content
stringlengths
0
894k
type
stringclasses
2 values
#!/usr/bin/python # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Created by: Anderson Brito # Email: [email protected] # # singleChain.py -> This code splits a multichain PDB file into its # multiple individual chains, saving them as output. # # Usage: python singleChain.py workingDirectory pdbFile # # Release date: 30/12/2017 # Last update: 30/12/2017 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # from Bio.PDB import PDBParser, PDBIO from sys import * import os dir = argv[1] inFile = argv[2] newname = '_chain' io = PDBIO() pdb = PDBParser().get_structure(newname, dir + inFile) for chain in pdb.get_chains(): io.set_structure(chain) io.save(dir + inFile.split('.')[0] + newname + chain.get_id() + ".pdb")
python
import random as python_random def safe_sample_edges(nodes, edges, sample_size): edges = set(edges) nodes = list(nodes) edge_label = {} node2edges = {node : [] for node in nodes} for edge in edges: node2edges[edge[0]].append(edge) node2edges[edge[1]].append(edge) edge_label[edge] = 'keep' def walk(source, visited): queue = set() if source not in visited: queue.add(source) while len(queue) > 0: current = queue.pop() visited.add(current) for edge in node2edges[current]: if edge_label[edge] == 'keep': if edge[0] == current: added = edge[1] else: added = edge[0] if added not in visited: queue.add(added) # choice giant component visited = set() walk(python_random.choice(nodes), visited) if len(visited) != len(nodes): print 'Graph is disconnected, will try to choice giant component' while len(visited) < 0.8 * len(nodes): visited = set() walk(python_random.choice(nodes), visited) print 'visited %d out of %d nodes' % (len(visited), len(nodes)) edges = set([edge for edge in edges if edge[0] in visited and edge[1] in visited]) nodes = list(visited) node2edges = {node : [] for node in nodes} for edge in edges: node2edges[edge[0]].append(edge) node2edges[edge[1]].append(edge) edge_label[edge] = 'keep' sampled_edges = set() iteration = 0 while len(sampled_edges) < sample_size: candidates = python_random.sample(edges - sampled_edges, sample_size - len(sampled_edges)) for edge in candidates: edge_label[edge] = 'candidate' visited = set() source = python_random.choice(nodes) while len(visited) < len(nodes): assert(source not in visited) walk(source, visited) for edge in candidates: if edge_label[edge] == 'candidate': if edge[0] not in visited and edge[1] in visited: edge_label[edge] = 'keep' source = edge[0] break elif edge[1] not in visited and edge[0] in visited: edge_label[edge] = 'keep' source = edge[1] break elif edge[0] in visited and edge[1] in visited: edge_label[edge] = 'remove' else: pass for edge in edges: if edge_label[edge] == 'remove': sampled_edges.add(edge) assert(edge_label[edge] != 'candidate') print 'Iteration %d, sampled edges %d' % (iteration, len(sampled_edges)) iteration += 1 return nodes, edges, sampled_edges
python
import json import os from pb.homing_motor import HomingMotor, build_from_config, build def init_motors(config: dict) -> list: try: x = build_from_config(config, 'x') except RuntimeError: x = build("x", dir_pin=5, step_pin=6, ms1_pin=26, ms2_pin=19, ms3_pin=13, sensor_pin=24, max_steps=770, inverted=False, pulse_delay=.001) try: y = build_from_config(config, 'y') except RuntimeError: y = build("y", dir_pin=27, step_pin=22, ms1_pin=9, ms2_pin=10, ms3_pin=11, sensor_pin=23, max_steps=905, inverted=False) try: z = build_from_config(config, 'z') except RuntimeError: z = build("z", dir_pin=1, step_pin=12, ms1_pin=21, ms2_pin=20, ms3_pin=16, sensor_pin=25, max_steps=4000, inverted=True, pulse_delay=.00001) if 'position' not in config: position = {} else: position = config['position'] for motor in [z, x, y]: pos_key = motor.get_name() if pos_key in position: motor.set_pos(position[pos_key]) else: print('{} position unknown. Calibrating...'.format(motor.get_name())) count = motor.go_home() print('{} moved {}/{} steps back to find MIN' .format(motor.get_name(), count, motor.get_step_size())) position[pos_key] = 0 return x, y, z def read_config(): try: home = os.path.expanduser('~/') with open(home + '.plotbot.json', 'r') as f: data = json.load(f) except FileNotFoundError: data = {} write_config(data) return data def write_config(data): home_dir = os.path.expanduser('~/') with open(home_dir + '.plotbot.json', 'w') as f: json.dump(data, f, indent=4, sort_keys=True) f.write('\n') def save(config: dict, x: HomingMotor, y: HomingMotor, z: HomingMotor): position = {} for m in [x, y, z]: position[m.get_name()] = m.get_pos() config[m.get_name()] = m.get_config() config['position'] = position write_config(config) def named_point(config: dict, motor_name: str, point_name: str): points = config['named-points'][motor_name] return points[point_name]
python
from django.conf.urls import url from dal_queryset_sequence.fields import QuerySetSequenceModelField from queryset_sequence import QuerySetSequence from dal_select2_queryset_sequence.widgets import QuerySetSequenceSelect2 from dal_select2_queryset_sequence.views import Select2QuerySetSequenceAutoView class Select2GenericForeignKeyModelField(QuerySetSequenceModelField): """ Field that generate automatically the view for the QuerySetSequenceSelect2 widget """ def __init__(self, *args, model_choice=None, field_id=None, **kwargs): self.field_id = field_id if field_id else id(self) if model_choice: self.model_choice = model_choice models_queryset = [model[0].objects.all() for model in model_choice] kwargs['queryset'] = QuerySetSequence(*models_queryset) super().__init__(*args, **kwargs) def as_url(self, form): url_name = '{}_autocomp_{}'.format(form.__name__, self.field_id) self.widget = QuerySetSequenceSelect2(url_name) # generate the class to work with multiple gfk (can't work on instance level) AutoView = type('Autoview{}{}'.format(form.__name__, self.field_id), (Select2QuerySetSequenceAutoView,), {'model_choice': self.model_choice}) # send to the view the model and filter list return url(r'^{}_{}_autocomp$'.format(form.__name__, self.field_id), AutoView.as_view(), name=url_name)
python
## # \file data_anonymizer.py # # \author Michael Ebner ([email protected]) # \date Dec 2016 # # Import libraries import string import random import string import cPickle import datetime import os import re # Import modules import pysitk.python_helper as ph class DataAnonymizer(object): def __init__(self, dictionary=None, identifiers=None, prefix_identifiers="", filenames=None): self._dictionary = dictionary self._identifiers = identifiers self._prefix_identifiers = prefix_identifiers self._filenames = filenames ## # Generate identifiers # \date 2016-12-06 18:30:56+0000 # # \param self The object # \param length The length # # \return { description_of_the_return_value } # def generate_identifiers(self, randomized=False): if self._filenames is None: raise ValueError("Filenames are not set yet") # Create random identifier based on string if randomized: # Define amount of digits of random identifier digits = 4 self._identifiers = [None] * len(self._filenames) for j in range(0, len(self._filenames)): self._identifiers[j] = ''.join(random.choice( string.ascii_uppercase + string.digits) for i in range(digits)) # Identifier based on alphabet else: # ['a', 'b', 'c', ...] alphabet_str = list(string.ascii_lowercase) # Set identifiers self._identifiers = alphabet_str[0:len(self._filenames)] ## # Sets/Gets the identifiers. # \date 2016-12-06 18:29:49+0000 # def set_identifiers(self, identifiers): self._identifiers = identifiers def get_identifiers(self): return self._identifiers def read_nifti_filenames_from_directory(self, directory): pattern = "([a-zA-Z0-9_]+)[.](nii.gz|nii)" p = re.compile(pattern) filenames = [p.match(f).group(1) for f in os.listdir(directory) if p.match(f)] self._filenames = filenames ## # Sets/Gets filenames # \date 2016-12-06 18:29:59+0000 # def set_filenames(self, filenames): self._filenames = filenames def get_filenames(self): return self._filenames ## # Set/Get the identifier prefix # \date 2016-12-06 18:30:19+0000 # def set_prefix_identifiers(self, prefix_identifiers): self._prefix_identifiers = prefix_identifiers def get_prefix_identifiers(self): return self._prefix_identifiers ## # Sets/Gets dictionary # \date 2016-12-06 18:29:59+0000 # def set_dictionary(self, dictionary): self._dictionary = dictionary def get_dictionary(self): return self._dictionary ## # Generate a random dictionary based on given filenames and identifiers # \date 2016-12-06 18:33:32+0000 # # \param self The object # \post self._dictionary created # def generate_randomized_dictionary(self): self._dictionary = {} if len(self._filenames) is not len(self._identifiers): raise ValueError("Length of filenames does not match identifiers") # Shuffle identifiers random.shuffle(self._identifiers) # Create dictionary for i in range(0, len(self._filenames)): basename = os.path.basename(os.path.basename(self._filenames[i])) filename, ext = ph.strip_filename_extension(basename) # Update identifier including the prefix self._identifiers[i] = "%s%s.%s" % ( self._prefix_identifiers, self._identifiers[i], ext ) # Create dictionary self._dictionary[self._identifiers[i]] = basename ## # Writes a dictionary. # \date 2016-12-06 19:26:22+0000 # # \param self The object # \param path_to_file The path to file (".o" extension) # \param filename_backup The filename backup # \param verbose The verbose # def write_dictionary(self, path_to_file, filename_backup=None, verbose=False): directory = os.path.dirname((path_to_file)) filename, ext = ph.strip_filename_extension( os.path.basename(path_to_file)) ph.create_directory(directory) # Write backup file (human readable) if filename_backup is None: path_to_file_backup = os.path.join( directory, "%s_backup_human_readable.txt" % filename) # Save randomized dictionary f = open(path_to_file, 'wb') cPickle.dump(self._dictionary, f, protocol=cPickle.HIGHEST_PROTOCOL) f.close() date = ph.get_current_date() time = ph.get_current_time() file_handle = open(path_to_file_backup, "w") text = "## Randomized Dictionary " + date + " " + time + "\n" file_handle.write(text) file_handle.close() # Print in an alphabetical order keys = sorted(self._dictionary.keys()) for i in range(0, len(self._filenames)): file_handle = open(path_to_file_backup, "a") text = keys[i] + " : " + self._dictionary[keys[i]] + "\n" file_handle.write(text) file_handle.close() if verbose: print("\t%s : %s" % (keys[i], self._dictionary[keys[i]])) ph.print_info("Anonymization dictionary written to '%s'" % path_to_file) ## # Reads a dictionary. # \date 2016-12-06 19:35:51+0000 # # \param self The object # \param path_to_file The path to file # def read_dictionary(self, path_to_file): # Read dictionary f = open(path_to_file, 'rb') self._dictionary = cPickle.load(f) f.close() # Retrieve identifiers and filenames self._identifiers = self._dictionary.keys() ## # Print dictionary line by line # \date 2016-12-06 19:47:12+0000 # # \param self The object # def print_dictionary(self): # Print in an alphabetical order print("Content of current dictionary:") keys = sorted(self._dictionary.keys()) for i in range(0, len(self._filenames)): print("\t%s : %s" % (keys[i], self._dictionary[keys[i]])) def anonymize_files(self, dir_output): ph.create_directory(dir_output) filenames_in = [os.path.basename(f) for f in self._filenames] for i in range(0, len(self._filenames)): filename_anonymized = self._identifiers[i] filename_original = self._dictionary[ self._identifiers[i]] try: index = filenames_in.index(filename_original) except ValueError: raise IOError( "Given filenames (--filenames) do not match the ones given in the dictionary") path_to_file_anon = os.path.join(dir_output, filename_anonymized) cmd = "cp -p " cmd += self._filenames[index] + " " cmd += path_to_file_anon + " " # print(cmd) ph.execute_command(cmd) ## # Reveals the anonymization and adds the original filename next to the # encryption. # \date 2016-12-06 20:27:23+0000 # # \param self The object # \param directory The directory # \param filename_extension The filename extension # # \return revealed filenames as list of strings # def reveal_anonymized_files(self, directory): ph.create_directory(directory) filenames_revealed = [] for i in range(0, len(self._filenames)): basename_anonymized = os.path.basename(self._filenames[i]) filename_anonymized = ph.strip_filename_extension(basename_anonymized)[0] try: basename_revealed = self._dictionary[basename_anonymized] except KeyError: raise IOError("Dictionary does not match given (anonymized) filenames") filename_revealed = "%s_%s" % ( filename_anonymized, basename_revealed) # filename_anonymized = self._identifiers[i] + filename_extension # filename_revealed = self._identifiers[i] + "_" + \ # self._dictionary[self._identifiers[i]] + filename_extension # filename_revealed = re.sub("_masked_srr", "", filename_revealed) # path_to_file_anon = os.path.join(directory, filename_anonymized) path_to_file_reve = os.path.join(directory, filename_revealed) # if not os.path.isfile(path_to_file_anon): # print("%s: Nothing to reveal" % (filename_anonymized)) cmd = "cp -p " cmd += self._filenames[i] + " " cmd += path_to_file_reve + " " # print(cmd) ph.execute_command(cmd) filenames_revealed.append(filename_revealed) return filenames_revealed
python
