SPLADE_DistilMSE / README.md
bpiwowar's picture
Push model using huggingface_hub.
c25722a
|
raw
history blame
1.28 kB
metadata
library_name: xpmir

SPLADE_DistilMSE: SPLADEv2 trained with the distillated triplets

Training data from: https://github.com/sebastian-hofstaetter/neural-ranking-kd

From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective (Thibault Formal, Carlos Lassance, Benjamin Piwowarski, Stéphane Clinchant). 2022. https://arxiv.org/abs/2205.04733

Using the model

The model can be loaded with experimaestro IR

from xpmir.models import AutoModel

# Model that can be re-used in experiments
model, init_tasks = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE")

# Use this if you want to actually use the model
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE", as_instance=True)
model.rsv("walgreens store sales average", "The average Walgreens salary ranges...")

Results

Dataset AP P@20 RR RR@10 nDCG nDCG@10 nDCG@20
msmarco_dev 0.3642 0.0382 0.3693 0.3582 0.4879 0.4222 0.4458
trec2019 0.4896 0.7209 0.9496 0.9496 0.7253 0.7055 0.6926
trec2020 0.5026 0.6315 0.9483 0.9475 0.7273 0.6868 0.6627