|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- doof-ferb/vlsp2020_vinai_100h |
|
- doof-ferb/fpt_fosd |
|
- doof-ferb/infore1_25hours |
|
- doof-ferb/infore2_audiobooks |
|
- quocanh34/viet_vlsp |
|
- linhtran92/final_dataset_500hrs_wer0 |
|
- linhtran92/viet_youtube_asr_corpus_v2 |
|
- google/fleurs |
|
- mozilla-foundation/common_voice_16_1 |
|
- vivos |
|
language: ["vi"] |
|
metrics: ["wer"] |
|
library_name: transformers |
|
base_model: openai/whisper-tiny |
|
pipeline_tag: automatic-speech-recognition |
|
model-index: |
|
- name: doof-ferb/whisper-tiny-vi |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
dataset: |
|
type: mozilla-foundation/common_voice_16_1 |
|
name: Mozilla CommonVoice (Vietnamese) v16.1 |
|
config: vi |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 26.6 |
|
verified: false |
|
- task: |
|
type: automatic-speech-recognition |
|
dataset: |
|
type: google/fleurs |
|
name: Google FLEURS (Vietnamese) |
|
config: vi_vn |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 37.1 |
|
verified: false |
|
- task: |
|
type: automatic-speech-recognition |
|
dataset: |
|
type: vivos |
|
name: ĐHQG TPHCM VIVOS |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 18.7 |
|
verified: false |
|
--- |
|
|
|
whisper tiny fine-tuned on a very big collection of vietnamese speech datasets |
|
|
|
TODO: |
|
- [x] training then publish checkpoint |
|
- [x] evaluate WER on Common Voice & FLEURS & VIVOS |
|
- [ ] convert to `openai-whisper`, `whisper.cpp`, `faster-whisper` |
|
- [ ] convert to ONNX: to try https://github.com/k2-fsa/sherpa-onnx & https://github.com/zhuzilin/whisper-openvino |
|
- [ ] convert to TensorRT: https://github.com/openai/whisper/discussions/169 |
|
|
|
21k steps, warm-up 5%, batch size 16×2 (kaggle free T4×2) |
|
|
|
manually evaluate WER on test set - vietnamese part: |
|
| @ `float16` | `CommonVoice v16.1` | `FLEURS` | `VIVOS` | |
|
|---|---|---|---| |
|
| original `whisper-tiny` | >100% | 88.6% | 62.5% | |
|
| this model | 26.6% | 37.1% | 18.7% | |
|
|
|
all training + evaluation scripts are on my repo: https://github.com/phineas-pta/fine-tune-whisper-vi |
|
|
|
usage example: |
|
```python |
|
import torch |
|
from transformers import pipeline |
|
|
|
PIPE = pipeline(task="automatic-speech-recognition", model="doof-ferb/whisper-tiny-vi", device="cuda:0", torch_dtype=torch.float16) |
|
PIPE_KWARGS = {"language": "vi", "task": "transcribe"} |
|
|
|
PIPE("audio.mp3", generate_kwargs=PIPE_KWARGS)["text"] |
|
``` |