#!/usr/bin/env python3 import contextlib import functools import re import itertools import argparse import os import io import copy import json from importlib import resources from collections import UserDict from typing import Optional, Sequence, Mapping, Any, IO # TODO is this actually safe? import mktcmenu_schemas import jsonschema import yaml try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import SafeLoader as Loader, SafeDumper as Dumper yaml_load = functools.partial(yaml.load, Loader=Loader) yaml_dump = functools.partial(yaml.dump, Dumper=Dumper, default_flow_style=False) RE_AUTOID_DELIM = re.compile(r'[\W_]+') RE_CPP_NAME = re.compile(r'^[A-Za-z_][A-Za-z0-9_]*$') DESC_SUFFIX = '.tcmdesc.yaml' MAP_SUFFIX = '.tcmmap.yaml' SRC_HEADER = ''' /** * Automatically managed by mktcmenu. * * DO NOT manually edit this file. Changes made in this file will be overwritten * on next descriptor generation. */ '''.lstrip() def parse_args(): p = argparse.ArgumentParser() p.add_argument('desc', help='Menu descriptor file (*.tcmdesc.yaml).') p.add_argument('-e', '--eeprom-map', help='Override EEPROM mapping file location (defaults to <descriptor basename without suffix>.tcmmap.yaml).') p.add_argument('-c', '--eeprom-capacity', type=int, help='Set EEPROM capacity (only used during initialization/defragmentation of the mapping file).') p.add_argument('-o', '--output-dir', help='Output directory (defaults to <descriptor dirname>/gen).') p.add_argument('-s', '--source-dir', default='.', help='C++ source directory (defaults to .).') p.add_argument('-i', '--include-dir', default='.', help='Include directory (defaults to .).') p.add_argument('-p', '--pgmspace', action='store_true', default=False, help='Enable pgmspace support for some Arduino platforms (e.g. avr8 and esp8266).') return p, p.parse_args() # C++ code emitter helpers def emit_cppdef(buf, name, type_, is_static=False, is_const=False, is_constexpr=False, is_extern=False, nmemb=-1, init=False, extra_decl=tuple()): extern_kw = 'extern ' if is_extern else '' static_kw = 'static ' if is_static else '' const_kw = 'const ' if is_const else '' constexpr_kw = 'constexpr ' if is_constexpr else '' extra_decl_str = f' {" ".join(extra_decl)}' if len(extra_decl) != 0 else '' if nmemb < 0: nmemb_str = '' elif nmemb == 0: nmemb_str = '[]' else: nmemb_str = f'[{nmemb}]' buf.write(f'{extern_kw}{static_kw}{constexpr_kw}{const_kw}{type_} {name}{nmemb_str}{extra_decl_str}{" = " if init else ""}') def emit_cppeol(buf): buf.write(';\n') @contextlib.contextmanager def emit_cppobjarray(buf, multiline=False): buf.write('{') buf.write('\n' if multiline else ' ') try: yield buf finally: buf.write('\n' if multiline else ' ') buf.write('}') def emit_cppindent(buf, level=1): buf.write(' ' * level) def cppstr(str_): str_escaped = str(str_).replace('"', r'\"') return f'"{str_escaped}"' class EEPROMMap(UserDict): def __init__(self, capacity=0xffff, reserve=0): super().__init__() super().__setitem__('_reserved', {'offset': 0, 'size': 2}) self._auto_index = 2 self.capacity = capacity self.varstore_bar = self.capacity - reserve self.spare_segments = {} @property def auto_index(self): return self._auto_index def auto_allocate(self, name, size): max_space = min(self.varstore_bar, self.capacity) offset = self._auto_index if offset >= 0xffff or offset+size > 0xffff: raise RuntimeError('EEPROM address space exhausted. Please run defragmentation and bump EEPROM mapping version.') elif offset >= max_space or offset+size >= max_space: raise RuntimeError('No space left on EEPROM. Please run defragmentation and bump EEPROM mapping version.') allocated = {'offset': offset, 'size': size} super().__setitem__(name, allocated) self._auto_index += size return allocated def check_consistency(self): pass # TODO perform intersection to find holes/overlaps/oob allocations @classmethod def load(cls, fmap: IO[str]): data = yaml_load(fmap) obj = cls() obj.capacity = data['capacity'] obj.varstore_bar = data['varstore-bar'] obj._auto_index = data['auto-index'] if 'vars' in data: obj.data.clear() obj.data.update(data['vars']) if 'spare-segments' in data: obj.spare_segments.update(data['spare-segments']) return obj def save(self, fmap: IO[str]): data = { 'capacity': self.capacity, 'varstore-bar': self.varstore_bar, 'auto-index': self._auto_index, 'vars': self.data, } if len(self.spare_segments) != 0: data['spare-segments'] = self.spare_segments yaml_dump(data, fmap) # Data model for menu entries class MenuBaseType: auto_index = 1 serializable = False cpp_type_prefix = '' render_callback_parent = '' def __init__(self, props, alias): v = functools.partial(self._validate_entry, props) self._global_index = MenuBaseType.auto_index MenuBaseType.auto_index += 1 self.id_ = v('id') self.id_suffix = v('id-suffix') self.name = v('name', required=True) self.persistent = v('persistent', default=False) self.read_only = v('read-only', default=False) self.local_only = v('local-only', default=False) self.visible = v('visible', default=True) self.callback = v('callback') @staticmethod def _validate_entry(props, key, required=False, default=None, extra_validation=None): if required and key not in props: raise ValueError(f'Required property {key} is missing.') if required: value = props[key] else: value = props.get(key, default) if extra_validation is not None: extra_validation(value) return value def emit_code(self, ctx: 'CodeEmitterContext'): raise NotImplementedError() def get_serialized_size(self): raise NotImplementedError() def get_type_name(self): raise NotImplementedError() def emit_default_flags_block(self, buf, namespace: Sequence["MenuBaseType"]): id_ = self.generate_id() ns_id = ''.join(ns.generate_id() for ns in namespace) menu_name = f'menu{ns_id}{id_}' emit_cppindent(buf, level=1) if self.read_only: buf.write(f'{menu_name}.setReadOnly(true);') if self.local_only: buf.write(f'{menu_name}.setLocalOnly(true);') if not self.visible: buf.write(f'{menu_name}.setVisible(false);') def emit_simple_static_menu_item(self, ctx: 'CodeEmitterContext', minfo_extra: Sequence[Any], menu_item_extra: Sequence[Any], cpp_type_prefix: Optional[str] = None, cpp_type_prefix_minfo: Optional[str] = None, next_entry_namespace: Sequence["MenuBaseType"] = None): eeprom_offset = self.find_or_allocate_eeprom_space(ctx.eeprom_map) id_ = self.generate_id() ns_id = ''.join(ns.generate_id() for ns in ctx.namespace) if next_entry_namespace is None: next_ns_id = ns_id else: next_ns_id = ''.join(ns.generate_id() for ns in next_entry_namespace) minfo_name = f'minfo{ns_id}{id_}' menu_name = f'menu{ns_id}{id_}' cpp_type_prefix = self.__class__.cpp_type_prefix if cpp_type_prefix is None else cpp_type_prefix cpp_type_prefix_minfo = cpp_type_prefix if cpp_type_prefix_minfo is None else cpp_type_prefix_minfo minfo_type = f'{cpp_type_prefix_minfo}MenuInfo' menu_type = f'{cpp_type_prefix}MenuItem' next_name = f'menu{next_ns_id}{ctx.next_entry.generate_id()}' if ctx.next_entry is not None else None next_name_ref = f'&{next_name}' if next_name is not None else 'nullptr' minfo_builtin = (cppstr(self.name), self._global_index, hex(eeprom_offset),) menu_item_first = (f'&{minfo_name}',) menu_item_last = (next_name_ref,) emit_cppdef(ctx.bufsrc, minfo_name, minfo_type, is_const=True, is_static=True, extra_decl=('PROGMEM', ) if ctx.use_pgmspace else tuple(), init=True) with emit_cppobjarray(ctx.bufsrc): ctx.bufsrc.write(', '.join(map(str, itertools.chain(minfo_builtin, minfo_extra)))) emit_cppeol(ctx.bufsrc) emit_cppdef(ctx.bufsrc, menu_name, menu_type) ctx.bufsrc.write(f'({", ".join(map(str, itertools.chain(menu_item_first, menu_item_extra, menu_item_last)))})') emit_cppeol(ctx.bufsrc) ctx.bufsrc.write('\n') emit_cppdef(ctx.bufhdr, menu_name, menu_type, is_extern=True) emit_cppeol(ctx.bufhdr) return menu_name def emit_simple_dynamic_menu_item(self, ctx: 'CodeEmitterContext', menu_item_extra: Sequence[Any], name_prefix: Optional[str] = None, cpp_type_prefix: Optional[str] = None, render_callback_parent: Optional[str] = None, global_index_order: bool = 'after_callback', next_entry_namespace: Sequence["MenuBaseType"] = None, custom_callback_ref: Optional[str] = None): # global_index_order: first, after_callback, na eeprom_offset = self.find_or_allocate_eeprom_space(ctx.eeprom_map) id_ = self.generate_id() ns_id = ''.join(ns.generate_id() for ns in ctx.namespace) if next_entry_namespace is None: next_ns_id = ns_id else: next_ns_id = ''.join(ns.generate_id() for ns in next_entry_namespace) menu_name = f'menu{name_prefix or ""}{ns_id}{id_}' if custom_callback_ref is None: render_callback_name = f'fn{ns_id}{id_}RtCall' else: render_callback_name = custom_callback_ref cpp_type_prefix = self.__class__.cpp_type_prefix if cpp_type_prefix is None else cpp_type_prefix render_callback_parent = self.__class__.render_callback_parent if render_callback_parent is None else render_callback_parent menu_type = f'{cpp_type_prefix}MenuItem' next_name = f'menu{next_ns_id}{ctx.next_entry.generate_id()}' if ctx.next_entry is not None else None next_name_ref = f'&{next_name}' if next_name is not None else 'nullptr' if global_index_order == 'after_callback': menu_item_first = (render_callback_name, self._global_index, ) elif global_index_order == 'first': menu_item_first = (self._global_index, render_callback_name, ) elif global_index_order == 'na': menu_item_first = (render_callback_name, ) else: raise ValueError(f'Invalid global_index_order {global_index_order}') menu_item_last = (next_name_ref, ) if custom_callback_ref is None: callback_factory_params = ', '.join(map(str, ( render_callback_name, render_callback_parent, cppstr(self.name), hex(eeprom_offset), self.get_callback_ref() ))) ctx.bufsrc.write(f'RENDERING_CALLBACK_NAME_INVOKE({callback_factory_params})\n') emit_cppdef(ctx.bufsrc, menu_name, menu_type) ctx.bufsrc.write(f'({", ".join(map(str, itertools.chain(menu_item_first, menu_item_extra, menu_item_last)))})') emit_cppeol(ctx.bufsrc) ctx.bufsrc.write('\n') emit_cppdef(ctx.bufhdr, menu_name, menu_type, is_extern=True) emit_cppeol(ctx.bufhdr) return menu_name def get_callback_ref(self): return 'NO_CALLBACK' if self.callback is None or len(self.callback) == 0 else f'{self.callback}' def generate_id(self): if self.id_ is not None: id_ = self.id_ else: id_ = ''.join(w.capitalize() for w in RE_AUTOID_DELIM.split(self.name)) #id_ = f'{id_}{self.get_type_name()}{self.id_suffix if self.id_suffix is not None else ""}' id_ = f'{id_}{self.id_suffix if self.id_suffix is not None else ""}' return id_ def find_or_allocate_eeprom_space(self, eeprom_map: EEPROMMap): id_ = self.generate_id() if self.__class__.serializable and self.persistent and id_ in eeprom_map: offsize = eeprom_map[id_] if offsize['size'] == self.get_serialized_size(): return offsize['offset'] else: # TODO maybe give a warning about this? del eeprom_map[id_] new_offsize = eeprom_map.auto_allocate(id_, self.get_serialized_size()) return new_offsize['offset'] elif self.persistent: offsize = eeprom_map.auto_allocate(id_, self.get_serialized_size()) return offsize['offset'] else: return 0xffff def list_callbacks(self): return {('on_change', self.callback)} if self.callback is not None else set() class CodeEmitterContext: def __init__(self, bufsrc: IO[str], bufhdr: IO[str], eeprom_map: EEPROMMap, namespace: Sequence[MenuBaseType], next_entry: MenuBaseType, use_pgmspace: bool): self.bufsrc = bufsrc self.bufhdr = bufhdr self.eeprom_map = eeprom_map self.namespace = namespace self.next_entry = next_entry self.use_pgmspace = use_pgmspace class AnalogType(MenuBaseType): serializable = True cpp_type_prefix = 'Analog' def __init__(self, props, alias): super().