File size: 2,407 Bytes
788a049 49a2658 788a049 49a2658 ecb6411 49a2658 ecb6411 49a2658 ecb6411 a7f8c3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
datasets:
- doof-ferb/vlsp2020_vinai_100h
- doof-ferb/fpt_fosd
- doof-ferb/infore1_25hours
- doof-ferb/infore2_audiobooks
- quocanh34/viet_vlsp
- linhtran92/final_dataset_500hrs_wer0
- linhtran92/viet_youtube_asr_corpus_v2
- google/fleurs
- mozilla-foundation/common_voice_16_1
- vivos
language: ["vi"]
metrics: ["wer"]
library_name: transformers
base_model: openai/whisper-tiny
pipeline_tag: automatic-speech-recognition
model-index:
- name: doof-ferb/whisper-tiny-vi
results:
- task:
type: automatic-speech-recognition
dataset:
type: mozilla-foundation/common_voice_16_1
name: Mozilla CommonVoice (Vietnamese) v16.1
config: vi
split: test
metrics:
- type: wer
value: 26.6
verified: false
- task:
type: automatic-speech-recognition
dataset:
type: google/fleurs
name: Google FLEURS (Vietnamese)
config: vi_vn
split: test
metrics:
- type: wer
value: 37.1
verified: false
- task:
type: automatic-speech-recognition
dataset:
type: vivos
name: ĐHQG TPHCM VIVOS
split: test
metrics:
- type: wer
value: 18.7
verified: false
---
whisper tiny fine-tuned on a very big collection of vietnamese speech datasets
TODO:
- [x] training then publish checkpoint
- [x] evaluate WER on Common Voice & FLEURS & VIVOS
- [ ] convert to `openai-whisper`, `whisper.cpp`, `faster-whisper`
- [ ] convert to ONNX: to try https://github.com/k2-fsa/sherpa-onnx & https://github.com/zhuzilin/whisper-openvino
- [ ] convert to TensorRT: https://github.com/openai/whisper/discussions/169
21k steps, warm-up 5%, batch size 16×2 (kaggle free T4×2)
manually evaluate WER on test set - vietnamese part:
| @ `float16` | `CommonVoice v16.1` | `FLEURS` | `VIVOS` |
|---|---|---|---|
| original `whisper-tiny` | >100% | 88.6% | 62.5% |
| this model | 26.6% | 37.1% | 18.7% |
all training + evaluation scripts are on my repo: https://github.com/phineas-pta/fine-tune-whisper-vi
usage example:
```python
import torch
from transformers import pipeline
PIPE = pipeline(task="automatic-speech-recognition", model="doof-ferb/whisper-tiny-vi", device="cuda:0", torch_dtype=torch.float16)
PIPE_KWARGS = {"language": "vi", "task": "transcribe"}
PIPE("audio.mp3", generate_kwargs=PIPE_KWARGS)["text"]
``` |