whisper-tiny-vi / README.md
doof-ferb's picture
Update README.md
a7f8c3d verified
metadata
license: apache-2.0
datasets:
  - doof-ferb/vlsp2020_vinai_100h
  - doof-ferb/fpt_fosd
  - doof-ferb/infore1_25hours
  - doof-ferb/infore2_audiobooks
  - quocanh34/viet_vlsp
  - linhtran92/final_dataset_500hrs_wer0
  - linhtran92/viet_youtube_asr_corpus_v2
  - google/fleurs
  - mozilla-foundation/common_voice_16_1
  - vivos
language:
  - vi
metrics:
  - wer
library_name: transformers
base_model: openai/whisper-tiny
pipeline_tag: automatic-speech-recognition
model-index:
  - name: doof-ferb/whisper-tiny-vi
    results:
      - task:
          type: automatic-speech-recognition
        dataset:
          type: mozilla-foundation/common_voice_16_1
          name: Mozilla CommonVoice (Vietnamese) v16.1
          config: vi
          split: test
        metrics:
          - type: wer
            value: 26.6
            verified: false
      - task:
          type: automatic-speech-recognition
        dataset:
          type: google/fleurs
          name: Google FLEURS (Vietnamese)
          config: vi_vn
          split: test
        metrics:
          - type: wer
            value: 37.1
            verified: false
      - task:
          type: automatic-speech-recognition
        dataset:
          type: vivos
          name: ĐHQG TPHCM VIVOS
          split: test
        metrics:
          - type: wer
            value: 18.7
            verified: false

whisper tiny fine-tuned on a very big collection of vietnamese speech datasets

TODO:

21k steps, warm-up 5%, batch size 16×2 (kaggle free T4×2)

manually evaluate WER on test set - vietnamese part:

@ float16 CommonVoice v16.1 FLEURS VIVOS
original whisper-tiny >100% 88.6% 62.5%
this model 26.6% 37.1% 18.7%

all training + evaluation scripts are on my repo: https://github.com/phineas-pta/fine-tune-whisper-vi

usage example:

import torch
from transformers import pipeline

PIPE = pipeline(task="automatic-speech-recognition", model="doof-ferb/whisper-tiny-vi", device="cuda:0", torch_dtype=torch.float16)
PIPE_KWARGS = {"language": "vi", "task": "transcribe"}

PIPE("audio.mp3", generate_kwargs=PIPE_KWARGS)["text"]