__init__(props, alias) v = functools.partial(self._validate_entry, props) max_ = v('max', default=None) min_ = v('min', default=None) self.precision = v('precision', default=None) self.offset = v('offset', default=None) self.divisor = v('divisor', default=1) self.unit = v('unit') if self.offset is None and min_ is None: self.offset = 0 elif self.offset is None: self.offset = min_ elif self.offset is not None and min_ is not None: raise ValueError('Offset and min are mutually exclusive.') if self.precision is None and max_ is None: raise ValueError(f'One of precision or max must be specified.') elif self.precision is None: self.precision = max_ - self.offset elif self.precision is not None and max_ is not None: raise ValueError('Precision and max are mutually exclusive.') def get_serialized_size(self): return 2 def get_type_name(self): return 'I' def emit_code(self, ctx: CodeEmitterContext): self.emit_simple_static_menu_item(ctx, ( self.precision, self.get_callback_ref(), self.offset, self.divisor, cppstr(self.unit) if self.unit is not None else cppstr(""), ), ( 0, )) class LargeNumberType(MenuBaseType): serializable = True cpp_type_prefix = 'EditableLargeNumber' render_callback_parent = 'largeNumItemRenderFn' def __init__(self, props, alias): super().__init__(props, alias) v = functools.partial(self._validate_entry, props) self.decimal_places = v('decimal-places', default=0) self.length = v('length', default=12) self.signed = v('signed', default=False) def get_serialized_size(self): # TODO is this 7 or 8? # https://github.com/davetcc/tcMenuLib/blob/3d4ae0621df020c3919e3512a5c33b9b5a1cef6f/src/EepromItemStorage.cpp#L37-L41 # The source shows 7 (sign byte+12 nibbles) but the editor shows 8 return 7 def get_type_name(self): return f'LN' def emit_code(self, ctx: CodeEmitterContext): self.emit_simple_dynamic_menu_item(ctx, ( self.length, self.decimal_places, str(self.signed).lower(), ), global_index_order='after_callback') class FloatType(MenuBaseType): cpp_type_prefix = 'Float' def __init__(self, props, alias): super().__init__(props, alias) v = functools.partial(self._validate_entry, props) self.decimal_places = v('decimal-places', default=2) def get_serialized_size(self): raise ValueError('FloatType is not serializable') def get_type_name(self): return f'F' def emit_code(self, ctx: CodeEmitterContext): self.emit_simple_static_menu_item(ctx, ( self.decimal_places, self.get_callback_ref() ), tuple()) class EnumType(MenuBaseType): serializable = True cpp_type_prefix = 'Enum' def __init__(self, props, alias): super().__init__(props, alias) v = functools.partial(self._validate_entry, props) self.options = v('options', required=True) def get_serialized_size(self): return 2 def get_type_name(self): return 'E' def emit_code(self, ctx: CodeEmitterContext): ns_id = ''.join(ns.generate_id() for ns in ctx.namespace) enum_str_name = f'enumStr{ns_id}{self.generate_id()}' # Write enum item strings for i, str_ in enumerate(self.options): emit_cppdef(ctx.bufsrc, f'{enum_str_name}_{i}', 'char', is_const=True, is_static=True, nmemb=0, init=True, extra_decl=('PROGMEM', ) if ctx.use_pgmspace else tuple()) ctx.bufsrc.write(cppstr(str_)) emit_cppeol(ctx.bufsrc) nmemb = len(self.options) emit_cppdef(ctx.bufsrc, enum_str_name, 'char * const', is_const=True, is_static=True, nmemb=nmemb, init=True, extra_decl=('PROGMEM', ) if ctx.use_pgmspace else tuple()) with emit_cppobjarray(ctx.bufsrc, multiline=True): ctx.bufsrc.write(',\n'.join(f' {enum_str_name}_{i}' for i in range(nmemb))) emit_cppeol(ctx.bufsrc) # ew self.emit_simple_static_menu_item(ctx, ( nmemb - 1, self.get_callback_ref(), enum_str_name, ) ,(0, )) class ScrollChoiceType(MenuBaseType): serializable = True cpp_type_prefix = 'ScrollChoice' render_callback_parent = 'enumItemRenderFn' def __init__(self, props, alias): super().__init__(props, alias) v = functools.partial(self._validate_entry, props) self.item_size = v('item-size', required=True) self.items = v('items', required=True) self.data_source = v('data-source', required=True, extra_validation=self._validate_data_source) self._mode, self._address = self.data_source.split(':') def get_serialized_size(self): return 2 def get_type_name(self): return 'SC' @staticmethod def _validate_data_source(ds): _valid_entry = ('eeprom', 'array-in-eeprom', 'ram', 'array-in-ram', 'custom-renderfn') ds_split = ds.split(':') if len(ds_split) != 2: raise ValueError(f'Invalid ScrollChoiceType data-source {ds} (more than 1 delimiter)') mode, _address = ds_split if mode not in _valid_entry: raise ValueError(f'Invalid ScrollChoiceType mode {mode} (expecting one of {_valid_entry})') def emit_code(self, ctx: CodeEmitterContext): if self._mode in ('eeprom', 'array-in-eeprom'): custom_callback = None menu_item_extra = (0, ctx.eeprom_map.spare_segments[self._address], self.item_size, self.items) elif self._mode in ('ram', 'array-in-ram'): custom_callback = None menu_item_extra = (0, self._address, self.item_size, self.items) emit_cppdef(ctx.bufsrc, self._address, 'char *', is_const=True, is_extern=True) emit_cppeol(ctx.bufsrc) else: custom_callback = self._address menu_item_extra = (0, self.items) self.emit_simple_dynamic_menu_item(ctx, menu_item_extra, global_index_order='first', custom_callback_ref=custom_callback) def list_callbacks(self): result = super().list_callbacks() if self._mode == 'custom-renderfn': result.add(('on_render', self._address)) return result class BooleanType(MenuBaseType): serializable = True cpp_type_prefix = 'Boolean' def __init__(self, props, alias): super().__init__(props, alias) v = functools.partial(self._validate_entry, props) _default = { 'boolean': 'true-false', 'bool': 'true-false', 'truefalse': 'true-false', 'switch': 'on-off', 'onoff': 'on-off', 'yesno': 'yes-no' } self.response = v('response', default=_default[alias], extra_validation=self._validate_response) def get_serialized_size(self): return 1 def get_type_name(self): return 'B' def emit_code(self, ctx: CodeEmitterContext): _response_syms = { 'true-false': 'NAMING_TRUE_FALSE', 'on-off': 'NAMING_ON_OFF', 'yes-no': 'NAMING_YES_NO', } self.emit_simple_static_menu_item(ctx, ( 1, self.get_callback_ref(), _response_syms[self.response], ) ,('false', )) @staticmethod def _validate_response(response): _valid_entry = ('true-false', 'yes-no', 'on-off') if response not in _valid_entry: raise ValueError(f'Invalid ScrollChoiceType response {response} (expecting one of {_valid_entry})') class SubMenuType(MenuBaseType): cpp_type_prefix = 'Sub' def __init__(self, props, alias): super().__init__(props, alias) v = functools.partial(self._validate_entry, props) self.items = tuple(map(parse_tcdesc_yaml_object, v('items', required=True))) self.auth = v('auth', default=False) def get_serialized_size(self): raise ValueError('SubMenuType is not serializable') def get_type_name(self): return f'M' def emit_code(self, ctx: CodeEmitterContext): # TODO subctx = copy.copy(ctx) subctx.namespace = ctx.namespace + (self, ) for i, subitem in enumerate(self.items): subctx.next_entry = self.items[i+1] if len(self.items) > i+1 else None subitem.emit_code(subctx) backctx = copy.copy(ctx) backctx.next_entry = self.items[0] back_name = self.emit_simple_dynamic_menu_item( backctx, tuple(), # Try to avoid name collision name_prefix='back', cpp_type_prefix='Back', render_callback_parent='backSubItemRenderFn', global_index_order='na', next_entry_namespace=subctx.namespace, ) self.emit_simple_static_menu_item(ctx, ( 0, self.get_callback_ref(), ), (f'&{back_name}', )) def list_callbacks(self): callback_list = super().list_callbacks() for item in self.items: callback_list.update(item.list_callbacks()) return callback_list class ActionType(MenuBaseType): cpp_type_prefix = 'Action' def get_serialized_size(self): raise ValueError('ActionType is not serializable') def emit_code(self, ctx: CodeEmitterContext): # seriously having a codegen is not an excuse for inconsistent API design self.emit_simple_static_menu_item(ctx, ( 0, self.get_callback_ref(), ), tuple(), cpp_type_prefix_minfo='Any') YAML_TAG_SUFFIXES: Mapping[str, MenuBaseType] = { 'analog': AnalogType, 'fixed': AnalogType, 'number': AnalogType, 'large-number': LargeNumberType, 'bcd': LargeNumberType, 'float': FloatType, 'enum': EnumType, 'option': EnumType, 'static-option': EnumType, 'scroll-choice': ScrollChoiceType, 'scroll': ScrollChoiceType, 'dynamic-option': ScrollChoiceType, 'boolean': BooleanType, 'bool': BooleanType, 'truefalse': BooleanType, 'switch': BooleanType, 'onoff': BooleanType, 'yesno': BooleanType, 'submenu': SubMenuType, 'menu': SubMenuType, 'action': ActionType, # 'programmable-menu': ListType, # 'list': ListType, # 'multi-part': MultiPartType, # 'struct': MultiPartType, # 'str': MultiPartType, # 'ipv4': MultiPartType, # 'time-24h': MultiPartType, # 'time-12h': MultiPartType, # 'date': MultiPartType, # 'color': ColorType, # 'rgb': ColorType, # 'rgba': ColorType, } #def tcdesc_multi_constructor(loader: yaml.Loader, tag_suffix, node): # if tag_suffix in YAML_TAG_SUFFIXES: # node_parsed = loader.construct_mapping(node) # else: # raise RuntimeError(f'Unknown TCMenu menu entry type {tag_suffix}') # return YAML_TAG_SUFFIXES[tag_suffix](node_parsed, alias=tag_suffix) #yaml.add_multi_constructor('!tcm/', tcdesc_multi_constructor, Loader=Loader) def parse_tcdesc_yaml_object(obj: Mapping): if obj['type'] in YAML_TAG_SUFFIXES: constructor = YAML_TAG_SUFFIXES[obj['type']] return constructor(obj, obj['type']) else: raise RuntimeError(f'Unknown TCMenu menu entry type {obj["type"]}') # TODO change paths to path-like? def do_codegen(desc_path: str, out_dir: str, source_dir: str, include_dir: str, instance_name: str, eeprom_map: EEPROMMap, use_pgmspace: bool): # Load schema with resources.open_text(mktcmenu_schemas, 'tcmdesc.schema.json') as f: desc_schema = json.load(f) full_source_dir = os.path.normpath(os.path.join(out_dir, source_dir)) full_include_dir = os.path.normpath(os.path.join(out_dir, include_dir)) os.makedirs(full_source_dir, exist_ok=True) if full_source_dir != full_include_dir: os.makedirs(full_include_dir, exist_ok=True) menu_header_name = f'{instance_name}.h' menu_source_name = f'{instance_name}_desc.cpp' callback_header_name = f'{instance_name}_callback.h' extra_header_name = f'{instance_name}_extra.h' menu_header_path = os.path.join(out_dir, include_dir, menu_header_name) menu_source_path = os.path.join(out_dir, source_dir, menu_source_name) callback_header_path = os.path.join(out_dir, include_dir, callback_header_name) extra_header_path = os.path.join(out_dir, include_dir, extra_header_name) with open(desc_path, 'r') as f: desc = yaml_load(f) jsonschema.validate(desc, desc_schema) bufsrc = io.StringIO() bufhdr = io.StringIO() namespace = tuple() callback_list = set() with open(menu_source_path, 'w') as bufsrc, open(menu_header_path, 'w') as bufhdr: # Output header bufsrc.write(SRC_HEADER) bufhdr.write(SRC_HEADER) bufsrc.write('\n') bufhdr.write('\n') # Output includes if use_pgmspace: bufsrc.write('#include <Arduino.h>\n') bufsrc.write('#include <tcMenu.h>\n') bufsrc.write(f'#include "{menu_header_name}"\n\n') bufhdr.write('#pragma once\n') bufhdr.write('#include <tcMenu.h>\n\n') bufhdr.write(f'#include "{callback_header_name}"\n') bufhdr.write(f'#include "{extra_header_name}"\n\n') # Output application info emit_cppdef(bufsrc, 'applicationInfo', 'ConnectorLocalInfo', is_const=True, extra_decl=('PROGMEM', ) if use_pgmspace else tuple(), init=True) with emit_cppobjarray(bufsrc): bufsrc.write(f'{cppstr(desc["name"])}, {cppstr(desc["uuid"])}') emit_cppeol(bufsrc) bufsrc.write('\n') emit_cppdef(bufhdr, 'applicationInfo', 'ConnectorLocalInfo', is_const=True, is_extern=True) emit_cppeol(bufhdr) ctx = CodeEmitterContext(bufsrc, bufhdr, eeprom_map, namespace, None, use_pgmspace) parsed_items = tuple(map(parse_tcdesc_yaml_object, desc['items'])) # Output menu descriptor for i, item in enumerate(parsed_items): ctx.next_entry = parsed_items[i+1] if len(parsed_items) > i+1 else None item.emit_code(ctx) callback_list.update(item.list_callbacks()) # Define a getter for the root of menu descriptor bufhdr.write(f'constexpr MenuItem *getRootMenuItem() {{ return &menu{parsed_items[0].generate_id()}; }}\n') bufhdr.write('\n') # Define menu property initializer emit_cppdef(bufsrc, 'setupMenuDefaults', 'void') bufsrc.write('() ') with