[0].startswith("place") assert contents[0].strip().endswith("content_length") assert "minutes" in contents[1] assert "2020-05-04" in contents[1] assert "agenda" in contents[2] def test_asset_download(tmpdir, asset_inputs): response = Mock(name="MockResponse") response.content = b"some data" to_patch = "civic_scraper.base.asset.requests.get" with patch(to_patch) as mock_method: mock_method.return_value = response asset_objs = [Asset(**kwargs) for kwargs in asset_inputs] for asset in asset_objs: asset.download(target_dir=tmpdir) assert mock_method.mock_calls == [ call( "http://nc-nashcounty.civicplus.com/AgendaCenter/ViewFile/Minutes/_05042020-381", allow_redirects=True, ), call( "http://nc-nashcounty.civicplus.com/AgendaCenter/ViewFile/Agenda/_05042020-381", allow_redirects=True, ), ] # check files written actual_file_names = set([f.basename for f in tmpdir.listdir()]) expected_file_names = set( [ "civicplus_nc-nashcounty_05042020-381_agenda.pdf", "civicplus_nc-nashcounty_05042020-381_minutes.pdf", ] ) assert actual_file_names == expected_file_names
StarcoderdataPython
1747624
from __future__ import annotations import asyncio import logging from collections.abc import Callable, Coroutine from typing import TYPE_CHECKING, Any, ClassVar, TypeVar from ... import utils from ...abc import BaseUser from ...enums import IntEnum from ...models import register from ...protobufs import EMsg, GCMsg, GCMsgProto, MsgProto from ...state import ConnectionState from ...trade import BaseInventory, Inventory if TYPE_CHECKING: from steam.protobufs.client_server_2 import CMsgGcClient from ...game import Game from .client import Client log = logging.getLogger(__name__) Inv = TypeVar("Inv", bound=BaseInventory[Any]) class GCState(ConnectionState): Language: ClassVar[IntEnum] gc_parsers: dict[IntEnum, Callable[..., Any]] client: Client def __init__(self, client: Client, **kwargs: Any): super().__init__(client, **kwargs) self._gc_connected = asyncio.Event() self._gc_ready = asyncio.Event() self.backpack: Inventory = None # type: ignore self._unpatched_inventory: Callable[[BaseUser, Game], Coroutine[Any, Any, Inventory]] @register(EMsg.ClientFromGC) async def parse_gc_message(self, msg: MsgProto[CMsgGcClient]) -> None: if msg.body.appid != self.client._GAME.id: return try: language = self.__class__.Language(utils.clear_proto_bit(msg.body.msgtype)) except ValueError: return log.info( f"Ignoring unknown msg type: {msg.body.msgtype} ({utils.clear_proto_bit(msg.body.msgtype)})" ) try: gc_msg = ( GCMsgProto(language, msg.body.payload) if utils.is_proto(msg.body.msgtype) else GCMsg(language, msg.body.payload) ) except Exception as exc: return log.error("Failed to deserialize message: %r, %r", language, msg.body.payload, exc_info=exc) else: log.debug("Socket has received GC message %r from the websocket.", gc_msg) self.dispatch("gc_message_receive", gc_msg) self.run_parser(language, gc_msg) async def fetch_backpack(self, backpack_cls: type[Inv]) -> Inv: resp = await self.http.get_user_inventory( self.client.user.id64, self.client._GAME.id, self.client._GAME.context_id ) return backpack_cls(state=self, data=resp, owner=self.client.user, game=self.client._GAME)
StarcoderdataPython
3240752
import logging from typing import List from PIL import Image import numpy as np try: import face_recognition _FACE_RECOGNITION_LOADED = True except ImportError: _FACE_RECOGNITION_LOADED = False class FaceEmbedder: def __init__(self, model: str = "large", num_jitters: int = 5): logging.info("Loading FaceEmbedder") self.model = model self.num_jitters = num_jitters def embed_image(self, image: Image.Image) -> List: if _FACE_RECOGNITION_LOADED: encodings = face_recognition.face_encodings(np.array(image), model=self.model, num_jitters=self.num_jitters) return encodings return []
StarcoderdataPython
3434215
import json import responses import re import os from rest_framework.test import APITestCase, APIClient from rest_framework.reverse import reverse from rest_framework import status from rest_framework.authtoken.models import Token from django.contrib.auth import get_user_model from django.utils import timezone from datetime import datetime from questions.models import Question from meetups.models import Meetup from answers.models import Answer from users.models import User # Create your tests here. class BaseTest(APITestCase): """ The base where are default test case settings kept """ def setUp(self): """ Basic setup """ self.client = APIClient() self.user1 = User.objects._create_user( name="<NAME>", email="<EMAIL>", password="<PASSWORD>" ) self.user1.is_active = True self.user1.is_admin = True self.user1.save() self.user2 = User.objects.create_user( name="<NAME>", email="<EMAIL>", password="<PASSWORD>" ) self.user2.is_active = True self.user2.is_admin = False self.user2.save() self.meetup = Meetup.objects.create( title='Test Driven Development', body='Developers need to discusss the correct approach of doing test driven development', location='Andela Campus', creator=self.user2, scheduled_date=timezone.now() + timezone.timedelta(days=3) ) self.meetup.save() self.question1 = Question.objects.create( title="Why are we testing models", body="We test models cause we also want to know if the are working", meetup=self.meetup, created_by=self.user1 ) self.question1.save() self.question2 = Question.objects.create( title="Why are we testing models", body="We test models cause we also want to know if the are working", meetup=self.meetup, created_by=self.user2 ) self.question2.save() self.answer = Answer.objects.create( body="test answer", creator=self.user2, question=self.question1 ) self.answer.save() self.answer2 = Answer.objects.create( body="test answer body 2", creator=self.user1, question=self.question1 ) self.answer2.save() self.update_data = { 'body':'This is the new test update data' } self.duplicate_data = { 'body': 'test answer body 2' } self.invalid_data = { 'body': '!@#$%^&*(!@#$%' } self.meetupId = str(self.meetup.id) self.questionId = str(self.question2.id) self.answerId = str(self.answer.id) self.invalid_id = str(1) def is_logged_in(self, user): """ Authenticate a user and get the token """ token, created = Token.objects.get_or_create(user=user) return self.client.credentials(HTTP_AUTHORIZATION="Token " + token.key) def update_answer(self, data, meetup, question, answer): """ Updates an answer """ url = reverse('update_answer', args=[meetup, question, answer]) response = self.client.put( url, data=json.dumps(data), content_type="application/json" ) return response class UpdateAnswer(BaseTest): """ Tests answer update functionality """ def test_update_answer_successfully(self): self.is_logged_in(self.user2) response = self.update_answer(self.update_data, self.meetupId, self.questionId, self.answerId) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(response.data['message'], 'You have successfully updated the answer') def test_update_existing_answer(self): self.is_logged_in(self.user2) response = self.update_answer(self.duplicate_data, self.meetupId, self.questionId, self.answerId) self.assertEqual(response.status_code, status.HTTP_406_NOT_ACCEPTABLE) self.assertEqual(response.data['Error'], 'That answer already exists') def test_update_answer_not_owned_by_user(self): self.is_logged_in(self.user1) response = self.update_answer(self.update_data, self.meetupId, self.questionId, self.answerId) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) self.assertEqual(response.data['error'], 'You cannot edit this answer. You did not post it') def test_update_invalid_answer(self): self.is_logged_in(self.user2) response = self.update_answer(self.invalid_data, self.meetupId, self.questionId, self.answerId) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual(response.data['error'], 'Please enter a valid answer') def test_update_no_meetup(self): self.is_logged_in(self.user2) response = self.update_answer(self.update_data, self.invalid_id, self.questionId, self.answerId) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.data['error'], 'The specified meetup does not exist') def test_update_no_question(self): self.is_logged_in(self.user2) response = self.update_answer(self.update_data, self.meetupId, self.invalid_id, self.answerId) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.data['error'], 'The specified question does not exist') def test_update_no_answer(self): self.is_logged_in(self.user2) response = self.update_answer(self.update_data, self.meetupId, self.questionId, self.invalid_id) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.data['error'], 'The specified answer does not exist')
StarcoderdataPython
6515709
