|
--- |
|
library_name: xpmir |
|
--- |
|
# SPLADE_DistilMSE: SPLADEv2 trained with the distillated triplets |
|
Training data from: https://github.com/sebastian-hofstaetter/neural-ranking-kd |
|
|
|
From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models |
|
More Effective (Thibault Formal, Carlos Lassance, Benjamin Piwowarski, |
|
Stéphane Clinchant). 2022. https://arxiv.org/abs/2205.04733 |
|
|
|
|
|
|
|
|
|
|
|
## Using the model |
|
The model can be loaded with [experimaestro |
|
IR](https://experimaestro-ir.readthedocs.io/en/latest/) |
|
|
|
```py from xpmir.models import AutoModel |
|
from xpmir.models import AutoModel |
|
|
|
# Model that can be re-used in experiments |
|
model, init_tasks = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE") |
|
|
|
# Use this if you want to actually use the model |
|
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE", as_instance=True) |
|
model.rsv("walgreens store sales average", "The average Walgreens salary ranges...") |
|
``` |
|
|
|
## Results |
|
|
|
| Dataset | AP | P@20 | RR | RR@10 | nDCG | nDCG@10 | nDCG@20 | |
|
|----| ---|------|------|------|------|------|------| |
|
| msmarco_dev | 0.3642 | 0.0382 | 0.3693 | 0.3582 | 0.4879 | 0.4222 | 0.4458 | |
|
| trec2019 | 0.4896 | 0.7209 | 0.9496 | 0.9496 | 0.7253 | 0.7055 | 0.6926 | |
|
| trec2020 | 0.5026 | 0.6315 | 0.9483 | 0.9475 | 0.7273 | 0.6868 | 0.6627 | |
|
|