emit_cppobjarray(bufsrc, multiline=True): for item in parsed_items: item.emit_default_flags_block(bufsrc, namespace) emit_cppdef(bufhdr, 'setupMenuDefaults', 'void') bufhdr.write('()') emit_cppeol(bufhdr) # Generate callback header with open(callback_header_path, 'w') as bufcb: bufcb.write(SRC_HEADER) bufcb.write('\n') bufcb.write('#pragma once\n') bufcb.write('#include <tcMenu.h>\n') bufcb.write('#include <stdint.h>\n\n') callback_overlap_check = {} for cb_type, cb_ref in callback_list: if cb_ref in callback_overlap_check: raise RuntimeError(f'Callback {cb_ref} conflicts with other callbacks.') callback_overlap_check[cb_ref] = cb_type if cb_type == 'on_change': bufcb.write(f'void {cb_ref}(int id);\n') elif cb_type == 'on_render': bufcb.write(f'int {cb_ref}(RuntimeMenuItem* item, uint8_t row, RenderFnMode mode, char* buffer, int bufferSize);\n') with open(extra_header_path, 'w') as bufext: # TODO: Make this dynamic? bufext.write(SRC_HEADER) bufext.write('\n') bufext.write('#pragma once\n') bufext.write('#include <ScrollChoiceMenuItem.h>\n') bufext.write('#include <EditableLargeNumberMenuItem.h>\n') if __name__ == '__main__': p, args = parse_args() desc_dirname, desc_basename = os.path.split(args.desc) is_standard_suffix = len(desc_basename) > len(DESC_SUFFIX) and desc_basename.endswith(DESC_SUFFIX) desc_instance_name = desc_basename[:-len(DESC_SUFFIX)] if is_standard_suffix else os.path.splitext(desc_basename)[0] out_dir = args.output_dir if args.output_dir is not None else os.path.join(desc_dirname, 'gen') if args.eeprom_map is not None: eeprom_map_file = args.eeprom_map else: eeprom_map_file = os.path.join(desc_dirname, f'{desc_instance_name}{MAP_SUFFIX}') if os.path.isfile(eeprom_map_file): with open(eeprom_map_file, 'r') as f: eeprom_map = EEPROMMap.load(f) if args.eeprom_capacity is not None and args.eeprom_capacity != eeprom_map.capacity: print('WARNING: Ignoring --eeprom-capacity and using the capacity specified in the mapping file.') else: if args.eeprom_capacity is None: p.error('--eeprom-capacity must be specified when initializing the mapping file.') eeprom_map = EEPROMMap(args.eeprom_capacity) do_codegen(args.desc, out_dir, args.source_dir, args.include_dir, desc_instance_name, eeprom_map, args.pgmspace) with open(eeprom_map_file, 'w') as f: eeprom_map.save(f)
python
#! /usr/bin/env python3 import subprocess import sys from config_loader import ConfigLoader from write_tfvars import TfVarWriter from setup_class_loader import load_class """ Setup.py sets up and runs the initial terraform deployment. It's broken into 3 parts: 1) Load and Validate Inputs 2) Run Setup scripts 3) Terraform Init/Plan/Apply The script generates a .tfvars file that is used to deploy via terraform. """ ############################################################################### # Load and Validate Inputs ############################################################################### ## Load the Config and Definitions config_loader = ConfigLoader() is_valid, validation_errors = config_loader.load_config() if not is_valid: new_line = '\n\t' exit(f"Found the following validation errors: {new_line}{f'{new_line}'.join(validation_errors)}") ############################################################################### # Load Setup Class for the specific template directory ############################################################################### template_dir = config_loader.get_template_dir() Setup = load_class(template_dir) template_setup = Setup(config_loader) template_setup.setup_log_file() current_user_function = subprocess.run([ "/bin/bash", "-c", f"source cloud/azure/bin/lib.sh && azure::get_current_user_id" ], capture_output=True) if current_user_function: current_user = current_user_function.stdout.decode("ascii") image_tag = config_loader.get_config_var("IMAGE_TAG") log_args = f"\"{image_tag}\" {current_user}" try: template_setup.pre_terraform_setup() ############################################################################### # Terraform Init/Plan/Apply ############################################################################### terraform_tfvars_path = f"{template_dir}/{config_loader.tfvars_filename}" # Write the passthrough vars to a temporary file tf_var_writter = TfVarWriter(terraform_tfvars_path) conf_variables = config_loader.get_terraform_variables() tf_var_writter.write_variables(conf_variables) # Note that the -chdir means we use the relative paths for # both the backend config and the var file terraform_init_args = [ "terraform", f"-chdir={template_dir}", "init", ] if config_loader.use_backend_config(): terraform_init_args.append(f"-backend-config={config_loader.backend_vars_filename}") subprocess.check_call(terraform_init_args) subprocess.check_call([ "terraform", f"-chdir={template_dir}", "apply", f"-var-file={config_loader.tfvars_filename}" ]) ############################################################################### # Post Run Setup Tasks (if needed) ############################################################################### if template_setup.requires_post_terraform_setup(): template_setup.post_terraform_setup() subprocess.check_call([ "terraform", f"-chdir={template_dir}", "apply", f"-var-file={config_loader.tfvars_filename}" ]) subprocess.run([ "/bin/bash", "-c", f"source cloud/shared/bin/lib.sh && LOG_TEMPFILE={template_setup.log_file_path} log::deploy_succeeded {log_args}" ], check=True) except: subprocess.run([ "/bin/bash", "-c", f"source cloud/shared/bin/lib.sh && LOG_TEMPFILE={template_setup.log_file_path} log::deploy_failed {log_args}" ], check=True) print("Deployment Failed :(", file=sys.stderr) finally: template_setup.cleanup()
python
def spam(divide_by): return 42 / divide_by print(spam(0)) """ Traceback (most recent call last): File "/Users/moqi/Documents/Code/automate-the-boring-stuff/c03/p053_zero_devide.py", line 5, in <module> print(spam(0)) File "/Users/moqi/Documents/Code/automate-the-boring-stuff/c03/p053_zero_devide.py", line 2, in spam return 42 / divide_by ZeroDivisionError: division by zero """
python
class Line(object): def __init__(self, line_num, line_real,line_altered): self.num = line_num self.real = line_real self.altered = line_altered def __repr__(self): return str(self.num)+": "+self.real.rstrip()
python
## To use this example: # curl -d '{"name": "John Doe"}' localhost:8000 from sanic import Sanic from sanic.response import html from jinja2 import Template template = Template('Hello {{ name }}!') app = Sanic(__name__) # # 异步响应: # - 使用 jinja2 模板: # @app.route('/') async def test(request): data = request.json return html(template.render(**data)) # 模板页面渲染 app.run(host="0.0.0.0", port=8000)
python
# -*- coding=utf-8 -*- import random import os,pickle import pygame from globals import * from matrix import Matrix class VirtualHintBox(object): pid = 0 block_manage=None next_block= None def __init__(self, pid, block_manage): #print pid self.pid = pid self.block_manage = block_manage def take_block(self): block = self.next_block if block is None: # make first block block = self.block_manage.get_block(self.pid) self.next_block = self.block_manage.get_block(self.pid) return block def paint(self): pass class HintBox(VirtualHintBox): def __init__(self, bg, block_size, position, block_manage): super(HintBox, self).__init__(0, block_manage) self._bg = bg; self._x, self._y, self._width, self._height = position self._block_size = block_size self._bgcolor = [0, 0, 0] self.block_manage = block_manage def paint(self): mid_x = self._x + self._width / 2 pygame.draw.line(self._bg, self._bgcolor, [mid_x, self._y], [mid_x, self._y + self._height], self._width) bz = self._block_size if self.next_block: arr = self.next_block.get_rect_arr() minx, miny = arr[0] maxx, maxy = arr[0] for x, y in arr: if x < minx: minx = x if x > maxx: maxx = x if y < miny: miny = y if y > maxy: maxy = y w = (maxx - minx) * bz h = (maxy - miny) * bz cx = self._width / 2 - w / 2 - minx * bz - bz / 2 cy = self._height / 2 - h / 2 - miny * bz - bz / 2 for rect in arr: x, y = rect pygame.draw.line(self._bg, self.next_block.color, [self._x + x * bz + cx + bz / 2, self._y + cy + y * bz], [self._x + x * bz + cx + bz / 2, self._y + cy + (y + 1) * bz], bz) pygame.draw.rect(self._bg, [255, 255, 255], [self._x + x * bz + cx, self._y + y * bz + cy, bz + 1, bz + 1], 1) class ScoreBox(object): total_score = 0 high_score = 0 db_file = 'tetris.db' def __init__(self, bg, block_size, position): self._bg = bg; self._x, self._y, self._width, self._height = position self._block_size = block_size self._bgcolor = [0, 0, 0] if os.path.exists(self.db_file): self.high_score = pickle.load(open(self.db_file, 'rb')) def paint(self): myfont = get_user_font(24) white = 255, 255, 255 textImage = myfont.render(LanguageLib.instance().get_text('high') + ': %06d' % (self.high_score), True, white) self._bg.blit(textImage, (self._x, self._y - 10)) textImage = myfont.render(LanguageLib.instance().get_text('score') + ':%06d' % (self.total_score), True, white) self._bg.blit(textImage, (self._x, self._y + 20)) def add_score(self, score): self.total_score += score if self.total_score > self.high_score: self.high_score = self.total_score pickle.dump(self.high_score, open(self.db_file, 'wb+')) class VirtualScoreBox(object): total_score = 0 def __init__(self, bg, position): self._bg = bg; self._x, self._y, self._width, self._height = position self._bgcolor = [0, 0, 0] def paint(self): myfont = get_user_font(16) white = 255, 255, 255 textImage = myfont.render(LanguageLib.instance().get_text('player2 score') + ':%06d' % (self.total_score), True, white) self._bg.blit(textImage, (self._x, self._y)) def add_score(self, score): self.total_score += score class Panel(object): attack_num = 0 block_id = 0 rect_arr = [] moving_block = None hint_box = None score_box = None def __init__(self, bg, block_size, position): self._bg = bg; self._x, self._y, self._width, self._height = position self._block_size = block_size self._bgcolor = [0, 0, 0] self.block_id = 0 self.rect_arr = [] self.moving_block = None def get_rect_matrix(self): matrix = Matrix(ROW_COUNT, COL_COUNT) for rect_info in self.rect_arr: matrix.set_val(rect_info.x, rect_info.y, 1) return matrix def add_block(self, block): #print block.get_rect_arr() for x, y in block.get_rect_arr(): self.rect_arr.append(RectInfo(x, y, block.color)) #print len(self.rect_arr) def create_move_block(self): self.block_id += 1 block = self.hint_box.take_block() # block = create_block() block.move(COL_COUNT / 2 - 2, -2) # move block to top center self.moving_block = block def check_overlap(self, diffx, diffy, check_arr=None): if check_arr is None: check_arr = self.moving_block.get_rect_arr() for x, y in check_arr: for rect_info in self.rect_arr: if x + diffx == rect_info.x and y + diffy == rect_info.y: return True return False def control_block(self, diffx, diffy): if self.moving_block.can_move(diffx, diffy) and not self.check_overlap(diffx, diffy): self.moving_block.move(diffx, diffy) def change_block(self): if self.moving_block: new_arr = self.moving_block.change() if new_arr and not self.check_overlap(0, 0, check_arr=new_arr): self.moving_block.rect_arr = new_arr def move_block(self): if self.moving_block is None: self.create_move_block() if self.moving_block.can_move(0, 1) and not self.check_overlap(0, 1): self.moving_block.move(0, 1) return 1 else: self.add_block(self.moving_block) self.check_clear() for rect_info in self.rect_arr: if rect_info.y < 0: return 9 # gameover self.create_move_block() return 2 def check_clear(self): tmp_arr = [[] for i in range(20)] for rect_info in self.rect_arr: if rect_info.y < 0: return tmp_arr[rect_info.y].append(rect_info) clear_num = 0 clear_lines = set([]) y_clear_diff_arr = [[] for i in range(20)] for y in range(19, -1, -1): if len(tmp_arr[y]) == 10: clear_lines.add(y) clear_num += 1 y_clear_diff_arr[y] = clear_num if clear_num > 0: new_arr = [] for y in range(19, -1, -1): if y in clear_lines: continue tmp_row = tmp_arr[y] y_clear_diff = y_clear_diff_arr[y] for rect_info in tmp_row: # new_arr.append([x,y+y_clear_diff]) new_arr.append(RectInfo(rect_info.x, rect_info.y + y_clear_diff, rect_info.color)) self.rect_arr = new_arr score = SCORE_MAP[clear_num - 1] self.score_box.add_score(score) def get_attach_num(self): if self.score_box.total_score / 1000 > self.attack_num: self.attack_num += 1 return 1 else: return 0 def add_hinder(self): hinder_lines = 2 for tmp in self.rect_arr: tmp.y -= hinder_lines for y in range(hinder_lines): arr = range(10) for i in range(5): n = random.randint(0, len(arr) - 1) arr.pop(n) for x in arr: self.rect_arr.append(RectInfo(x, 19 - y, [0, 0, 255])) def paint(self): mid_x = self._x + self._width / 2 pygame.draw.line(self._bg, self._bgcolor, [mid_x, self._y], [mid_x, self._y + self._height], self._width) bz = self._block_size for rect_info in self.rect_arr: x = rect_info.x y = rect_info.y pygame.draw.line(self._bg, rect_info.color, [self._x + x * bz + bz / 2, self._y + y * bz], [self._x + x * bz + bz / 2, self._y + (y + 1) * bz], bz) pygame.draw.rect(self._bg, [255, 255, 255], [self._x + x * bz, self._y + y * bz, bz + 1, bz + 1], 1) if self.moving_block: for rect in self.moving_block.get_rect_arr(): x, y = rect pygame.draw.line(self._bg, self.moving_block.color, [self._x + x * bz + bz / 2, self._y + y * bz], [self._x + x * bz + bz / 2, self._y + (y + 1) * bz], bz) pygame.draw.rect(self._bg, [255, 255, 255], [self._x + x * bz, self._y + y * bz, bz + 1, bz + 1], 1) self.score_box.paint() self.hint_box.paint()
python