from itertools import product import numpy as np from numpy.testing import assert_allclose import pandas as pd import pytest from linearmodels.iv import IV2SLS from linearmodels.panel.model import FirstDifferenceOLS from linearmodels.tests.panel._utility import ( access_attributes, assert_frame_similar, assert_results_equal, datatypes, generate_data, ) pytestmark = pytest.mark.filterwarnings( "ignore::linearmodels.shared.exceptions.MissingValueWarning" ) missing = [0.0, 0.20] perms = list(product(missing, datatypes)) ids = ["-".join(str(param) for param in perms) for perm in perms] @pytest.fixture(params=perms, ids=ids) def data(request): missing, datatype = request.param return generate_data(missing, datatype, other_effects=1) def test_firstdifference_ols(data): mod = FirstDifferenceOLS(data.y, data.x) res = mod.fit(debiased=False) y = mod.dependent.values3d x = mod.exog.values3d dy = np.array(y[0, 1:] - y[0, :-1]) dy = pd.DataFrame( dy, index=mod.dependent.panel.major_axis[1:], columns=mod.dependent.panel.minor_axis, ) dy = dy.T.stack() dy = dy.reindex(mod.dependent.index) dx = x[:, 1:] - x[:, :-1] _dx = {} for i, dxi in enumerate(dx): temp = pd.DataFrame( dxi, index=mod.dependent.panel.major_axis[1:], columns=mod.dependent.panel.minor_axis, ) temp = temp.T.stack() temp = temp.reindex(mod.dependent.index) _dx[mod.exog.vars[i]] = temp dx = pd.DataFrame(index=_dx[mod.exog.vars[i]].index) for key in _dx: dx[key] = _dx[key] dx = dx[mod.exog.vars] drop = dy.isnull() | np.any(dx.isnull(), 1) dy = dy.loc[~drop] dx = dx.loc[~drop] ols_mod = IV2SLS(dy, dx, None, None) ols_res = ols_mod.fit(cov_type="unadjusted") assert_results_equal(res, ols_res) res = mod.fit(cov_type="robust", debiased=False) ols_res = ols_mod.fit(cov_type="robust") assert_results_equal(res, ols_res) clusters = data.vc1 ols_clusters = mod.reformat_clusters(data.vc1) fd = mod.dependent.first_difference() ols_clusters = ols_clusters.dataframe.loc[fd.index] res = mod.fit(cov_type="clustered", clusters=clusters, debiased=False) ols_res = ols_mod.fit(cov_type="clustered", clusters=ols_clusters) assert_results_equal(res, ols_res) res = mod.fit(cov_type="clustered", cluster_entity=True, debiased=False) entity_clusters = mod.dependent.first_difference().entity_ids ols_res = ols_mod.fit(cov_type="clustered", clusters=entity_clusters) assert_results_equal(res, ols_res) ols_clusters["entity.clusters"] = entity_clusters ols_clusters = ols_clusters.astype(np.int32) res = mod.fit( cov_type="clustered", cluster_entity=True, clusters=data.vc1, debiased=False ) ols_res = ols_mod.fit(cov_type="clustered", clusters=ols_clusters) assert_results_equal(res, ols_res) def test_firstdifference_ols_weighted(data): mod = FirstDifferenceOLS(data.y, data.x, weights=data.w) res = mod.fit(debiased=False) y = mod.dependent.values3d x = mod.exog.values3d dy = np.array(y[0, 1:] - y[0, :-1]) dy = pd.DataFrame( dy, index=mod.dependent.panel.major_axis[1:], columns=mod.dependent.panel.minor_axis, ) dy = dy.T.stack() dy = dy.reindex(mod.dependent.index) dx = x[:, 1:] - x[:, :-1] _dx = {} for i, dxi in enumerate(dx): temp = pd.DataFrame( dxi, index=mod.dependent.panel.major_axis[1:], columns=mod.dependent.panel.minor_axis, ) temp = temp.T.stack() temp = temp.reindex(mod.dependent.index) _dx[mod.exog.vars[i]] = temp dx = pd.DataFrame(index=_dx[mod.exog.vars[i]].index) for key in _dx: dx[key] = _dx[key] dx = dx[mod.exog.vars] w = mod.weights.values3d w = 1.0 / w sw = w[0, 1:] + w[0, :-1] sw = pd.DataFrame( sw, index=mod.dependent.panel.major_axis[1:], columns=mod.dependent.panel.minor_axis, ) sw = sw.T.stack() sw = sw.reindex(mod.dependent.index) sw = 1.0 / sw sw = sw / sw.mean() drop = dy.isnull() | np.any(dx.isnull(), 1) | sw.isnull() dy = dy.loc[~drop] dx = dx.loc[~drop] sw = sw.loc[~drop] ols_mod = IV2SLS(dy, dx, None, None, weights=sw) ols_res = ols_mod.fit(cov_type="unadjusted") assert_results_equal(res, ols_res) res = mod.fit(cov_type="robust", debiased=False) ols_res = ols_mod.fit(cov_type="robust") assert_results_equal(res, ols_res) clusters = data.vc1 ols_clusters = mod.reformat_clusters(data.vc1) fd = mod.dependent.first_difference() ols_clusters = ols_clusters.dataframe.loc[fd.index] res = mod.fit(cov_type="clustered", clusters=clusters, debiased=False) ols_res = ols_mod.fit(cov_type="clustered", clusters=ols_clusters) assert_results_equal(res, ols_res) def test_first_difference_errors(data): if isinstance(data.x, pd.DataFrame): time = data.y.index.levels[1][0] y = data.y.xs(time, level=1, drop_level=False) x = data.x.xs(time, level=1, drop_level=False) else: x = data.x[:, [0], :] y = data.y[[0], :] with pytest.raises(ValueError): FirstDifferenceOLS(y, x) if not isinstance(data.x, pd.DataFrame): return x = data.x.copy() x["Intercept"] = 1.0 with pytest.raises(ValueError): FirstDifferenceOLS(data.y, x) def test_results_access(data): mod = FirstDifferenceOLS(data.y, data.x) res = mod.fit(debiased=False) access_attributes(res) def test_firstdifference_error(data): mod = FirstDifferenceOLS(data.y, data.x) clusters = mod.dependent.dataframe.copy() for entity in mod.dependent.entities: clusters.loc[entity] = np.random.randint(9) clusters.iloc[::3, :] = clusters.iloc[::3, :] + 1 with pytest.raises(ValueError): mod.fit(cov_type="clustered", clusters=clusters) def test_fitted_effects_residuals(data): mod = FirstDifferenceOLS(data.y, data.x) res = mod.fit() expected = mod.exog.values2d @ res.params.values expected = pd.DataFrame(expected, index=mod.exog.index, columns=["fitted_values"]) assert_allclose(res.fitted_values, expected) assert_frame_similar(res.fitted_values, expected) expected.iloc[:, 0] = mod.dependent.values2d - expected.values expected.columns = ["idiosyncratic"] assert_allclose(res.idiosyncratic, expected) assert_frame_similar(res.idiosyncratic, expected) expected.iloc[:, 0] = np.nan expected.columns = ["estimated_effects"] assert_allclose(res.estimated_effects, expected) assert_frame_similar(res.estimated_effects, expected) def test_extra_df(data): mod = FirstDifferenceOLS(data.y, data.x) res = mod.fit() res_extra = mod.fit(extra_df=10) assert np.all(np.diag(res_extra.cov) > np.diag(res.cov))
StarcoderdataPython
6400620
<filename>component/tiles/__init__.py from sepal_ui.frontend.styles import * from ..widget.custom_widgets import * from ..frontend.styles import * from .alert_map import * from .parameters import * from .tiles import * from .ui import *
StarcoderdataPython
265974
<reponame>ioreshnikov/tamizdat<filename>tests/test_website.py from unittest import TestCase from unittest.mock import patch, MagicMock from tamizdat.models import make_database, Book, File from tamizdat.website import Website def read_saved_page(book_id): filename = "tests/assets/{}.html".format(book_id) with open(filename) as fd: return fd.read() def mock_head(url, *args, **kwargs): mock_response = MagicMock() mock_response.url = url return mock_response class WebsiteTestCase(TestCase): def setUp(self): self.database = make_database() self.website = Website(requests=MagicMock()) def test_get_extension(self): self.assertEqual(self.website._get_extension("/b/485688/epub"), "epub") self.assertEqual(self.website._get_extension("/b/485688/fb2"), "fb2") self.assertEqual(self.website._get_extension("/b/485688/mobi"), "mobi") self.assertEqual(self.website._get_extension("/b/485688/"), "") def test_join_paragraph(self): sentences = [ "Все счастливые семьи похожи друг на друга, \n", "каждая несчастливая семья несчастлива по-своему." ] expected = ( "Все счастливые семьи похожи друг на друга, " "каждая несчастливая семья несчастлива по-своему.") self.assertEqual(self.website._join_paragraph(sentences), expected) def test_scraping_info_from_a_webpage(self): self.website.requests.head = mock_head page_source = read_saved_page("93872") info = self.website._scrape_additional_info(page_source) annotation, cover, ebook = info self.assertIsNotNone(annotation) self.assertTrue(cover.endswith("jpg")) self.assertTrue(ebook.endswith("fb2")) def test_appending_additional_info(self): self.website.requests.head = mock_head page_source = read_saved_page("93872") info = self.website._scrape_additional_info(page_source) book = Book(book_id=93872, title="Трудно быть богом") book.save() self.assertIsNone(book.annotation) self.assertIsNone(book.cover_image) self.assertIsNone(book.ebook_fb2) self.website._append_additional_info(book, info) self.assertIsNotNone(book.annotation) self.assertIsInstance(book.cover_image, File) self.assertTrue(book.cover_image.remote_url.endswith(".jpg")) self.assertIsInstance(book.ebook_fb2, File) self.assertTrue(book.ebook_fb2.remote_url.endswith("/fb2")) self.assertTrue(book.ebook_fb2.local_path.endswith(".fb2.zip"))
StarcoderdataPython
9611656
# Standard Library import uuid # Django from django.contrib.auth import get_user_model from django.contrib.auth.models import AnonymousUser from django.http import HttpResponse from django.utils.functional import cached_property # Third Party Libraries import pytest from allauth.account.forms import EmailAwarePasswordResetTokenGenerator from allauth.account.utils import user_pk_to_url_str from allauth.socialaccount.models import SocialAccount, SocialLogin TEST_PASSWORD = "<PASSWORD>" default_token_generator = EmailAwarePasswordResetTokenGenerator() class MockSession(dict): """Provides mock session dict with session key""" @cached_property def session_key(self): return str(uuid.uuid4()) @pytest.fixture def test_password(): return <PASSWORD> @pytest.fixture def mock_session(): return MockSession @pytest.fixture def get_response(): return lambda req: HttpResponse() @pytest.fixture def user_model(): return get_user_model() @pytest.fixture def user(user_model, test_password): user = user_model(username="tester", email="<EMAIL>") user.set_password(<PASSWORD>) user.save() return user @pytest.fixture def anonymous_user(): return AnonymousUser() @pytest.fixture def login_user(client, user, test_password): client.login(username=user.username, password=<PASSWORD>) return user @pytest.fixture def user_with_unusable_password(user): user.set_unusable_password() user.save() return user @pytest.fixture def login_user_with_unusable_password(client, user_with_unusable_password): client.force_login(user_with_unusable_password) return user_with_unusable_password @pytest.fixture def password_reset_kwargs(user): return dict( uidb36=user_pk_to_url_str(user), key=default_token_generator.make_token(user) ) @pytest.fixture def sociallogin(client, user_model): account = SocialAccount(provider="google") sociallogin = SocialLogin(account=account, user=user_model(),) session = client.session session["socialaccount_sociallogin"] = sociallogin.serialize() session.save() return sociallogin
StarcoderdataPython
11246277
<reponame>pyhf/pyhf-benchmark<filename>src/pyhf_benchmark/manager.py import time from pathlib import Path from .plot import plot, plot_comb from .stats import SystemStats class RunManager(object): def __init__(self, meta=None): self._stat = [] self._meta = meta self._start_time = time.time() self.times = 0 self.directory = Path( f"{Path(__file__).resolve().parent}/../../output/run_{time.strftime('%Y%m%d', time.localtime())}_{int(self._start_time)}" ) def start(self, meta=None): system = SystemStats(meta, self.directory) self.times += 1 self._stat.append(system) system.start() def close(self): system = self._stat.pop(0) system.shutdown() plot(system.dir) def shutdown(self): if self.times > 1: plot_comb(self.directory)
StarcoderdataPython
11206881
