File size: 1,283 Bytes
aff456e
 
 
2e4ed76
 
5d52acd
2e4ed76
 
 
aff456e
 
 
 
8c8ced6
 
 
 
 
 
2f6d761
 
c25722a
 
8c8ced6
c25722a
57f68e5
c25722a
aff456e
 
 
8c8ced6
aff456e
 
c25722a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
library_name: xpmir
---
# SPLADE_DistilMSE: SPLADEv2 trained with the distillated triplets
Training data from: https://github.com/sebastian-hofstaetter/neural-ranking-kd

From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models
More Effective (Thibault Formal, Carlos Lassance, Benjamin Piwowarski,
Stéphane Clinchant). 2022. https://arxiv.org/abs/2205.04733





## Using the model
The model can be loaded with [experimaestro
IR](https://experimaestro-ir.readthedocs.io/en/latest/)

```py from xpmir.models import AutoModel
from xpmir.models import AutoModel

# Model that can be re-used in experiments
model, init_tasks = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE")

# Use this if you want to actually use the model
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE", as_instance=True)
model.rsv("walgreens store sales average", "The average Walgreens salary ranges...")
```

## Results

| Dataset  | AP | P@20 | RR | RR@10 | nDCG | nDCG@10 | nDCG@20  |
|----| ---|------|------|------|------|------|------|
| msmarco_dev | 0.3642 | 0.0382 | 0.3693 | 0.3582 | 0.4879 | 0.4222 | 0.4458 |
| trec2019 | 0.4896 | 0.7209 | 0.9496 | 0.9496 | 0.7253 | 0.7055 | 0.6926 |
| trec2020 | 0.5026 | 0.6315 | 0.9483 | 0.9475 | 0.7273 | 0.6868 | 0.6627 |