from app import celery from celery.utils.log import get_task_logger from bridge.bridge_manager import BridgeManager from models.modelDetail import AiModelDetail from models.receiveJobs import ReceiveJobs from models.category import Category from models.subcategory import SubCategory from models.compliance import ShelfCompliance from utilities.category_Detail import CategoryDetail from utilities.category_Response import CategoryResponse from utilities.brand_Response import BrandResponse from utilities.complex_encoder import ComplexEncoder from utilities.rectangle2 import Rectangle2 from utilities.point import Point from utilities.geometery_operation import is_point_within_dist_of_rect from utilities.geometery_operation import rectangle_contain from utilities.compliance_meta import ComplianceMetaData from utilities.constant import JOB_STATUS_DONE, JOB_STATUS_ERROR, JOB_STATUS_INSERTED, JOB_STATUS_PENDING, JOB_STATUS_COMMUNICATION_ERROR from utilities.common import get_url import requests import json logger = get_task_logger(__name__) def build_shelf_compliance(model_response_json, shelf_compliance): # collection of brand with coordinates # sample data formate # [item_or_brand_name, x, y, h, w] brand_tags_xy_data = model_response_json["MetaData"] print_debug_detail(f"{brand_tags_xy_data}") compliance_collection = [] shelf_coordinate_object = None for each_shelf in shelf_compliance: compliance_items = each_shelf.complianceItem.split(",") print_debug_info(f"Shelf Name and Tag:- {each_shelf.shelfName, each_shelf.shelfTag}") #get main shelf coordinate detail for single_item_coordinate in brand_tags_xy_data: if single_item_coordinate[0] == each_shelf.shelfTag: print_debug_info(f"Actual Shelf Name is:- {single_item_coordinate[0]}") shelf_coordinate_object = single_item_coordinate break print_debug_detail(f"Shelf object -> {shelf_coordinate_object}") if shelf_coordinate_object is not None: #creat shelf Rectangle object #logger.info(f"{shelf_coordinate_object[2]} {float(shelf_coordinate_object[2]+10)}") shelf_rectangle = Rectangle2(shelf_coordinate_object[1]-1,float(shelf_coordinate_object[2]-1),shelf_coordinate_object[3],shelf_coordinate_object[4]) #logger.info(f"finding shelf rectangle {shelf_rectangle.x,shelf_rectangle.y,shelf_rectangle.w,shelf_rectangle.h}") find_item_inside_shelf = [] #using loop searh compliance item in the shelf for each_item_coordinate in brand_tags_xy_data: predicted_item_name = each_item_coordinate[0] print_debug_info(f"Inner item Name:- {predicted_item_name}") #creat searchable item Rectangle object #find_rectangle = Rectangle(each_item_coordinate[1],each_item_coordinate[2],each_item_coordinate[3],each_item_coordinate[4]) #logger.info(f"item object coordinate -> {find_rectangle.x,find_rectangle.y,find_rectangle.w,find_rectangle.h}") item_xy_point = Point(each_item_coordinate[1], each_item_coordinate[2]) print_debug_detail(f"Inner item x,y value {each_item_coordinate[1]}, {each_item_coordinate[2]}") #perform search is_rect_inside = is_point_within_dist_of_rect(shelf_rectangle, item_xy_point, dist=1) print_debug_detail(f"Item found inside:- {is_rect_inside}") if is_rect_inside: find_item_inside_shelf.append(predicted_item_name) print_debug_info(f"Inside item found length: {len(find_item_inside_shelf)}") if len(find_item_inside_shelf) > 0: #total compliance item formula using intersection of two sets comp_list_as_set = set(compliance_items) intersection = comp_list_as_set.intersection(find_item_inside_shelf) final_intersected_compliance_items = list(intersection) print_debug_info(f"compliance items list {final_intersected_compliance_items}") total_compliance_items_count = len(final_intersected_compliance_items) total_shelf_items_count = len(find_item_inside_shelf) total_ratio = total_compliance_items_count / total_shelf_items_count compliance_metadata = ComplianceMetaData(find_item_inside_shelf, final_intersected_compliance_items, each_shelf.shelfName, each_shelf.shelfTag, total_compliance_items_count, total_shelf_items_count, total_ratio, each_shelf.complianceLevel) compliance_collection.append(compliance_metadata) else: logger.info(f"No Compliance item found") print_debug_detail(f"loop-end") else: logger.info(f"Shelf not found") print_debug_detail(f"main-loop-end") json_string = json.dumps([ob.__dict__ for ob in compliance_collection], cls=ComplexEncoder) print_debug_detail(f"Compliance Json data") print_debug_detail(f"{json_string}") print_debug_info(f"exit from build_shelf_compliance") return json_string def build_analytics(category_detail_obj, model_response_json): actual_group_data = None actual_group_name = [] #build analytics information category_response = [] #build topline information topline_response = [] group_data = model_response_json['GroupData'] print_debug_info(f"length of group_data is {len(group_data)}") for v in group_data: actual_group_data = json.loads(v) for each_key in actual_group_data: actual_group_name.append(each_key['BRAND']) for cat_obj in category_detail_obj: tages = cat_obj.tages.split(",") not_found_brand = list(set(tages)-set(actual_group_name)) found_brand = list(set(tages)-set(not_found_brand)) temp_tags_counter = [] for fb in found_brand: ag_data_item = next(item for item in actual_group_data if item["BRAND"] == fb) temp_tags_counter.append(BrandResponse(ag_data_item['BRAND'], ag_data_item['COUNT'])) for nfb in not_found_brand: temp_tags_counter.append(BrandResponse(nfb,0)) if cat_obj.dataContainer == "Analytics": print_debug_detail(" Is Analytics Type ") category_response.append(CategoryResponse(cat_obj.category_name , cat_obj.subcategory_name, temp_tags_counter, cat_obj.show_type)) else: print_debug_detail(" Is TopLine Type ") topline_response.append(CategoryResponse(cat_obj.category_name , cat_obj.subcategory_name, temp_tags_counter, cat_obj.show_type)) json_string = json.dumps([ob.__dict__ for ob in category_response], cls=ComplexEncoder) topline_json_string = json.dumps([ob.__dict__ for ob in topline_response], cls=ComplexEncoder) print_debug_detail(f"Analytic Json data") print_debug_detail(f"{json_string}") print_debug_detail(f"Topline analytic Json data") print_debug_detail(f"{topline_json_string}") print_debug_info(f"exit from build_analytics") return json_string, topline_json_string def build_analytics_and_compliance(category_detail_obj, model_response, shelf_compliance): # temp for dev or testing #response_obj = requests.get("http://knowhow.markematics.net/ReceiveJobs/GetJobDetailById/2") #logger.info(response_obj.text) # for dev or testing #model_response_json = json.loads(response_obj.text) # for live model_response_json = json.loads(model_response) print_debug_detail("model_response json loaded") print_debug_detail(f"{model_response_json}") #build analytic json print_debug_info("Calling build analytics") analytic_json, topline_json_string = build_analytics(category_detail_obj, model_response_json) #build compliance json print_debug_info("Calling build compliance") compliance_json = build_shelf_compliance(model_response_json, shelf_compliance) # here rebuild the json object using [GroupData, UngroupData, BrandName, Compliance, Analytics] objects print_debug_info("Compiling Compliance & Analytics Json response") json_response = json.dumps({"GroupData":model_response_json['GroupData'],"UngroupData":model_response_json['UngroupData'],"BrandName":model_response_json['BrandName'],"Compliance":compliance_json,"Analytics":analytic_json,"Topline":topline_json_string}) print_debug_detail(json_response) return json_response def print_debug_info(data): is_debug = True if is_debug: logger.info(data) def print_debug_detail(data): is_debug = True if is_debug: logger.info(data) @celery.task() def process_image(job_id, model_id, project_id): model_detail_obj = None received_job_obj = None category_detail_obj = [] print_debug_info("process_image_call") bridge = BridgeManager().get_Instance().get_Bridge() print_debug_info("getting_model_detail_call") model_details = bridge.get_db().get_session().query(AiModelDetail).filter(AiModelDetail.modelID == model_id) for model in model_details: print_debug_info(f"{model.id} {model.port} {model.url} {model.version} {model.modelJson} {model.status} {model.modelID}") model_detail_obj = model logger.info(model_detail_obj) print_debug_info("getting_job_detail") received_jobs = bridge.get_db().get_session().query(ReceiveJobs).filter(ReceiveJobs.id == job_id) for job in received_jobs: print_debug_info(f"{job.unProcessedImage} {job.uri}") received_job_obj = job logger.info(received_job_obj) print_debug_info("category_and_subcategory_loading") category_obj = bridge.get_db().get_session().query(Category).filter(Category.projectId == project_id) print_debug_info("shelf_compliance_loading") shelf_compliance_obj = bridge.get_db().get_session().query(ShelfCompliance).filter(ShelfCompliance.projectId == project_id) for category in category_obj: print_debug_info(f"{category.categoryName}") sub_category_obj = bridge.get_db().get_session().query(SubCategory).filter(SubCategory.categoryId == category.id) for sub_category in sub_category_obj: print_debug_info(f"{sub_category.name}") category_detail_obj.append(CategoryDetail(category.id, category.categoryName, category.dataContainer, category.categoryDescription, category.showType, sub_category.id, sub_category.name, sub_category.tages)) # temp dev or testing analytics #build_analytics_and_compliance(category_detail_obj,"",shelf_compliance_obj) print_debug_info("checking_pending_job_status") if received_job_obj != None: # Checking received job status if received_job_obj.requestStatus.lower() == JOB_STATUS_INSERTED:#len(received_job_obj.requestStatus.lower()) > 0: print_debug_info(received_job_obj.requestStatus) print_debug_info(f"Updating status value from Inserted to Pending against {job_id}") # Update received job status into PENDING bridge.get_db().get_session().query(ReceiveJobs).filter_by(id = job_id).update({ReceiveJobs.requestStatus:JOB_STATUS_PENDING}) bridge.get_db().get_session().commit() # Generating image processing request url request_url = get_url(model_detail_obj.url, model_detail_obj.port, "upload-image") print_debug_info(f"Generating image processing request url {request_url}") try: # Sending image to model for analysis headers = {'Content-type': 'application/json'} request_data = {'data_url':received_job_obj.uri,'job_id':job_id} print_debug_info(f"Request data inside {request_data}") response_obj = requests.post(request_url, data = json.dumps(request_data), headers=headers) print_debug_info(response_obj.text) if response_obj.status_code == 200: # build live analytic print_debug_info("> Sending Request for Complianc & Analysis Building") analytic_data = build_analytics_and_compliance(category_detail_obj, response_obj.text, shelf_compliance_obj) # Update received job status into DONE bridge.get_db().get_session().query(ReceiveJobs).filter_by(id = job_id).update({ReceiveJobs.requestStatus:JOB_STATUS_DONE,ReceiveJobs.dataResponse:analytic_data}) bridge.get_db().get_session().commit() elif response_obj.status_code == 400 or response_obj.status_code == 500: # Update received job status into ERROR bridge.get_db().get_session().query(ReceiveJobs).filter_by(id = job_id).update({ReceiveJobs.requestStatus:JOB_STATUS_ERROR,ReceiveJobs.dataResponse:response_obj.status_code}) bridge.get_db().get_session().commit() except: # Update received job status into ERROR bridge.get_db().get_session().query(ReceiveJobs).filter_by(id = job_id).update({ReceiveJobs.requestStatus:JOB_STATUS_COMMUNICATION_ERROR,ReceiveJobs.dataResponse:"Communication Error"}) bridge.get_db().get_session().commit() else: print_debug_info(f"Job does not proceed {received_job_obj.requestStatus}") print_debug_info("updating_pending_job_status")