#!/usr/bin/env python # -*- encoding: utf-8 -*- from setuptools import setup setup( name="myutils", version="1.0", author='<NAME>', author_email='<EMAIL>', license='BSD-2-Clause', long_description='Libraries that could be used in every project.', description='Utils', url='https://github.com/yuriy-logosha/myutils/README.md' )
StarcoderdataPython
1893928
<gh_stars>0 ##Program for converting RIS files into BibTex database import re import glob def readInData(fiName): fi = open(str(fiName)) fiObj = fi.read() fi.close() return fiObj def readInCrossRef(): refDic = {} fi = open("KeyForCrossRef.txt") fiObj = fi.read() fi.close() for row in fiObj.split("\n"): keyName = row.split(" = ") key = keyName[0] if keyName[1]!="[special case]": keyRef = keyName[1].split(",") refDic[key]=keyRef return refDic def turnToDic(fiObj): reType = re.compile(".. - .*") dataLi = reType.findall(fiObj) fiDic = {} for data in dataLi: rowLi = data.split(" - ") try: exists = fiDic[rowLi[0]] exists = exists+" and "+str(rowLi[1]) fiDic[rowLi[0]] = exists except KeyError: fiDic[rowLi[0]] = str(rowLi[1]) return fiDic def makeArticleDic2(fiDic,elements,crossRefDic): newDic = {} for el in elements: if el == "pages": newDic["pages"] = handlePages(fiDic) if el == "publisher": newDic["publisher"] = handlePublisher(fiDic) try: cross = crossRefDic[el] countTries = 1 for item in cross: try: if el!="year": newDic[el] = fiDic[item] break if el == "year": year,month=yearSplit(fiDic[item]) newDic["month"]=month newDic["year"]=year except KeyError: if countTries==len(cross) and el=="address": print el countTries+=1 except KeyError: if el == "note": newDic["note"]="NA" return newDic def handlePublisher(fiDic): try: pub = fiDic["PB"] except KeyError: print "No publisher" pub = "NA" try: loc = fiDic["CY"] except KeyError: print "No location" loc = "NA" output = str(loc)+": "+str(pub) return output def handlePages(fiDic): try: sp = fiDic["SP"] try: ep = fiDic["EP"] pages = str(sp)+"-"+str(ep) except KeyError: pgs = sp.split("-") if len(pgs)>1: pages = sp if len(pgs)==1: pages = sp except KeyError: pages = "NA" return pages def yearSplit(YEAR): yearLi = YEAR.split("/") year = yearLi[0] try: month = yearLi[1] except IndexError: month="NA" return year,month def writeArticleEntry(fout,ty,elements,articleDic,keyDic,countErrors): ifError = 0 try: author = articleDic["author"] authorLast = author.split(",")[0] if len(authorLast)>10: authorLast = authorLast[0:10] except KeyError: authorLast = "NA" try: year = articleDic["year"] except KeyError: year = "NA" key = str(authorLast)+str(year) key = key.replace(" ","").replace(".","") countKeys = 2 keepOn = True while keepOn == True: try: exists = keyDic[key] print "Duplicate!!" key = key+str(countKeys) except KeyError: keepOn = False countKeys = int(countKeys)+1 fout.write(str(ty)+"{"+str(key)+",\n") for el in elements: try: data = articleDic[el] writeOrNo = True if data=="NA": writeOrNo = False if el=="year" or el=="author" or el=="title" or el=="journal": writeOrNo = True if writeOrNo==True: output = data if el == "author": output = output.replace(";", " and") fout.write("\t"+str(el)+" = {"+str(output)+"},\n") except KeyError: ifError+=1 ##print "Error",el ##print articleDic fout.write("}\n\n") if ifError>0: countErrors+=1 return keyDic,countErrors ######################################################################## direct = str(raw_input("What is the path you want to use? ")) elements_article = ["author","title","journal","volume","number", "pages","year","month","note"] elements_book = ["author","title","publisher","volume","number","series", "address","edition","year","month","note"] elements_conference = ["author","title",'booktitle','editor','volume','number', 'series','pages','address','year','month','publisher', 'note'] elements_manual = ['title','author','organization','address','edition','month', 'year','note'] elements_mastersthesis = ['author','title','school','year','type','address', 'month','note'] elements_misc = ['author','title','howpublished','month','year','note'] elements_proceedings = ['title','year','editor','volume/number','series','address', 'month','organization','publisher','note'] elements_techReport = ['author','title','institution','year','type','number', 'address','month','note'] elements_unpublished = ['author','title','note','month','year'] countErrors = 0 fout = open("tempOut.txt","w") crossRefDic = readInCrossRef() keyDic = {} fiGlob = glob.glob(direct+"\\*") for fiName in fiGlob: fiObj = readInData(fiName) fiDic = turnToDic(fiObj) try: ty = fiDic["TY"] except KeyError: ty = "JOUR" if ty == "JOUR": articleDic = makeArticleDic2(fiDic,elements_article,crossRefDic) keyDic,countErrors = writeArticleEntry(fout,"@article",elements_article,articleDic,keyDic,countErrors) if ty == "BOOK": bookDic = makeArticleDic2(fiDic,elements_book,crossRefDic) keyDic,countErrors = writeArticleEntry(fout,"@book",elements_book,bookDic,keyDic,countErrors) print "Number of errors is: ",countErrors fout.close()
StarcoderdataPython
9743494
# -*- coding: utf-8 -*- ''' File name: code\mccarthy_91_function\sol_555.py Author: <NAME> Date created: Oct 20, 2018 Python Version: 3.x ''' # Solution to Project Euler Problem #555 :: McCarthy 91 function # # For more information see: # https://projecteuler.net/problem=555 # Problem Statement ''' The McCarthy 91 function is defined as follows: $$ M_{91}(n) = \begin{cases} n - 10 & \text{if } n > 100 \\ M_{91}(M_{91}(n+11)) & \text{if } 0 \leq n \leq 100 \end{cases} $$ We can generalize this definition by abstracting away the constants into new variables: $$ M_{m,k,s}(n) = \begin{cases} n - s & \text{if } n > m \\ M_{m,k,s}(M_{m,k,s}(n+k)) & \text{if } 0 \leq n \leq m \end{cases} $$ This way, we have $M_{91} = M_{100,11,10}$. Let $F_{m,k,s}$ be the set of fixed points of $M_{m,k,s}$. That is, $$F_{m,k,s}= \left\{ n \in \mathbb{N} \, | \, M_{m,k,s}(n) = n \right\}$$ For example, the only fixed point of $M_{91}$ is $n = 91$. In other words, $F_{100,11,10}= \{91\}$. Now, define $SF(m,k,s)$ as the sum of the elements in $F_{m,k,s}$ and let $S(p,m) = \displaystyle \sum_{1 \leq s < k \leq p}{SF(m,k,s)}$. For example, $S(10, 10) = 225$ and $S(1000, 1000)=208724467$. Find $S(10^6, 10^6)$. ''' # Solution # Solution Approach ''' '''
StarcoderdataPython
8165489
from .gziptcp import * from .gziptcpssl import * from .plaintcp import * from .plaintcpssl import * from .plainudp import * from .protocolerror import * __all__ = [ *gziptcp.__all__, *gziptcpssl.__all__, *plaintcp.__all__, *plaintcpssl.__all__, *plainudp.__all__, *protocolerror.__all__, ]
StarcoderdataPython
6619341
from django.contrib import admin import models admin.site.register(models.Entry) admin.site.register(models.Category)
StarcoderdataPython
3295484
<filename>tests/data/cve/feed.py GET_CVE_SYNC_METADATA = { "CVE_data_type": "CVE", "CVE_data_format": "MITRE", "CVE_data_version": "4.0", "CVE_data_numberOfCVEs": "6769", "CVE_data_timestamp": "2022-02-23T08:01Z", "CVE_Items": [{ "cve": { "data_type": "CVE", "data_format": "MITRE", "data_version": "4.0", "CVE_data_meta": { "ID": "CVE-1999-0001", "ASSIGNER": "<EMAIL>", }, "problemtype": { "problemtype_data": [{ "description": [{ "lang": "en", "value": "CWE-20", }], }], }, "references": { "reference_data": [ { "url": "http://www.openbsd.org/errata23.html#tcpfix", "name": "http://www.openbsd.org/errata23.html#tcpfix", "refsource": "CONFIRM", "tags": [], }, { "url": "http://www.osvdb.org/5707", "name": "5707", "refsource": "OSVDB", "tags": [], }, ], }, "description": { "description_data": [{ "lang": "en", "value": ( "ip_input.c in BSD-derived TCP/IP implementations allows remote " "attackers to cause a denial of service (crash or hang) via " "crafted packets." ), }], }, }, "configurations": { "CVE_data_version": "4.0", "nodes": [{ "operator": "OR", "children": [], "cpe_match": [ { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:1.0:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:1.1.5.1:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.1.7:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.2:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.2.8:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:openbsd:openbsd:2.3:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:bsdi:bsd_os:3.1:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.2.3:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.2.4:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.2.5:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.2.6:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.0:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.0.5:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.1.5:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.1.6:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.2.2:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.0.1:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:1.1:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:1.2:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.1.6.1:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:2.1.7.1:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:freebsd:freebsd:3.0:*:*:*:*:*:*:*", "cpe_name": [], }, { "vulnerable": True, "cpe23Uri": "cpe:2.3:o:openbsd:openbsd:2.4:*:*:*:*:*:*:*", "cpe_name": [], }, ], }], }, "impact": { "baseMetricV2": { "cvssV2": { "version": "2.0", "vectorString": "AV:N/AC:L/Au:N/C:N/I:N/A:P", "accessVector": "NETWORK", "accessComplexity": "LOW", "authentication": "NONE", "confidentialityImpact": "NONE", "integrityImpact": "NONE", "availabilityImpact": "PARTIAL", "baseScore": 5.0, }, "severity": "MEDIUM", "exploitabilityScore": 10.0, "impactScore": 2.9, "obtainAllPrivilege": False, "obtainUserPrivilege": False, "obtainOtherPrivilege": False, "userInteractionRequired": False, }, }, "publishedDate": "1999-12-30T05:00Z", "lastModifiedDate": "2010-12-16T05:00Z", }], }
StarcoderdataPython
1935245