python
class Agent: def __init__(self, size, velocity, k): self.size = size self.velocity = velocity self.k = k def model(self, q, t, u): pass def controller(self, q, qref, uref): pass def bloating(self, n): pass def run_model(self, q0, t, qref, uref): pass
python
from path import Path
python
""" Task to orchestrate scaling for a ECS Service """ import boto3 from decorators import with_logging ecs = boto3.client("ecs") @with_logging def handler(event, context): cluster = event["Cluster"] max_tasks = event["DeletionTasksMaxNumber"] queue_size = event["QueueSize"] service = event["DeleteService"] desired_count = min(queue_size, max_tasks) ecs.update_service(cluster=cluster, service=service, desiredCount=desired_count) return desired_count
python
from .interactive import Interactive from .hardcoded import Hardcoded
python
# # Copyright (C) 2018 ETH Zurich and University of Bologna # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: Germain Haugou, ETH ([email protected]) from bridge.default_debug_bridge import * import time JTAG_RISCV_IRLEN = 5 JTAG_RISCV_BYPASS = 0x1f JTAG_SOC_CONFREG_ID = 6 JTAG_SOC_CONFREG = (JTAG_SOC_CONFREG_ID << 5) | (JTAG_RISCV_BYPASS << 0) JTAG_SOC_CONFREG_WIDTH = 8 + 1 JTAG_SOC_IRLEN = 4 JTAG_IRLEN = JTAG_SOC_IRLEN + JTAG_RISCV_IRLEN class vega_debug_bridge(debug_bridge): def __init__(self, config, binaries=[], verbose=False): super(vega_debug_bridge, self).__init__(config=config, binaries=binaries, verbose=verbose) self.start_cores = False self.first_reset = True self.boot_mode = None def reset(self, stop=True): if self.first_reset: # The first time, we need to wait enough time to let the voltage # regulator converge self.get_cable().chip_reset(True, 5000000) self.first_reset = False # Reset the chip and tell him we want to load via jtag # We keep the reset active until the end so that it sees # the boot mode as soon as it boots from rom # Use bootsel pad to tell boot code to stop if stop: self.get_cable().chip_config(1) # Due to voltage convergence and so on we need to wait # 200ms when the reset is low #self.get_cable().chip_reset(True, 200000000) self.get_cable().chip_reset(True, 100000000) # It also takes some time before the JTAG is ready self.get_cable().chip_reset(False, 4000000) #self.get_cable().jtag_reset(True) self.get_cable().jtag_reset(False) return 0 def wait_eoc(self): while True: value = self.read_32(0x1a1040a0) if (value >> 31) == 1: return value & 0x7fffffff time.sleep(0.1) def jtag_hyper_boot(self): self.get_cable().jtag_set_reg(JTAG_SOC_CONFREG, JTAG_SOC_CONFREG_WIDTH, ((((2 << 0) | (1<<3)) << 1) | 1) << 1, JTAG_IRLEN) def jtag_mram_boot(self): self.get_cable().jtag_set_reg(JTAG_SOC_CONFREG, JTAG_SOC_CONFREG_WIDTH, ((((2 << 0) | (2<<3)) << 1) | 1) << 1, JTAG_IRLEN) def jtag_spim_boot(self): self.get_cable().jtag_set_reg(JTAG_SOC_CONFREG, JTAG_SOC_CONFREG_WIDTH, ((((2 << 0) | (0<<3)) << 1) | 1) << 1, JTAG_IRLEN) def load_jtag(self, binaries): if self.verbose: print ('Loading binary through jtag') #if self.stop(): # return -1 # Load the binary through jtag if self.verbose: print ("Loading binaries") for binary in binaries: if self.load_elf(binary=binary): return 1 return 0 def start(self): # First stall the core self.write_dmi(0x10, 0x00000001) # DMACTIVE self.write_dmi(0x10, 0x03E00001) # HART SEL self.write_dmi(0x10, 0x83E00001) # HALT REQ # Wait until it is halted while True: status = self.read_dmi(0x11) if ((status >> 9) & 1) == 1: break # Set PC self.write_dmi(0x04, 0x1c008080) # PC into DATA0 self.write_dmi(0x17, 0x00230000 | 0x7b1) # Abstract cmd to set DPC # Resume the core self.write_dmi(0x10, 0x43E00001) return 0 def clear(self): self.get_cable().chip_config(0) def wait_available(self): boot_mode = 0 if self.boot_mode is not None: boot_mode = (self.boot_mode << 1) | 1 # Loop until we see bit 0 becoming 1, this will indicate that the # target is ready to accept bridge requests while True: reg_value = self.get_cable().jtag_get_reg(JTAG_SOC_CONFREG, JTAG_SOC_CONFREG_WIDTH, boot_mode, JTAG_IRLEN) >> 1 rt_req = (reg_value >> 1) & 0x7 if rt_req == 4 or rt_req == 1: break if self.verbose: print ("Target is available") def write_dmi(self, reg, value): self.write_reg_int(reg, value, 4, 0) # DMACTIVE def read_dmi(self, reg): return self.read_reg_int(reg, 4, 0) # DMACTIVE def stop(self): return 0
python
from .ranges import * # NOQA
python
from spade.behaviour import OneShotBehaviour from spade.message import Message from driftage.base.conf import getLogger class FastNotifyContacts(OneShotBehaviour): _logger = getLogger("fast_notify_contacts") async def run(self): """[summary] """ for contact in self.agent.available_contacts.copy(): msg = Message( to=contact, body=self.template.body ) await self.send(msg) self._logger.debug(f"Sent {self.template.body} to all contacts")
python
""" vg plot command make plot of flybys using SPICE data To use, need SPICE kernels - download the following files and put them in the /kernels folder: ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/lsk/naif0012.tls ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/jup100.bsp ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/sat132.bsp ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/ura083.bsp ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/a_old_versions/nep016-6.bsp ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00010.tpc ftp://naif.jpl.nasa.gov/pub/naif/VOYAGER/kernels/spk/Voyager_1.a54206u_V0.2_merged.bsp ftp://naif.jpl.nasa.gov/pub/naif/VOYAGER/kernels/spk/Voyager_2.m05016u.merged.bsp """ import os import os.path import math import spiceypy as spice import config import lib import libimg import libspice def loadSpice(): """ load SPICE kernels (data files) see above for sources """ spice.furnsh('kernels/naif0012.tls') # leap second data (5kb) spice.furnsh('kernels/Voyager_1.a54206u_V0.2_merged.bsp') # voyager 1 data (6mb) spice.furnsh('kernels/Voyager_2.m05016u.merged.bsp') # voyager 2 data (6mb) spice.furnsh('kernels/jup100.bsp') # jupiter and satellite data (20mb) spice.furnsh('kernels/sat132.bsp') # saturn and satellite data (63mb) spice.furnsh('kernels/ura083.bsp') # uranus and satellite data (81mb) spice.furnsh('kernels/nep016-6.bsp') # neptune and satellite data (9mb) spice.furnsh('kernels/pck00010.tpc') # planetary constants (radius etc) (120kb) def plotMap(flyby, positions, minPos): "plot the map for the given flyby" import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt bodies = flyby.bodies planet = bodies[0] observer = bodies[1] title = observer + ' at ' + planet # title = observer + ' at ' + planet + ' (' + flyby.date[:4] + ')' axisMax = flyby.axisMax # km bgcolor = '0.05' # grayscale 0-1 labelcolor = '0.9' # grayscale 0-1 labelsize = 12 # pts labeloffset = int(2 * axisMax / 25) # km # set font etc # see http://matplotlib.org/users/customizing.html # mpl.rcParams['legend.fontsize'] = 10 # mpl.rcParams.update({'font.size': 22}) mpl.rcParams['font.size'] = 20 mpl.rcParams['font.family'] = 'Futura-Light' #axes.titlesize : large # fontsize of the axes title #axes.labelsize : medium # fontsize of the x any y labels #xtick.labelsize : medium # fontsize of the tick labels #legend.fontsize : large #figure.dpi : 80 # figure dots per inch mpl.rcParams['figure.dpi'] = 80 # figure dots per inch mpl.rcParams['figure.figsize'] = (8.26,8) # figure size in inches mpl.rcParams['figure.edgecolor'] = 'black' # figure edgecolor mpl.rcParams['savefig.edgecolor'] = 'black' # figure edgecolor when saving mpl.rcParams['savefig.dpi'] = 125 #savefig.facecolor : white # figure facecolor when saving fig = plt.figure() ax = fig.gca(projection='3d',axisbg=bgcolor) ax.set_title(title,color='w') # color of bodies, in order moon = '#ff8000' colors = ['r','g',moon,moon,moon,moon,moon,moon,moon] dots = [] dotlabels = [] # draw planet color = colors[0] dot, = ax.plot([0],[0],[0],color+'o') dots.append(dot) dotlabels.append(bodies[0]) # draw orbit lines and voyager path i = 0 for body in bodies: rows = [row[i] for row in positions] x = [row[0] for row in rows] y = [row[1] for row in rows] z = [row[2] for row in rows] # draw line linestyle = 'dotted' if body==observer else 'solid' ax.plot(x, y, z, color='0.3', linestyle=linestyle) # draw a dot for moon at closest approach try: pos = minPos[body] x = [pos[0]] y = [pos[1]] z = [pos[2]] color = colors[i] dot, = ax.plot(x,y,z,color=color, marker='o') dots.append(dot) dotlabels.append(body) except: pass i += 1 # add legend # plt.legend(dots, dotlabels, numpoints=1) # label axes # ax.set_xlabel('x') # ax.set_ylabel('y') # ax.set_zlabel('z') # make it a cube # ax.set_xlim([-axisMax,axisMax]) # ax.set_ylim([-axisMax,axisMax]) # ax.set_zlim([-axisMax,axisMax]) cx,cy,cz = flyby.axisCenter ax.set_xlim([cx-axisMax,cx+axisMax]) ax.set_ylim([cy-axisMax,cy+axisMax]) ax.set_zlim([cz-axisMax,cz+axisMax]) # label planet, voyager, moons # labelcolor = 'w' ax.text(labeloffset,labeloffset,labeloffset,planet,size=labelsize,color=labelcolor) for key in minPos: pos = minPos[key] x = pos[0] y = pos[1] z = pos[2] ax.text(x+labeloffset,y+labeloffset,z+labeloffset,key,size=labelsize,color=labelcolor) # draw an arrow at end of voyager's trajectory to indicate direction # from stackoverflow from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d class Arrow3D(FancyArrowPatch): def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) FancyArrowPatch.draw(self, renderer) i = 1 # voyager rows = [row[i] for row in positions] x = [row[0] for row in rows] y = [row[1] for row in rows] z = [row[2] for row in rows] dx=[x[-2],x[-1]] dy=[y[-2],y[-1]] dz=[z[-2],z[-1]] a = Arrow3D(dx,dy,dz, mutation_scale=20, lw=1, arrowstyle="-|>", color="w") ax.add_artist(a) # each system will have its own view azim, elev = flyby.azimuthElevation ax.view_init(azim=azim, elev=elev) # no axes plt.axis('off') # save image without white border # see http://stackoverflow.com/questions/11837979/ # removing-white-space-around-a-saved-image-in-matplotlib filename = 'plot-' + planet + '-' + observer.replace(' ','') + '.jpg' filepath = lib.getFolder('plot') + filename plt.savefig(filepath, bbox_inches='tight', pad_inches=0.0) # plt.show() def vgPlot(): "create plot for each system flyby" loadSpice() #. loop through these, save each file to stepxx_maps/map-Jupiter-Voyager1.jpg etc #. crop each file when done to a square #. vg titles could use these for titlepage for each system flyby #. might as well draw info on maps here - Voyager 1 at Jupiter, date, etc - futura font # note: azimuthElevation values were determined with the plot viewer class Flyby: bodies = None date = None ndays = None axisMax = 1e6 # km axisCenter = (0,0,0) azimuthElevation = None flybys = [] flyby = Flyby() flyby.bodies = ['Jupiter', 'Voyager 1', 'Io', 'Europa', 'Ganymede', 'Callisto'] flyby.date = "1979-03-05" flyby.ndays = 4 flyby.axisMax = 1e6 # km flyby.axisCenter = (0.6e6,-0.2e6,0) flyby.azimuthElevation = (-100,48) flybys.append(flyby) flyby = Flyby() flyby.bodies = ['Saturn', 'Voyager 1','Titan','Enceladus','Rhea','Mimas','Tethys','Dione'] flyby.date = "1980-11-12" flyby.ndays = 3 flyby.axisMax = 0.6e6 # km flyby.axisCenter = (-0.4e6,-0.4e6,0) flyby.azimuthElevation = (80,97) flybys.append(flyby) flyby = Flyby() flyby.bodies = ['Jupiter', 'Voyager 2', 'Io', 'Europa', 'Ganymede', 'Callisto'] flyby.date = "1979-07-09" flyby.ndays = 5 flyby.axisMax = 1e6 # km flyby.axisCenter = (-0.2e6,0,0) flyby.azimuthElevation = (102,107) flybys.append(flyby) flyby = Flyby() flyby.bodies = ['Saturn','Voyager 2','Titan','Enceladus','Rhea','Mimas','Tethys','Dione'] flyby.date = "1981-08-26" flyby.ndays = 2 flyby.axisMax = 0.6e6 # km flyby.axisCenter = (-0.2e6,0.1e6,0) flyby.azimuthElevation = (172,82) flybys.append(flyby) flyby = Flyby() flyby.bodies = ['Uranus','Voyager 2','Ariel','Miranda','Oberon','Titania','Umbriel'] flyby.date = "1986-01-25" flyby.ndays = 2 flyby.axisMax = 0.4e6 # km flyby.azimuthElevation = (-82,-7) flybys.append(flyby) flyby = Flyby() flyby.bodies = ['Neptune','Voyager 2','Triton'] # proteus not in kernels flyby.date = "1989-08-25" flyby.ndays = 2 flyby.axisMax = 1e6 # km flyby.azimuthElevation = (-62,40) flybys.append(flyby) for flyby in flybys: planet = flyby.bodies[0] observer = flyby.bodies[1] print 'Generating plot for %s at %s' % (observer, planet) nsteps = 100 # plot density # get ephemeris time around closest approach (seconds since J2000) etClosest = int(spice.str2et(flyby.date)) etStart = int(etClosest - flyby.ndays * 24*60*60 / 2) etEnd = int(etClosest + flyby.ndays * 24*60*60 / 2) etStep = int((etEnd - etStart) / nsteps) # initialize data structs ets = [] positions = [] minDist = {} minPos = {} for body in flyby.bodies: minDist[body] = 9e15 # loop over time range, get positions for et in xrange(etStart, etEnd, etStep): row = [] for body in flyby.bodies: # get position of body (voyager or moon) relative to planet (eg Jupiter). # position is an (x,y,z) coordinate in the given frame of reference. frame = 'J2000' abberationCorrection = 'NONE' position, lightTime = spice.spkpos(planet, et, frame, abberationCorrection, body) # save time and position to arrays ets.append(et) row.append(position) # find closest approach of voyager to each body if body==observer: # voyager posVoyager = position # save for other bodies # distance = int(libspice.getDistance(position)) # if distance < minDist[body]: # minDist[body] = distance # minPos[body] = position elif body==planet: pass else: # get distance to voyager, km posToVoyager = position-posVoyager distance = int(libspice.getDistance(posToVoyager)) if distance < minDist[body]: minDist[body] = distance minPos[body] = position positions.append(row) # make the map plotMap(flyby, positions, minPos) # all done - clean up the kernels spice.kclear() if __name__ == '__main__': os.chdir('..') vgPlot() print 'done'