<filename>pySDC/implementations/controller_classes/error_estimator.py import numpy as np from scipy.special import factorial from pySDC.implementations.datatype_classes.mesh import mesh, imex_mesh from pySDC.core.Errors import DataError class _ErrorEstimatorBase: """ This class should be the parent of all error estimator classes, MPI and nonMPI and provide all functions that can be shared. """ def __init__(self, controller, order, size): self.params = controller.params if self.params.use_extrapolation_estimate: self.setup_extrapolation(controller, order, size) def setup_extrapolation(self, controller, order, size): """ The extrapolation based method requires storage of previous values of u, f, t and dt and also requires solving a linear system of equations to compute the Taylor expansion finite difference style. Here, all variables are initialized which are needed for this process. """ # check if we can handle the parameters if not controller.MS[0].levels[0].sweep.coll.right_is_node: raise NotImplementedError('I don\'t know what to do if the last collocation node is not the end point') # determine the order of the Taylor expansion to be higher than that of the time marching scheme if self.params.use_HotRod: self.order = order - 1 + 2 else: self.order = order + 2 # important: the variables to store the solutions etc. are defined in the children classes self.n = (self.order + 1) // 2 # since we store u and f, we need only half of each (the +1 is for rounding) self.n_per_proc = int(np.ceil(self.n / size)) # number of steps that each step needs to store self.u_coeff = [None] * self.n self.f_coeff = [0.] * self.n def communicate_time(self): raise NotImplementedError('Please implement a function to communicate the time and step sizes!') def communicate(self): raise NotImplementedError('Please implement a function to communicates the solution etc.!') def get_extrapolation_coefficients(self, t_eval=None): """ This function solves a linear system where in the matrix A, the row index reflects the order of the derivative in the Taylor expansion and the column index reflects the particular step and whether its u or f from that step. The vector b on the other hand, contains a 1 in the first entry and zeros elsewhere, since we want to compute the value itself and all the derivatives should vanish after combining the Taylor expansions. This works to the order the number of rows and since we want a square matrix for solving, we need the same amount of colums, which determines the memory overhead, since it is equal to the solutions / rhs that we need in memory at the time of evaluation. This is enough to get the extrapolated solution, but if we want to compute the local error, we have to compute a prefactor. This is based on error accumulation between steps (first step's solution is exact plus 1 LTE, second solution is exact plus 2 LTE and so on), which can be computed for adaptive step sizes as well, but its wonky in time-parallel versions to say the least (it's not cared for and hence wrong, but it might be wrong in the same way as the embedded method and work for Hot Rod regardless...) """ t, dt = self.communicate_time() # prepare A matrix A = np.zeros((self.order, self.order)) A[0, 0:self.n] = 1. j = np.arange(self.order) inv_facs = 1. / factorial(j) # get the steps backwards from the point of evaluation idx = np.argsort(t) if t_eval is None: steps_from_now = -np.cumsum(dt[idx][::-1])[self.n - 1::-1] else: steps_from_now = t[idx] - t_eval # fill A matrix for i in range(1, self.order): # Taylor expansions of the solutions A[i, :self.n] = steps_from_now**j[i] * inv_facs[i] # Taylor expansions of the first derivatives a.k.a. right hand side evaluations A[i, self.n:self.order] = steps_from_now[2 * self.n - self.order:]**(j[i] - 1) * inv_facs[i - 1] # prepare rhs b = np.zeros(self.order) b[0] = 1. # solve linear system for the coefficients coeff = np.linalg.solve(A, b) self.u_coeff = coeff[:self.n] self.f_coeff[self.n * 2 - self.order:] = coeff[self.n:self.order] # indexing takes care of uneven order # determine prefactor r = abs(self.dt[len(self.dt) - len(self.u_coeff):] / self.dt[-1])**(self.order - 1) inv_prefactor = -sum(r[1:]) - 1. for i in range(len(self.u_coeff)): inv_prefactor += sum(r[1: i + 1]) * self.u_coeff[i] self.prefactor = 1. / abs(inv_prefactor) def store_values(self, S): """ Store the required attributes of the step to do the extrapolation. We only care about the last collocation node on the finest level at the moment. """ if self.params.use_extrapolation_estimate: # figure out which values are to be replaced by the new ones if None in self.t: oldest_val = len(self.t) - len(self.t[self.t == [None]]) else: oldest_val = np.argmin(self.t) f = S.levels[0].f[-1] if type(f) == imex_mesh: self.f[oldest_val] = f.impl + f.expl elif type(f) == mesh: self.f[oldest_val] = f else: raise DataError(f'Unable to store f from datatype {type(f)}, extrapolation based error estimate only\ works with types imex_mesh and mesh') self.u[oldest_val] = S.levels[0].u[-1] self.t[oldest_val] = S.time + S.dt self.dt[oldest_val] = S.dt def embedded_estimate(self, S): """ Compute embedded error estimate on the last node of each level In serial this is the local error, but in block Gauss-Seidel MSSDC this is a semi-global error in each block """ for L in S.levels: # order rises by one between sweeps, making this so ridiculously easy L.status.error_embedded_estimate = max([abs(L.uold[-1] - L.u[-1]), np.finfo(float).eps]) def extrapolation_estimate(self, S): """ The extrapolation estimate combines values of u and f from multiple steps to extrapolate and compare to the solution obtained by the time marching scheme. """ if None not in self.dt: if None in self.u_coeff or self.params.use_adaptivity: self.get_extrapolation_coefficients(t_eval=S.time + S.dt) self.communicate() if len(S.levels) > 1: raise NotImplementedError('Extrapolated estimate only works on the finest level for now') u_ex = S.levels[0].u[-1] * 0. idx = np.argsort(self.t) # see if we need to leave out any values because we are doing something in a block if (abs(S.time + S.dt - self.t) < 10. * np.finfo(float).eps).any(): idx_step = idx[np.argmin(abs(self.t - S.time - S.dt))] else: idx_step = max(idx) + 1 mask = np.logical_and(idx < idx_step, idx >= idx_step - self.n) for i in range(self.n): u_ex += self.u_coeff[i] * self.u[idx[mask][i]] + self.f_coeff[i] * self.f[idx[mask][i]] S.levels[0].status.error_extrapolation_estimate = abs(u_ex - S.levels[0].u[-1]) * self.prefactor def estimate(self, S): if self.params.use_HotRod: if S.status.iter == S.params.maxiter - 1: self.extrapolation_estimate(S) elif S.status.iter == S.params.maxiter: self.embedded_estimate(S) else: # only estimate errors when last sweep is performed and not when doing Hot Rod if S.status.iter == S.params.maxiter: if self.params.use_extrapolation_estimate: self.extrapolation_estimate(S) if self.params.use_embedded_estimate or self.params.use_adaptivity: self.embedded_estimate(S) class _ErrorEstimator_nonMPI_BlockGS(_ErrorEstimatorBase): """ Error estimator that works with the non-MPI controller in block Gauss-Seidel mode """ def __init__(self, controller): super(_ErrorEstimator_nonMPI_BlockGS, self).__init__(controller, order=controller.MS[0].params.maxiter, size=len(controller.MS)) def store_values(self, MS): for S in MS: super(_ErrorEstimator_nonMPI_BlockGS, self).store_values(S) def communicate_time(self): return self.t, self.dt def communicate(self): pass def estimate(self, MS): # loop in reverse through the block since later steps lag behind with iterations for i in range(len(MS) - 1, -1, -1): S = MS[i] if self.params.use_HotRod: if S.status.iter == S.params.maxiter - 1: self.extrapolation_estimate(S) elif S.status.iter == S.params.maxiter: self.embedded_estimate_local_error(MS[:i + 1]) break else: # only estimate errors when last sweep is performed and not when doing Hot Rod if S.status.iter == S.params.maxiter: if self.params.use_extrapolation_estimate: self.extrapolation_estimate(S) if self.params.use_embedded_estimate or self.params.use_adaptivity: self.embedded_estimate_local_error(MS[:i + 1]) def setup_extrapolation(self, controller, order, size): super(_ErrorEstimator_nonMPI_BlockGS, self).setup_extrapolation(controller, order, size) # check if we fixed the order by fixing the iteration number if not controller.MS[0].levels[0].params.restol == 0: raise NotImplementedError('Extrapolation based error estimate so far only with fixed order!') # check if we have the same order everywhere maxiter = [controller.MS[i].params.maxiter for i in range(len(controller.MS))] if not maxiter.count(maxiter[0]) == len(maxiter): raise NotImplementedError('All steps need to have the same order in time!') if controller.params.mssdc_jac: raise NotImplementedError('Extrapolation error only implemented in block Gauss-Seidel!') # check if we can deal with the supplied number of processes if len(controller.MS) > 1 and len(controller.MS) < self.n + 1: raise NotImplementedError(f'Extrapolation error estimate only works in serial, or in a no-overhead version\ which requires at least {self.n+1} processes for order {self.order} Taylor expansion. You gave {size} processes.') # create variables to store u, f, t and dt from previous steps self.u = [None] * self.n_per_proc * size self.f = [None] * self.n_per_proc * size self.t = np.array([None] * self.n_per_proc * size) self.dt = np.array([None] * self.n_per_proc * size) def embedded_estimate_local_error(self, MS): """ In block Gauss-Seidel SDC, the embedded estimate actually estimates sort of the global error within the block, since the second to last sweep is from an entirely k-1 order method, so to speak. This means the regular embedded method here yields this semi-global error and we get the local error as the difference of consecutive semi-global errors. """ # prepare a list to store all errors in semi_global_errors = np.array([[0.] * len(MS[0].levels)] * (len(MS) + 1)) for i in range(len(MS)): S = MS[i] for j in range(len(S.levels)): L = S.levels[j] semi_global_errors[i][j] = abs(L.uold[-1] - L.u[-1]) L.status.error_embedded_estimate = max([abs(semi_global_errors[i][j] - semi_global_errors[i - 1][j]), np.finfo(float).eps]) class _ErrorEstimator_nonMPI_no_memory_overhead_BlockGS(_ErrorEstimator_nonMPI_BlockGS): """ Error estimator that works with the non-MPI controller in block Gauss-Seidel mode and does not feature memory overhead due to extrapolation error estimates, since the required values are in memory of other "processes" anyways. """ def __init__(self, controller): super(_ErrorEstimator_nonMPI_no_memory_overhead_BlockGS, self).