python
import codecs import hashlib import json import os import tempfile import unittest from pathlib import Path import tifffile import numpy as np from slicedimage._compat import fspath import slicedimage from slicedimage import ImageFormat from slicedimage._dimensions import DimensionNames from tests.utils import build_skeleton_manifest baseurl = Path(__file__).parent.resolve().as_uri() class TestWrite(unittest.TestCase): def test_write_tileset(self): image = slicedimage.TileSet( [DimensionNames.X, DimensionNames.Y, "ch", "hyb"], {'ch': 2, 'hyb': 2}, {DimensionNames.Y: 120, DimensionNames.X: 80}, ) for hyb in range(2): for ch in range(2): tile = slicedimage.Tile( { DimensionNames.X: (0.0, 0.01), DimensionNames.Y: (0.0, 0.01), }, { 'hyb': hyb, 'ch': ch, }, ) tile.numpy_array = np.zeros((120, 80)) tile.numpy_array[hyb, ch] = 1 image.add_tile(tile) with tempfile.TemporaryDirectory() as tempdir: with tempfile.NamedTemporaryFile( suffix=".json", dir=tempdir, delete=False) as partition_file: partition_file_path = Path(partition_file.name) partition_doc = slicedimage.v0_0_0.Writer().generate_partition_document( image, partition_file_path.as_uri()) writer = codecs.getwriter("utf-8") json.dump(partition_doc, writer(partition_file)) loaded = slicedimage.Reader.parse_doc( partition_file_path.name, partition_file_path.parent.as_uri()) for hyb in range(2): for ch in range(2): tiles = [_tile for _tile in loaded.tiles( lambda tile: ( tile.indices['hyb'] == hyb and tile.indices['ch'] == ch))] self.assertEqual(len(tiles), 1) expected = np.zeros((100, 100)) expected[hyb, ch] = 1 self.assertEqual(tiles[0].numpy_array.all(), expected.all()) self.assertIsNotNone(tiles[0].sha256) def test_write_collection(self): image = slicedimage.TileSet( [DimensionNames.X, DimensionNames.Y, "ch", "hyb"], {'ch': 2, 'hyb': 2}, {DimensionNames.Y: 120, DimensionNames.X: 80}, ) for hyb in range(2): for ch in range(2): tile = slicedimage.Tile( { DimensionNames.X: (0.0, 0.01), DimensionNames.Y: (0.0, 0.01), }, { 'hyb': hyb, 'ch': ch, }, ) tile.numpy_array = np.zeros((120, 80)) tile.numpy_array[hyb, ch] = 1 image.add_tile(tile) collection = slicedimage.Collection() collection.add_partition("fov002", image) with tempfile.TemporaryDirectory() as tempdir: with tempfile.NamedTemporaryFile( suffix=".json", dir=tempdir, delete=False) as partition_file: partition_file_path = Path(partition_file.name) partition_doc = slicedimage.v0_0_0.Writer().generate_partition_document( collection, partition_file_path.as_uri()) writer = codecs.getwriter("utf-8") json.dump(partition_doc, writer(partition_file)) loaded = slicedimage.Reader.parse_doc( partition_file_path.name, partition_file_path.parent.as_uri()) for hyb in range(2): for ch in range(2): tiles = [_tile for _tile in loaded.tiles( lambda tile: ( tile.indices['hyb'] == hyb and tile.indices['ch'] == ch))] self.assertEqual(len(tiles), 1) expected = np.zeros((100, 100)) expected[hyb, ch] = 1 self.assertEqual(tiles[0].numpy_array.all(), expected.all()) self.assertIsNotNone(tiles[0].sha256) def test_checksum_on_write(self): """ Generate a tileset consisting of a single TIFF tile. Load it and then write it back out as a numpy tile, which should be written with different checksums. Then verify that the numpy version can load without an error. """ # write the tiff file with tempfile.TemporaryDirectory() as tempdir: tempdir_path = Path(tempdir) data = np.random.randint(0, 65535, size=(120, 80), dtype=np.uint16) file_path = os.path.join(tempdir, "tile.tiff") with tifffile.TiffWriter(file_path) as tiff: tiff.save(data) with open(file_path, "rb") as fh: checksum = hashlib.sha256(fh.read()).hexdigest() manifest = build_skeleton_manifest() manifest['tiles'].append( { "coordinates": { DimensionNames.X.value: [ 0.0, 0.0001, ], DimensionNames.Y.value: [ 0.0, 0.0001, ] }, "indices": { "hyb": 0, "ch": 0, }, "file": "tile.tiff", "format": "tiff", "sha256": checksum, }, ) with open(fspath(tempdir_path / "tileset.json"), "w") as fh: fh.write(json.dumps(manifest)) image = slicedimage.Reader.parse_doc( "tileset.json", tempdir_path.as_uri(), {"cache": {"size_limit": 0}}, # disabled ) with tempfile.TemporaryDirectory() as output_tempdir: with tempfile.NamedTemporaryFile( suffix=".json", dir=output_tempdir, delete=False) as partition_file: partition_file_path = Path(partition_file.name) partition_doc = slicedimage.v0_0_0.Writer().generate_partition_document( image, partition_file_path.as_uri()) writer = codecs.getwriter("utf-8") json.dump(partition_doc, writer(partition_file)) partition_file.flush() loaded = slicedimage.Reader.parse_doc( partition_file_path.name, partition_file_path.parent.as_uri()) loaded.tiles()[0].numpy_array def test_write_tiff(self): image = slicedimage.TileSet( dimensions=[DimensionNames.X, DimensionNames.Y, "ch", "hyb"], shape={'ch': 2, 'hyb': 2}, default_tile_shape={DimensionNames.Y: 120, DimensionNames.X: 80}, ) for hyb in range(2): for ch in range(2): tile = slicedimage.Tile( coordinates={ DimensionNames.X: (0.0, 0.01), DimensionNames.Y: (0.0, 0.01), }, indices={ 'hyb': hyb, 'ch': ch, }, ) tile.numpy_array = np.zeros((120, 80), dtype=np.uint32) tile.numpy_array[hyb, ch] = 1 image.add_tile(tile) with tempfile.TemporaryDirectory() as tempdir: with tempfile.NamedTemporaryFile( suffix=".json", dir=tempdir, delete=False) as partition_file: partition_file_path = Path(partition_file.name) # create the tileset and save it. partition_doc = slicedimage.v0_0_0.Writer().generate_partition_document( image, partition_file_path.as_uri(), tile_format=ImageFormat.TIFF) writer = codecs.getwriter("utf-8") json.dump(partition_doc, writer(partition_file)) partition_file.flush() # construct a URL to the tileset we wrote, and load the tileset. loaded = slicedimage.Reader.parse_doc( partition_file_path.name, partition_file_path.parent.as_uri()) # compare the tiles we loaded to the tiles we set up. for hyb in range(2): for ch in range(2): tiles = [_tile for _tile in loaded.tiles( lambda tile: ( tile.indices['hyb'] == hyb and tile.indices['ch'] == ch))] self.assertEqual(len(tiles), 1) expected = np.zeros((120, 80), dtype=np.uint32) expected[hyb, ch] = 1 self.assertEqual(tiles[0].numpy_array.all(), expected.all()) self.assertIsNotNone(tiles[0].sha256) def test_multi_directory_write_collection(self): """Test that we can write collections with a directory hierarchy.""" image = slicedimage.TileSet( ["x", "y", "ch", "hyb"], {'ch': 2, 'hyb': 2}, {'y': 120, 'x': 80}, ) for hyb in range(2): for ch in range(2): tile = slicedimage.Tile( { 'x': (0.0, 0.01), 'y': (0.0, 0.01), }, { 'hyb': hyb, 'ch': ch, }, ) tile.numpy_array = np.zeros((120, 80)) tile.numpy_array[hyb, ch] = 1 image.add_tile(tile) collection = slicedimage.Collection() collection.add_partition("fov002", image) def partition_path_generator(parent_toc_path, toc_name): directory = parent_toc_path.parent / toc_name directory.mkdir() return directory / "{}.json".format(parent_toc_path.stem) def tile_opener(tileset_path, tile, ext): directory_path = tempfile.mkdtemp(dir=str(tileset_path.parent)) return tempfile.NamedTemporaryFile( suffix=".{}".format(ext), prefix="{}-".format(tileset_path.stem), dir=directory_path, delete=False, ) with tempfile.TemporaryDirectory() as tempdir: with tempfile.NamedTemporaryFile( suffix=".json", dir=tempdir, delete=False) as partition_file: partition_file_path = Path(partition_file.name) partition_doc = slicedimage.v0_0_0.Writer().generate_partition_document( collection, partition_file_path.as_uri(), partition_path_generator=partition_path_generator, tile_opener=tile_opener, ) writer = codecs.getwriter("utf-8") json.dump(partition_doc, writer(partition_file)) loaded = slicedimage.Reader.parse_doc( partition_file_path.name, partition_file_path.parent.as_uri()) for hyb in range(2): for ch in range(2): tiles = [ _tile for _tile in loaded.tiles( lambda tile: ( tile.indices['hyb'] == hyb and tile.indices['ch'] == ch))] self.assertEqual(len(tiles), 1) expected = np.zeros((100, 100)) expected[hyb, ch] = 1 self.assertEqual(tiles[0].numpy_array.all(), expected.all()) self.assertIsNotNone(tiles[0].sha256) if __name__ == "__main__": unittest.main()
python
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "import pandas as pd\n", "import numpy as np\n", "\n", "import sqlalchemy\n", "from sqlalchemy.ext.automap import automap_base\n", "from sqlalchemy.orm import Session\n", "from sqlalchemy import create_engine\n", "\n", "from flask import Flask, jsonify, render_template\n", "from flask_sqlalchemy import sqlalchemy\n", "\n", "app = Flask(__name__)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "app.config[\"SQLALCHEMY_DATABASE_URI\"] = \"sqlite:///db/bellybutton.sqlite\"\n", "db = sqlalchemy(app)\n", "\n", "# New Model for Databalse\n", "Base = automap_base()\n", "# reflect the tables\n", "Base.prepare(db.engine, reflect=True)\n", "\n", "# Save references to each table\n", "Samples_Metadata = Base.classes.sample_metadata\n", "Samples = Base.classes.samples" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "@app.route(\"/\")\n", "def index():\n", " \"\"\"Return the homepage.\"\"\"\n", " return render_template(\"index.html\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "@app.route(\"/names\")\n", "def names():\n", " \"\"\"Return a list of sample names.\"\"\"\n", "\n", " # Use Pandas to perform the sql query\n", " stmt = db.session.query(Samples).statement\n", " df = pd.read_sql_query(stmt, db.session.bind)\n", "\n", " # Return a list of the column names (sample names)\n", " return jsonify(list(df.columns)[2:])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "@app.route(\"/metadata/<sample>\")\n", "def sample_metadata(sample):\n", " \"\"\"Return the MetaData for a given sample.\"\"\"\n", " sel = [\n", " Samples_Metadata.sample,\n", " Samples_Metadata.ETHNICITY,\n", " Samples_Metadata.GENDER,\n", " Samples_Metadata.AGE,\n", " Samples_Metadata.LOCATION,\n", " Samples_Metadata.BBTYPE,\n", " Samples_Metadata.WFREQ,\n", " ]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "results = db.session.query(*sel).filter(Samples_Metadata.sample == sample).all()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " # Create a dictionary entry for each row of metadata information\n", "sample_metadata = {}\n", "for result in results:\n", " sample_metadata[\"sample\"] = result[0]\n", " sample_metadata[\"ETHNICITY\"] = result[1]\n", " sample_metadata[\"GENDER\"] = result[2]\n", " sample_metadata[\"AGE\"] = result[3]\n", " sample_metadata[\"LOCATION\"] = result[4]\n", " sample_metadata[\"BBTYPE\"] = result[5]\n", " sample_metadata[\"WFREQ\"] = result[6]\n", "\n", "print(sample_metadata)\n", "return jsonify(sample_metadata)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "@app.route(\"/samples/<sample>\")\n", "def samples(sample):\n", " \"\"\"Return `otu_ids`, `otu_labels`,and `sample_values`.\"\"\"\n", " stmt = db.session.query(Samples).statement\n", " df = pd.read_sql_query(stmt, db.session.bind)\n", "\n", " # Filter the data based on the sample number and\n", " sample_data = df.loc[df[sample] > 1, [\"otu_id\", \"otu_label\", sample]]\n", "\n", " # Sort by sample\n", " sample_data.sort_values(by=sample, ascending=False, inplace=True)\n", "\n", " # Format the data to send as json\n", " data = {\n", " \"otu_ids\": sample_data.otu_id.values.tolist(),\n", " \"sample_values\": sample_data[sample].values.tolist(),\n", " \"otu_labels\": sample_data.otu_label.tolist(),\n", " }\n", " return jsonify(data)\n", "\n", "\n", "if __name__ == \"__main__\":\n", " app.run()\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