__init__(controller) def store_values(self, MS): """ No overhead means nothing to store! """ pass def extrapolation_estimate(self, MS): """ The extrapolation estimate combines values of u and f from multiple steps to extrapolate and compare to the solution obtained by the time marching scheme. """ # this is needed since we don't store anything self.dt = np.array([S.dt for S in MS]) self.t = np.array([S.time for S in MS]) + self.dt if len(MS) > self.n: if None in self.u_coeff or self.params.use_adaptivity: self.get_extrapolation_coefficients() if len(MS[-1].levels) > 1: raise NotImplementedError('Extrapolated estimate only works on the finest level for now') # loop to go through all steps which we can extrapolate to for j in range(self.n, len(MS)): u_ex = MS[-1].levels[0].u[-1] * 0. # loop to sum up contributions from previous steps for i in range(1, self.n + 1): L = MS[j - i].levels[0] if type(L.f[-1]) == imex_mesh: u_ex += self.u_coeff[-i] * L.u[-1] + self.f_coeff[-i] * (L.f[-1].impl + L.f[-1].expl) elif type(L.f[-1]) == mesh: u_ex += self.u_coeff[-i] * L.u[-1] + self.f_coeff[-i] * L.f[-1] else: raise DataError(f'Datatype {type(L.f[-1])} not supported by parallel extrapolation error estim\ ate!') MS[j].levels[0].status.error_extrapolation_estimate = abs(u_ex - MS[j].levels[0].u[-1]) * self.prefactor def estimate(self, MS): # loop in reverse through the block since later steps lag behind with iterations for i in range(len(MS) - 1, -1, -1): S = MS[i] if self.params.use_HotRod: if S.status.iter == S.params.maxiter - 1: self.extrapolation_estimate(MS[:i + 1]) elif S.status.iter == S.params.maxiter: self.embedded_estimate_local_error(MS[:i + 1]) break else: # only estimate errors when last sweep is performed and not when doing Hot Rod if S.status.iter == S.params.maxiter: if self.params.use_extrapolation_estimate: self.extrapolation_estimate(MS[:i + 1]) if self.params.use_embedded_estimate or self.params.use_adaptivity: self.embedded_estimate_local_error(MS[:i + 1]) def get_ErrorEstimator_nonMPI(controller): """ This function should be called from the controller and return the correct version of the error estimator based on the chosen parameters. """ if len(controller.MS) >= (controller.MS[0].params.maxiter + 4) // 2: return _ErrorEstimator_nonMPI_no_memory_overhead_BlockGS(controller) else: return _ErrorEstimator_nonMPI_BlockGS(controller)
StarcoderdataPython
8164513
<filename>src/ftd/api/maya.py<gh_stars>1-10 # pylint: disable=invalid-name, redefined-builtin, protected-access """Object-oriented API for Autodesk Maya.""" from __future__ import absolute_import, division import abc import logging import math import sys import types from maya import cmds from maya.api import OpenMaya __version__ = "0.1.0" __all__ = [ # Common "clear", "newscene", "exists", # Enum "Space", # Encoding & Decoding "encode", "decode", # Nodes "DependencyNode", "DagNode", "create", "delete", # Plug & Attributes "Plug", # Data types "Vector", ] LOG = logging.getLogger(__name__) # Pytohn 2 & 3 compatibility. # pylint: disable=undefined-variable _STRING_TYPES = str if sys.version_info[0] >= 3 else basestring # type: ignore # pylint: enable=undefined-variable def _add_metaclass(metaclass): """Add a metaclass compatible with python 2 and 3""" def _decorator(cls): return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy()) return _decorator # Errors DgError = type("DgError", (Exception,), {}) DagError = type("DagError", (Exception,), {}) ExistsError = type("ExistsError", (Exception,), {}) PlugError = type("PlugError", (Exception,), {}) GraphError = type("GraphError", (Exception,), {}) # Common def newscene(): """Create a new scene.""" cmds.file(new=True, force=True) clear() def clear(): """Remove all instances stored in the memory.""" _MetaNode._instances.clear() # Enum class Space(object): """Space transformation identifiers.""" TRANSFORM = OpenMaya.MSpace.kTransform PRE_TRANSFORM = OpenMaya.MSpace.kPreTransform POST_TRANSFORM = OpenMaya.MSpace.kPostTransform WORLD = OpenMaya.MSpace.kWorld OBJECT = OpenMaya.MSpace.kObject # Encoding & Decoding def encode(obj, default=object): """Encode an object. Create an instance of the type corresponding to the object passed as a parameter. If the object does not exist in Maya, raises an exception of type `ValueError` unless a value is specified in the default parameter and then returns that value. Note: The default value of ``default`` parameter is initialized to :obj:`object`. Indeed, using the "normal" method by initializing it the None, will make it impossible for the user to use the value None to specify the default return value. I didn't any case or the user would return :obj:`object` but in case or it is what you want, you can still use a "derived" synthax:: >>> encode("unknown", default=None) or object <class 'object'> If the encoding is performed on an object already encoded, returns the object unchanged. Examples: >>> from maya import cmds >>> newscene() >>> _ = cmds.createNode("transform", name="A") >>> encode("A") <DagNode 'A' type::transform> >>> encode("B") Traceback (most recent call last): ... ValueError >>> encode("B", default=False) False >>> _ = cmds.createNode("multMatrix", name="C") >>> encode("C") <DependencyNode 'C' type::multMatrix> Arguments: obj (any): The object to encode. default (any): Value that is returned if the object does not exists. Returns: any: The encoded object. Raises: TypeError: The type of the object is not supported. ValueError: The object does not exist and the `default` parameter is not specified. """ LOG.debug("Encoding: %s", repr(obj)) # Check if the object is not already encoded. if obj.__class__.__module__ == __name__: return obj if isinstance(obj, _STRING_TYPES): sel = OpenMaya.MSelectionList() try: sel.add(obj) if "." in obj: obj = sel.getPlug(0) else: obj = sel.getDependNode(0) except RuntimeError: if default is not object: return default raise ValueError("The object '{}' does not exists.".format(obj)) if isinstance(obj, OpenMaya.MPlug): return Plug(obj) if not isinstance(obj, OpenMaya.MObject): msg = "The object type {} is not supported." raise TypeError(msg.format(type(obj))) # Find the most appropriate class in which the object can be encoded. for each in reversed(OpenMaya.MGlobal.getFunctionSetList(obj)): cls = _MetaNode._types.get(getattr(OpenMaya.MFn, each)) if cls is not None: return cls(obj) raise ValueError("Failed to encode the object '{}'".format(obj)) def decode(obj, **kwargs): """Decode an object.""" LOG.debug("Decode: %s", repr(obj)) if obj.__class__.__module__ != __name__: return obj if hasattr(obj, "decode"): return obj.decode(**kwargs) return str(obj) def ls(*args, **kwargs): """Todo.""" return _wrap(cmds.ls, *args, **kwargs) def selected(): """Return the current selected nodes.""" selection = OpenMaya.MGlobal.getActiveSelectionList().getSelectionStrings() return map(encode, selection) # Nodes class _MetaNode(type): """Manage all the registered nodes. Anything involving nodes goes through here at least once :) This meta class has to main goal: - Keep track of all classes that are based on it. - Keep track of all instances of encoded nodes so that they can be reused when a registered node more than once. """ _types = {} _instances = {} def __new__(mcs, name, bases, dict_): """Register all new classes that derive from this metaclass.""" cls = super(_MetaNode, mcs).__new__(mcs, name, bases, dict_) mcs._types[cls._identifier] = cls return cls def __call__(cls, mobject, *args, **kwargs): """Handle the creation of instances in order to implement a singleton. Each node will be tracked and stored in a python dictionary in order to reuse the same instance for all encoding attempts on the same node. Note: Make a comparison using ``is`` is equivalent to comparing the :func:`id` of the two operands. So ``a is b`` is equivalent to ``id(a) == id(b)``. How it works? To be able to retrieve if a node has already been encoded or not, we need to find a way to effectively compare nodes. Using the node name is a very bad idea, as two nodes can have the same name in the same scene, and the node name is not constant within a session Maya provides two different systems that can be used to efficiently compare nodes, UUIDs or hash codes. **Universally unique identifier (UUID)** Every node has a attribute called ``uuid`` stored on it which, as the name suggest, is unique. That's perfect! Well not so much. Take a same scene that is referenced twice in another scene. Each node from the referencde scene is present twice in the scene, with the same uuid. And this is a problem because we have no way to differentiate these two nodes in an efficient way. **Hash code** For each MObject, maya provides an hash code. On the subject, the `official documentation`_ says: [...] several internal Maya objects may return the same code. However different MObjectHandles whose MObjects refer to the same internal Maya object will return the same hash code. [...] Which is exactly what we want. Examples: >>> from maya import cmds >>> newscene() >>> _ = cmds.createNode("transform", name="A") >>> _ = cmds.createNode("transform", name="B") >>> a = encode("A") >>> b = encode("B") >>> a is b False >>> c = encode("A") >>> a is c True Arguments: mobject (MObject): The maya object used to initialize the instance. Returns: any: The encoded instance of the node. .. _official documentation: https://help.autodesk.com/cloudhelp/2020/ENU/Maya-SDK-MERGED/cpp_ref/class_m_object_handle.html#a23a0c64be863c23d2cf8214243d59bb1 """ handle = OpenMaya.MObjectHandle(mobject) hash_code = handle.hashCode() self = cls._instances.get(hash_code) if not self: self = super(_MetaNode, cls).__call__(mobject, *args, **kwargs) self._handle = handle cls._instances[hash_code] = self return self @_add_metaclass(_MetaNode) class DependencyNode(object): """A Dependency Graph (DG) node.""" _class = OpenMaya.MFnDependencyNode _identifier = OpenMaya.MFn.kDependencyNode def __repr__(self): return "<{} '{}' type::{}>".format( self.__class__.__name__, self.fn.name(), self.fn.typeName, ) # Type conversion --- def __str__(self): return self.fn.name() def __bool__(self): return True __nonzero__ = __bool__ # Arithmetic operators --- def __add__(self, other): """Allow the legacy way to acess plugs. Examples: >>> newscene() >>> a = create("transform", name="A") >>> a + ".translateX" 'A.translateX' """ return str(self) + str(other) # Reflected arithmetic operators --- def __radd__(self, other): return str(other) + str(self) # Comparison operators --- def __eq__(self, other): if isinstance(other, DependencyNode): return self.object == other.object return str(self) == str(other) def __ne__(self, other): if isinstance(other, DependencyNode): return self.object != other.object return str(self) != str(other) # Emmulate container type --- def __getitem__(self, key): return self.findplug(key) def __setitem__(self, key, value): self.findplug(key).value = value # Constructor --- def __init__(self, mobject): self._object = mobject self._fn = self._class(mobject) self._handle = OpenMaya.MObjectHandle(mobject) # Read properties --- @property def object(self): """MObject: The maya object attached to self.""" return self._object @property def handle(self): """MObjectHandle: The maya object handle attached to self.""" return self._handle @property def fn(self): # pylint: disable=invalid-name """MFnDependencyNode: The maya function set attached to self.""" return self._fn @property def type(self): """str: The type name of the node.""" return self.fn.typeName @property def typeid(self): """int: A bit number that is used to identify the type of the node in binary file format. """ return self.fn.typeId.id() @property def inherited(self): """list: The type inheritance of the node.""" return cmds.nodeType(self.name, inherited=True) @property def derived(self): """list: The types that inherits of the node.""" return cmds.nodeType(self.name, derived=True) @property def uuid(self): """str: The Universally Unique Identifier (UUID) of the node.""" return self.fn.uuid().asString() @property def hash(self): """int: Hash code for the internal maya object. The hash code is not unique, several MObjects can have the same hash code. However, if different MObectHandle refer to the same maya internal object, they will return the same hash code """ return self.handle.hashCode() @property def isdefault(self): """bool: True if the node is created automatically by Maya.""" return self.fn.isDefaultNode @property def isreferenced(self): """bool: True if the node come from a referenced file.""" return self.fn.isFromReferencedFile # Read write properties --- @property def name(self): """str: The name of the node.""" return self.fn.name() @name.setter def name(self, value): cmds.rename(self.name, value) @property def lock(self): """bool: The lock state of the node. A locked node means that it cannot be deleted, repaired or renamed. It is also not possible to create, edit or delete their attributes. """ return self.fn.isLocked @lock.setter def lock(self, value): cmds.lockNode(self.name, lock=value) # Public methods --- def duplicate(self, name=None): """Duplicate the node. Examples: >>> newscene() >>> a = create("transform", name="A") >>> b = a.duplicate("B") >>> b <DagNode 'B' type::transform> >>> a != b True Arguments: name (str): The name to give to the duplicate node. Returns: DependencyNode: The instance of the duplicate node. """ return encode(cmds.duplicate(self.name, name=name)[0]) def delete(self): """Delete the node. Warning: Even if the node is deleted, its instance still exists in memory. Attempting to access a deleted node may cause a crash. Examples: >>> newscene() >>> node = create("transform") >>> exists(node) True >>> node.delete() >>> exists(node) False """ cmds.delete(self.name) def findplug(self, attribute): """Find a plug from an attribute name. Examples: >>> newscene() >>> node = create("transform", name="A") >>> node.findplug("message") <Plug 'A.message' type::message> >>> node.findplug("unknown") Traceback (most recent call last): ... ValueError Arguments: attribute (str): The name of the attribute to search for. Returns: Plug: The instance of the plug. Raises: ValueError: The attribute does not exists on the node. """ LOG.debug("Acess '%s.%s'", self.name, attribute) try: return Plug(self.fn.findPlug(attribute, False)) except RuntimeError: message = "The plug '{}.{}' does not exists." raise ValueError(message.format(self, attribute)) def history(self, filter=None): """Search in the node history.""" return self._related(OpenMaya.MItDependencyGraph.kUpstream, filter) def future(self, filter=None): """Search in the future of the node.""" return self._related(OpenMaya.MItDependencyGraph.kDownstream, filter) def istype(self, filter, strict=False): """Check the type of the node. Arguments: filter (str, tuple): The node(s) that should match with self. strict (bool): If `True`, does not check for inherited types and return `True` only if self has the exact same type as the on of the specified filter. Returns: bool: `True` if self match the filter otherwise `False`. """ if strict: return self.type in filter if isinstance(filter, _STRING_TYPES): filter = [filter] return any(x in self.inherited for x in filter) # Private methods --- def _related(self, direction, filter=None): """Retrive node through the graph.""" iterator = OpenMaya.MItDependencyGraph( self.object, direction, traversal=OpenMaya.MItDependencyGraph.kDepthFirst, level=OpenMaya.MItDependencyGraph.kNodeLevel, ) # Skip self. iterator.next() while not iterator.isDone(): node = encode(iterator.currentNode()) # print(node.type, filter) if filter is None or node.type in filter: yield node iterator.next() class DagNode(DependencyNode): """A Directed Acyclic Graph (DAG) node.""" _class = OpenMaya.MFnDagNode _identifier = OpenMaya.MFn.kDagNode def __len__(self): return self.childcount def __iter__(self): return self.children() def __init__(self, mobject): super(DagNode, self).__init__(mobject) self._dagpath = OpenMaya.MDagPath.getAPathTo(self.object) # Read properties --- @property def dagpath(self): """MDagPath: The dag path instance associated to the node.""" return self._dagpath @property def path(self): """str: The path of the attached object from the root of the DAG.""" return self.fn.fullPathName() @property def childcount(self): """int: The number of chidren of the node""" return self.fn.childCount() # Public methods --- def root(self): """The root node of the first path leading to this node. Examples: >>> newscene() >>> a = create("transform", name="A") >>> b = create("transform", name="B") >>> c = create("transform", name="C") >>> a.addchild(b) >>> b.addchild(c) >>> c.root() <DagNode 'A' type::transform> Returns: DagNode: The root node. """ parents = list(self.parents()) if len(parents) > 0: return parents[-1] return None def parents(self, filter=None, strict=False): """Find the parents nodes. Examples: >>> newscene() >>> a = create("transform", name="A") >>> b = create("transform", name="B") >>> c = create("transform", name="C") >>> a.addchild(b) >>> b.addchild(c) >>> list(c.parents()) [<DagNode 'B' type::transform>, <DagNode 'A' type::transform>] Arguments: filter (str, tuple): Filter the returned node types. strict (bool): If `True`, does not check for inherited types and return `True` only if self has the exact same type as the on of the specified filter. Yield: DagNode: The next parent node. """ # The `parentCount` and `parent` (with an index other than 0) # methods seem does not to work... mobject = self.fn.parent(0) while mobject.apiType() != OpenMaya.MFn.kWorld: parent = encode(mobject) if _match_filter(parent, filter, strict): yield parent mobject = parent.fn.parent(0) def parent(self, index=None): """Find a parent node. Examples: >>> newscene() >>> a = create("transform", name="A") >>> b = create("transform", name="B") >>> a.addchild(b) >>> b.parent() <DagNode 'A' type::transform> Arguments: index (int): The index of the parent to find. Returns: DagNode: The parent node. Raises: DagError: The parent at the speicified index is inaccessible. """ try: parents = list(self.parents()) return parents[index or 0] except IndexError: if index is None: return None msg = "The parent node at the index '{}' is inaccessible." raise DagError(msg.format(index)) def siblings(self, filter=None, strict=False): """Find the siblings nodes Examples: >>> newscene() >>> a = create("transform", name="A") >>> b = create("transform", name="B") >>> c = create("transform", name="C") >>> d = create("transform", name="D") >>> a.addchildren(b, c, d) >>> list(b.siblings()) [<DagNode 'C' type::transform>, <DagNode 'D' type::transform>] Arguments: filter (str, tuple): Filter the returned node types. strict (bool): If `True`, does not check for inherited types and return `True` only if self has the exact same type as the on of the specified filter. Yield: DagNode: The next sibling node. """ parent = self.parent() if parent is None: nodes = ls(assemblies=True) else: nodes = parent.children() for node in nodes: if node != self and _match_filter(node, filter, strict): yield node def sibling(self, index=None): """Find a sibling node. Examples: >>> newscene() >>> a = create("transform", name="A") >>> b = create("transform", name="B") >>> c = create("transform", name="C") >>> a.addchildren(b, c) >>> b.sibling() <DagNode 'C' type::transform> Arguments: index (int): The index of the sibling to find. Returns: DagNode: The sibling node. Raises: DagError: The sibling at the speicified index is inaccessible. """ try: siblings = list(self.siblings()) return siblings[index or 0] except IndexError: if index is None: return None msg = "The sibling node at the index '{}' is inaccessible." raise DagError(msg.format(index)) def shapes(self, filter=None, strict=False): """Find the shape nodes. Arguments: filter (str, tuple): Filter the returned node types. strict (bool): If `True`, does not check for inherited types and return `True` only if self has the exact same type as the on of the specified filter. Yield: Shape: The next shape node. """ for index in range(self.fn.childCount()): obj = self.fn.child(index) if obj.hasFn(OpenMaya.MFn.kShape): child = encode(obj) if _match_filter(child, filter, strict): yield child def shape(self, index=None): """Find a shape node. Arguments: index (int): The index of the shape to find. Returns: Shape: The shape node. Raises: DagError: The shape at the speicified index is inaccessible. """ try: shapes = list(self.shapes()) return shapes[index or 0] except IndexError: if index is None: return None msg = "The shape node at the index '{}' is inaccessible." raise DagError(msg.format(index)) def children(self, recurse=False, shape=False, filter=None, strict=False): """Find the child nodes. Arguments: recurse (bool): Include all descendants in the yielded nodes instead of the just the children. shape (bool): Include the shapes in the yielded nodes. filter (str, tuple): Filter the returned node types. strict (bool): If `True`, does not check for inherited types and return `True` only if self has the exact same type as the on of the specified filter. Yield: DagNode: The next child node. """ for index in range(self.fn.childCount()): child = encode(self.fn.child(index)) if _match_filter(child, filter, strict): if not (child.object.hasFn(OpenMaya.MFn.kShape) and not shape): yield child if recurse: for each in child.children(recurse=True, filter=filter): yield each def child(self, index=None): """Find a child node. Arguments: index (int): The index of the child to find. Returns: DagNode: The child node. Raises: DagError: The child at the speicified index is inaccessible. """ try: children = list(self.children()) return children[index or 0] except IndexError: if index is None: return None msg = "The sibling node at the index '{}' is inaccessible." raise DagError(msg.format(index)) def addchild(self, node, index=None): """Add a child to the node. Arguments: node (DagNode): The node to add. index (int): The index at which the node will be inserted into the children. """ node._set_parent(self) if index is not None: offset = -self.childcount + index + 1 cmds.reorder(node.name, relative=offset) def addchildren(self, *args): """Recursively add multiple children to the node. Arguments: *args: The nodes to add as child. """ for arg in args: if isinstance(arg, (list, tuple, set, types.GeneratorType)): self.addchildren(*arg) else: self.addchild(arg) def hide(self): """Set the visibility plug to False.""" self["visibility"] = False def show(self): """Set the visibility plug to True.""" self["visibility"] = True # Private methods ---- def _set_parent(self, parent): """Set the parent of self in the outliner.""" if self.parent() == parent: LOG.debug("%s is already a child of %s.", self, parent) else: cmds.parent(self.name, str(parent)) class Shape(DagNode): """A shape node.""" _identifier = OpenMaya.MFn.kShape def _set_parent(self, parent): cmds.parent(self.name, parent.name, shape=True, relative=True) def exists(obj): """Check if an object exists in the scene.""" return cmds.objExists(str(obj)) def delete(*args, **kwargs): """Delete the specified nodes. Wrap the `cmds.delete()`_ command. Examples: >>> newscene() >>> node = create("transform") >>> exists(node) True >>> delete(node) >>> exists(node) False Arguments: *args: The arguments passed to the `cmds.delete()`_ command. **kwargs: The keyword arguments passed to the `cmds.delete()`_ command. .. _cmds.delete(): https://help.autodesk.com/cloudhelp/2022/ENU/Maya-Tech-Docs/CommandsPython/delete.html """ return _wrap(cmds.delete, *args, **kwargs) # Creator @_add_metaclass(abc.ABCMeta) class Creator(object): """Allow to customize the creation of nodes.""" identifier = None _registered = {} def __repr__(self): return "<Creator '{}'>".format(self.identifier) @classmethod def register(cls, creator): """Register a new creator. Arguments: creator (class): The creator to register. Returns: class: The registered class. Raises: TypeError: Invalid creator type. """ if not issubclass(creator, Creator): raise TypeError("Invalid creator. Must be derivied of Creator.") cls._registered[creator.identifier] = creator return creator @abc.abstractmethod def create(self, name=None): """Create a new node. Arguments: name (str): The name to give to the new node. Returns: DependencyNode: The created node. """ @Creator.register class LocatorCreator(Creator): """Create a new locator.""" identifier = "locator" def create(self, name=None): return encode(cmds.spaceLocator(name=name or self.identifier)[0]) def create(type, name=None, **kwargs): """Create a new node. Arguments: type (str): The type of the node to create. name (str): The name of the node to create. If not specified, use the ``type`` parameter instead. **kwargs: The additional keyword arguments to pass to the :class:`Creator` or to the `cmds.createNode()`_ command. Returns: DependencyNode: A node instace based on the type of the node. .. _cmds.createNode(): https://help.autodesk.com/cloudhelp/2022/ENU/Maya-Tech-Docs/CommandsPython/createNode.html """ if type in Creator._registered: type = Creator._registered[type](**kwargs) if isinstance(type, Creator): return type.create(name) return _wrap(cmds.createNode, type, name=name or type, **kwargs) # Plug & Attributes class Plug(object): """A plug object.""" def __repr__(self): return """<{} '{}' type::{}>""".format( self.__class__.__name__, self.name, self.type, ) def __str__(self): return self.name def __init__(self, mplug): self._plug = mplug # Read properties --- @property def plug(self): """MPlug: The mplug instance of the plug.""" return self._plug @property def node(self): """DependencyNode: Get the associated node.""" return encode(self.plug.node()) @property def name(self): """str: The plug name.""" return self.plug.name() @property def attribute(self): """str: THe attribute name of the plug.""" return str(self).rsplit(".", 1)[-1] @property def type(self): """str: The plug type.""" return cmds.getAttr(self.name, type=True) @property def issettable(self): """bool: The plug is settable.""" return self.plug.isFreeToChange() == OpenMaya.MPlug.kFreeToChange @property def isdefault(self): """bool: The plug is default value.""" return self.plug.isDefaultValue() @property def isarray(self): """bool: True if plug is an array of plugs.""" return self.plug.isArray @property def iscompound(self): """str: True if plug is compound parent with children.""" return self.plug.isCompound @property def childcount(self): """int: The number of chidren of the node. Raises: TypeError: self has no child. """ if self.isarray: return self.plug.evaluateNumElements() if self.iscompound: return self.plug.numChildren() return 0 # Read write properties --- @property def value(self): """any: The value of the plug.""" return self._read() @value.setter def value(self, value): return self._write(value) @property def default(self): """any: The plug is default value.""" value = cmds.attributeQuery( self.attribute, node=self.node.name, listDefault=True, ) if isinstance(value, (list, tuple)) and len(value) == 1: value = value[0] return value @default.setter def default(self, value): cmds.addAttr(self.name, edit=True, defaultValue=value) # Private methods --- def _read(self): """Read the value from the plug.""" return cmds.getAttr(self.name) def _write(self, value): """Set the value of the plug.""" cmds.setAttr(self.name, value) # Data types class Point(object): """3D point.""" def __repr__(self): return "<Vector {}>".format(self) # Type conversion --- def __str__(self): return str(tuple(self)) def __init__(self, x=0, y=0, z=0, w=1): self._point = OpenMaya.MPoint(x, y, z, w) @classmethod def from_mpoint(cls, mpoint): """Create a point from a maya point.""" return cls(mpoint.x, mpoint.y, mpoint.z, mpoint.w) class Vector(object): """Three dimensional vector. Arguments: x (float): The x component of the vector. y (float): The y component of the vector. z (float): The z component of the vector. """ def __repr__(self): return "<Vector {}>".format(self) # Unary operators --- def __pos__(self): """Positive version of the vector (doesn't do anything).""" return Vector(+self.x, +self.y, +self.z) def __neg__(self): """Negate all components of the vector.""" return Vector(-self.x, -self.y, -self.z) def __abs__(self): """Convert all negative components to positive.""" return Vector(abs(self.x), abs(self.y), abs(self.z)) def __round__(self, ndigits=0): """Round all components of the vector.""" return Vector( round(self.x, ndigits), round(self.y, ndigits), round(self.z, ndigits), ) def __ceil__(self): """Converts all floating numbers to the next integer.""" return Vector( math.ceil(self.x), math.ceil(self.y), math.ceil(self.z), ) def __floor__(self): """Converts all floating numbers to the previous integer.""" return Vector( math.floor(self.x), math.floor(self.y), math.floor(self.z), ) def __trunc__(self): """Converts all floating numbers to the closest integer.""" return Vector( math.trunc(self.x), math.trunc(self.y), math.trunc(self.z), ) # Type conversion --- def __str__(self): return str(tuple(self)) # Arithmetic operators --- def __add__(self, vector): return self.from_mvector(self.vector + vector.vector) def __sub__(self, vector): return self.from_mvector(self.vector - vector.vector) def __mul__(self, scalar): """Compute the dot product.""" return self.from_mvector(self.vector * scalar) def __truediv__(self, scalar): return self.from_mvector(self.vector / scalar) def __xor__(self, vector): """Compute the cross product.""" return self.from_mvector(self.vector ^ vector.vector) # Comparison operators --- def __eq__(self, vector): """Return True if all components are identical.""" if isinstance(vector, (list, tuple)): return type(vector)(self) == vector return self.vector == vector.vector def __ne__(self, vector): """Return True if at least one of the components is not identical.""" if isinstance(vector, (list, tuple)): return type(vector)(self) != vector return self.vector != vector.vector # Emmulate container type --- def __len__(self): return 3 def __getitem__(self, key): """Allow access to components via the container synthax. Examples: >>> v = Vector(1, 2, 3) >>> v[0] == v["x"] == 1 True >>> v[1] == v["y"] == 2 True >>> v[2] == v["z"] == 3 True >>> v[:2] (1.0, 2.0) """ if key in (0, "x"): return self.x if key in (1, "y"): return self.y if key in (2, "z"): return self.z if isinstance(key, slice): return tuple(self[i] for i in range(*key.indices(len(self)))) msg = "Vector of length 3. The index '{}' is invalid." raise IndexError(msg.format(key)) def __setitem__(self, key, value): if key in (0, "x"): self.x = value elif key in (1, "y"): self.y = value elif key in (2, "z"): self.z = value elif isinstance(key, slice): for i, j in enumerate(range(*key.indices(len(self)))): self[j] = value[i] else: msg = "Vector of length 3. The index '{}' is invalid." raise IndexError(msg.format(key)) # Constructor --- def __copy__(self): """Create a copy of the vector.""" return type(self)(self.x, self.y, self.z) def __init__(self, x=0, y=0, z=0): self._vector = OpenMaya.MVector(x, y, z) # Class methods --- @classmethod def zero(cls): """Build a vector with all its components set to zero.""" return cls(0, 0, 0) @classmethod def one(cls): """Build a vector with all its components set to one.""" return cls(1, 1, 1) @classmethod def from_mvector(cls, mvector): """Create a vector from a maya vector.""" return cls(mvector.x, mvector.y, mvector.z) # Read properties --- @property def vector(self): """MVector: The maya vector object.""" return self._vector # Read write properties --- @property def x(self): """float: The x component of the vector.""" return self.vector.x @x.setter def x(self, value): self.vector.x = value @property def y(self): """float: The y component of the vector.""" return self.vector.y @y.setter def y(self, value): self.vector.y = value @property def z(self): """float: The z component of the vector.""" return self.vector.z @z.setter def z(self, value): self.vector.z = value @property def length(self): """float: The length of the vector.""" return self.vector.length() @length.setter def length(self, value): temp = self.normal() self.x = temp.x * value self.y = temp.y * value self.z = temp.z * value # Public methods --- def normal(self): """Normalized copy.""" return self.from_mvector(self.vector.normal()) def normalize(self): """Inplace normalization.""" self.vector.normalize() def decode(self, api=False): """Decode the vector.""" return self.vector if api else tuple(self) # Aliases --- magnitude = length cross = __xor__ dot = __mul__ copy = __copy__ class Matrix(object): """4x4 matrix.""" def __repr__(self): lines = "\n".join([" ".join(["{:7.3f}"] * 4)] * 4) return "<Matrix \n{}\n>".format(lines.format(*self.decode(True))) # Type conversion --- def __str__(self): return str(self.decode(flat=True)) # Arithmetic operators --- def __add__(self, matrix): return self.from_mmatrix(self.matrix + matrix.matrix) def __mul__(self, matrix): return self.from_mmatrix(self.matrix + matrix.matrix) def __sub__(self, matrix): return self.from_mmatrix(self.matrix + matrix.matrix) # Comparison operators --- def __eq__(self, matrix): return self.matrix == matrix.matrix def __ne__(self, matrix): return self.matrix != matrix.matrix def __ge__(self, matrix): return self.matrix >= matrix.matrix def __gt__(self, matrix): return self.matrix > matrix.matrix def __le__(self, matrix): return self.matrix <= matrix.matrix def __lt__(self, matrix): return self.matrix < matrix.matrix # Emmulate container type --- def __getitem__(self, key): if isinstance(key, tuple): return self.matrix.getElement(*key) return self.matrix[key] def __setitem__(self, key, value): if isinstance(key, tuple): self.matrix.setElement(*(key + (value,))) return self.matrix[key] = value # Constructor --- def __init__(self, *values): if values: values = [values] self._matrix = OpenMaya.MMatrix(*values) @property def transform(self): """MTransformationMatrix: The maya transformation matrix.""" return OpenMaya.MTransformationMatrix(self.matrix) # Class methods --- @classmethod def from_mmatrix(cls, mmatrix): """Create a matrix from a maya matrix.""" return cls(*list(mmatrix)) @classmethod def identity(cls): """Create a identity matrix.""" return cls.from_mmatrix(OpenMaya.MMatrix.kIdentity) @classmethod def compose(cls, translate=Vector(), rotate=Vector(), scale=Vector.one()): """Compose a matrix from translate, rotate and scale value.""" # Read properties --- @property def matrix(self): """MMatrix: The maya matrix.""" return self._matrix # Read write methods properties --- @property def translate(self): """Vector: The translation component.""" return Vector.from_mvector(self.transform.translation(Space.WORLD)) @translate.setter def translate(self, value): srt = self.transform.setTranslation(value.vector, Space.WORLD) self._matrix = srt.asMatrix() # Public methods --- def decompose(self): """Decompose matrix into translate, rotate and scale value.""" def inverse(self): """Inverted copy of the matrix. Returns: Matrix: The inverted matrix. """ return self.from_mmatrix(self.matrix.inverse()) def decode(self, flat=False): """Decode the matrix into a two-dimensional array. Arguments: flat (bool): Flatten the result into a single-dimensional array. Returns: tuple: The decoded matrix. """ matrix = [] for i in range(4): values = tuple(self.matrix.getElement(i, j) for j in range(4)) if flat: matrix.extend(values) else: matrix.append(values) return tuple(matrix) def asrotate(self): """Create a matrix with the rotate component.""" self.from_mmatrix(self.transform.asRotateMatrix()) def asscale(self): """Create a matrix with the scale component.""" self.from_mmatrix(self.transform.asScaleMatrix()) # Aliases --- __neg__ = inverse class EulerRotation(object): """3D rotation.""" XYZ = OpenMaya.MEulerRotation.kXYZ YZX = OpenMaya.MEulerRotation.kYZX ZXY = OpenMaya.MEulerRotation.kZXY XZY = OpenMaya.MEulerRotation.kXZY YXZ = OpenMaya.MEulerRotation.kYXZ ZYX = OpenMaya.MEulerRotation.kZYX def __init__(self, x=0, y=0, z=1, order=XYZ): self._rotation = OpenMaya.MEulerRotation(x, y, z, order) @classmethod def from_meuler_rotation(cls, rotation): """Create a euler rotation from a maya euler rotation.""" return cls(rotation.x, rotation.y, rotation.z, rotation.order) class Quaternion(object): """Quaternion math.""" def __init__(self, x=0, y=0, z=0, w=1): self._quaternion = OpenMaya.MQuaternion(x, y, z, w) @classmethod def from_mquaternion(cls, mquaternion): """Create a quaternion from a maya quaternion.""" return cls(mquaternion.x, mquaternion.y, mquaternion.z, mquaternion.w) # Utilities def _match_filter(node, filter, strict=False): """Check if the node fit with the specified filter.""" return filter is None or node.istype(filter, strict) def _wrap(func, *args, **kwargs): """To do.""" def _convert(func_, obj): try: return func_(obj) except BaseException: return obj # First, decode each arguments args_ = [_convert(decode, x) for x in args] kwargs_ = {k: _convert(decode, v) for k, v in kwargs.items()} # Execute the function returned = func(*args_, **kwargs_) if isinstance(returned, OpenMaya.MSelectionList): returned = returned.getSelectionStrings() # Finally encode the returned object(s) if isinstance(returned, _STRING_TYPES): return _convert(encode, returned) if isinstance(returned, (list, tuple, set)): return type(returned)(_convert(encode, x) for x in returned) return returned # MIT License # Copyright (c) 2022 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.
StarcoderdataPython
12834545
<reponame>vincenttran-msft/azure-sdk-for-python # coding=utf-8 # -------------------------------------------------------------------------- # # Copyright (c) Microsoft Corporation. All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the ""Software""), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # -------------------------------------------------------------------------- from typing import Any, TYPE_CHECKING import importlib from .._patch import DUPLICATE_PARAMS_POLICY from ._recovery_services_backup_passive_client import RecoveryServicesBackupPassiveClient as RecoveryServicesBackupPassiveClientGenerated if TYPE_CHECKING: from azure.core.credentials_async import AsyncTokenCredential class RecoveryServicesBackupPassiveClient(RecoveryServicesBackupPassiveClientGenerated): __doc__ = RecoveryServicesBackupPassiveClientGenerated.__doc__ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, base_url: str = "https://management.azure.com", **kwargs: Any ) -> None: per_call_policies = kwargs.pop("per_call_policies", []) try: per_call_policies.append(DUPLICATE_PARAMS_POLICY) except AttributeError: per_call_policies = [per_call_policies, DUPLICATE_PARAMS_POLICY] super().__init__( credential=credential, subscription_id=subscription_id, base_url=base_url, per_call_policies=per_call_policies, **kwargs ) # This file is used for handwritten extensions to the generated code. Example: # https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md def patch_sdk(): curr_package = importlib.import_module("azure.mgmt.recoveryservicesbackup.passivestamp.aio") curr_package.RecoveryServicesBackupPassiveClient = RecoveryServicesBackupPassiveClient
StarcoderdataPython
217685
from pychebfun import * import numpy as np import matplotlib.pyplot as plt # Construct a Python function f and the vector of points at which we want # to plot it. def f(x): return np.sin(6*x) + np.sin(30*np.exp(x)) x = np.linspace(-1,1,1000) # Plot f on the above points plt.plot(x,f(x),'k',linewidth=10,alpha=0.3, label="Actual $f$") # Construct a chebfun interpolation on 20, 40, and 60 points. Evaluate the # interpolations at the above vector of points and plot. interps = [20,40,60] ps = [chebfun(f,N=N) for N in interps] for p in ps: label = "Chebfun Interpolant: $N=%d$" % p.size() plot(p, linewidth=3, label=label) plt.legend()
StarcoderdataPython