python
#!/usr/bin/env PYTHONHASHSEED=1234 python3 from analysis.utils import inspect from frontend.utils import inspect # Overwrites! 'frontend' in inspect.__module__ print(inspect.__module__)
python
try: from local_settings import * except ImportError: pass from azure.devops.connection import Connection from msrest.authentication import BasicAuthentication import threading, queue class QueryResultStatus(): CHECKING = "Checking" BUILD_COMPLETE = "Build Complete" BUILD_IN_PROGRESS = "Building" class QueryResult(): def __init__(self, result_status=QueryResultStatus.CHECKING): self.status = result_status self.last_build = None self.latest_build = None self.enable_dev = False self.enable_stage = False self.enable_prod = False self.deploying_dev = False self.deploying_stage = False self.deploying_prod = False self.dev_release = None self.stage_release = None self.prod_release = None class Pipelines(): def __init__(self): self._poll_thread = None def get_status(self): if self._poll_thread is None: self._poll_thread = PollStatusThread(interval=10) self._poll_thread.start() return self._poll_thread._last_result def approve(self, approve_env): print("Approve env:" + approve_env) # Get Release Client connection = Connection(base_url=ORG_URL, creds=BasicAuthentication('', PAT)) rm_client = connection.clients.get_release_client() approvals = (rm_client.get_approvals(project=PROJECT, type_filter="preDeploy")).value releaseApproval = None for a in approvals: # print(a.release.name + " awaiting approval to " + a.release_environment.name) if approve_env == a.release_environment.name: # Approve this environment approval = a approval.status = "approved" approval.comments = "Approved by DasDeployer big button" releaseApproval = rm_client.update_release_approval(approval, PROJECT, approval.id) print("Approved " + releaseApproval.release.name + " to " + releaseApproval.release_environment.name) return releaseApproval class PollStatusThread(threading.Thread): def __init__(self, interval=10): super(PollStatusThread, self).__init__() self.daemon = True self.stoprequest = threading.Event() self.regularInterval = interval self.delay = interval self._connection = Connection(base_url=ORG_URL, creds=BasicAuthentication('', PAT)) self._build_client = self._connection.clients.get_build_client() self._rm_client = self._connection.clients.get_release_client() self._last_result = QueryResult() def start(self): self.stoprequest.clear() super(PollStatusThread, self).start() def stop(self, timeout=10): self.stoprequest.set() self.join(timeout) def join(self, timeout=None): super(PollStatusThread, self).join(timeout) if self.is_alive(): assert timeout is not None raise RuntimeError( "PollStatusThread failed to die within %d seconds" % timeout) def run(self): while True: # Wait a bit then poll the server again result = QueryResult() buildDef = self._build_client.get_definition(PROJECT, BUILD_PIPELINE_ID, include_latest_builds=True) if buildDef.latest_completed_build.id == buildDef.latest_build.id: result.status = QueryResultStatus.BUILD_COMPLETE result.latest_build = buildDef.latest_build result.last_build = buildDef.latest_completed_build else: # A build is in progress result.status = QueryResultStatus.BUILD_IN_PROGRESS result.latest_build = buildDef.latest_build result.last_build = buildDef.latest_completed_build # Figure out if we should enable approval toggles # First see if any of the environments are deploying for e in ENVIRONMENTS: deployments = (self._rm_client.get_deployments(PROJECT, definition_id=RELEASE_ID, definition_environment_id=ENVIRONMENTS[e], top=1, deployment_status="all")).value deploy_env = (deployments[0].deployment_status == "inProgress" or deployments[0].operation_status == "QueuedForAgent") enable_env = (deployments[0].deployment_status == "inProgress" or deployments[0].deployment_status == "notDeployed") if e == 'Dev': result.enable_dev = enable_env result.deploying_dev = deploy_env result.dev_release = deployments[0].release elif e == 'Stage': result.enable_stage = enable_env result.deploying_stage = deploy_env result.stage_release = deployments[0].release elif e == 'Prod': result.enable_prod = enable_env result.deploying_prod = deploy_env result.prod_release = deployments[0].release #if deploy_env: # print(deployments[0]) # print(e + ": " + deployments[0].release.name + " - " + deployments[0].deployment_status + " q:" + deployments[0].queued_on.strftime("%Y-%m-%d %H:%M") ) if (self._last_result.status != result.status or (self._last_result.latest_build is not None and self._last_result.latest_build.last_changed_date != result.latest_build.last_changed_date ) or self._last_result.enable_dev != result.enable_dev or self._last_result.enable_stage != result.enable_stage or self._last_result.enable_prod != result.enable_prod or self._last_result.deploying_dev != result.deploying_dev or self._last_result.deploying_stage != result.deploying_stage or self._last_result.deploying_prod != result.deploying_prod ): # Something has changed print("change") self._last_result = result # At the end of the thread execution, wait a bit and then poll again if self.stoprequest.wait(self.delay): break def pipemain(): # Create a connection to the org connection = Connection(base_url=ORG_URL, creds=BasicAuthentication('', PAT)) # Get the build status build_client = connection.clients.get_build_client() buildDef = build_client.get_definition(PROJECT, BUILD_PIPELINE_ID, include_latest_builds=True) if buildDef.latest_completed_build.id == buildDef.latest_build.id: print("Build " + buildDef.latest_build.definition.name + " " + buildDef.latest_build.build_number + " " + buildDef.latest_completed_build.result) else: # A build is in progress print("Build " + buildDef.latest_build.definition.name + " " + buildDef.latest_build.build_number + " " + buildDef.latest_completed_build.result + " (" + buildDef.latest_build.status + ")") # Get Release Client rm_client = connection.clients.get_release_client() # See what environments we have and the status of their latest deployments release = rm_client.get_release_definition(PROJECT, RELEASE_ID) for e in release.environments: deployments = (rm_client.get_deployments(PROJECT, definition_id=RELEASE_ID, definition_environment_id=e.id, top=1, deployment_status="all")).value print(str(e.id) + " - " + e.name + ": " + deployments[0].release.name + " - " + deployments[0].deployment_status ) # Look up pending approvals approvals = (rm_client.get_approvals(project=PROJECT, type_filter="preDeploy")).value for a in approvals: print(a.release.name + " awaiting approval to " + a.release_environment.name) if len(approvals) > 0: # Approve one of them approval = approvals[0] approval.status = "approved" approval.comments = "Approved by DasDeployer" releaseApproval = rm_client.update_release_approval(approval, PROJECT, approval.id) print("Approved " + releaseApproval.release.name + " to " + releaseApproval.release_environment.name)
python
import os try: from configparser import ConfigParser except ImportError: from ConfigParser import SafeConfigParser as ConfigParser class ConfigParameter(object): def __init__(self, name, value_type): self.name = name self.value_type = value_type def __repr__(self): return "ConfigParameter({!r}, {!r})".format(self.name, self.value_type) def parse(self, section, config_parser): if int == self.value_type: return config_parser.getint(section, self.name) if bool == self.value_type: return config_parser.getboolean(section, self.name) if float == self.value_type: return config_parser.getfloat(section, self.name) if list == self.value_type: v = config_parser.get(section, self.name) return v.split(" ") return config_parser.get(section, self.name) def interpret(self, config_dict): value = config_dict.get(self.name) if value is None: raise Exception('Missing configuration item: ' + self.name) try: if str == self.value_type: return str(value) if int == self.value_type: return int(value) if bool == self.value_type: if "true" == value.lower(): return True elif "false" == value.lower(): return False else: raise Exception(self.name + " must be True or False") if float == self.value_type: return float(value) if list == self.value_type: return value.split(" ") except Exception as e: raise Exception("Error interpreting config item '{}' with value '{}' and type {}".format( self.name, value, self.value_type)) raise Exception("Unexpected configuration type: " + repr(self.value_type)) def format(self, value): if list == self.value_type: return " ".join(value) return str(value) def write_pretty_params(f, config, params): param_names = [p.name for p in params] longest_name = max(len(name) for name in param_names) param_names.sort() params = dict((p.name, p) for p in params) for name in param_names: p = params[name] f.write('{} = {}\n'.format(p.name.ljust(longest_name), p.format(getattr(config, p.name)))) class Config(object): ''' A simple container for user-configurable parameters of NEAT. ''' __params = [ConfigParameter('pop_size', int), ConfigParameter('fitness_criterion', str), ConfigParameter('fitness_threshold', float), ConfigParameter('reset_on_extinction', bool)] def __init__(self, genome_type, reproduction_type, species_set_type, stagnation_type, filename): # Check that the provided types have the required methods. assert hasattr(genome_type, 'parse_config') assert hasattr(reproduction_type, 'parse_config') assert hasattr(species_set_type, 'parse_config') assert hasattr(stagnation_type, 'parse_config') self.genome_type = genome_type self.reproduction_type = reproduction_type self.species_set_type = species_set_type self.stagnation_type = stagnation_type if not os.path.isfile(filename): raise Exception('No such config file: ' + os.path.abspath(filename)) parameters = ConfigParser() with open(filename) as f: if hasattr(parameters, 'read_file'): parameters.read_file(f) else: parameters.readfp(f) # NEAT configuration if not parameters.has_section('NEAT'): raise RuntimeError("'NEAT' section not found in NEAT configuration file.") for p in self.__params: setattr(self, p.name, p.parse('NEAT', parameters)) # Parse type sections. genome_dict = dict(parameters.items(genome_type.__name__)) self.genome_config = genome_type.parse_config(genome_dict) species_set_dict = dict(parameters.items(species_set_type.__name__)) self.species_set_config = species_set_type.parse_config(species_set_dict) stagnation_dict = dict(parameters.items(stagnation_type.__name__)) self.stagnation_config = stagnation_type.parse_config(stagnation_dict) reproduction_dict = dict(parameters.items(reproduction_type.__name__)) self.reproduction_config = reproduction_type.parse_config(reproduction_dict) def save(self, filename): with open(filename, 'w') as f: f.write('# The `NEAT` section specifies parameters particular to the NEAT algorithm\n') f.write('# or the experiment itself. This is the only required section.\n') f.write('[NEAT]\n') write_pretty_params(f, self, self.__params) f.write('\n[{0}]\n'.format(self.genome_type.__name__)) self.genome_type.write_config(f, self.genome_config) f.write('\n[{0}]\n'.format(self.species_set_type.__name__)) self.species_set_type.write_config(f, self.species_set_config) f.write('\n[{0}]\n'.format(self.stagnation_type.__name__)) self.stagnation_type.write_config(f, self.stagnation_config) f.write('\n[{0}]\n'.format(self.reproduction_type.__name__)) self.reproduction_type.write_config(f, self.reproduction_config)
python
from .vector import Vector from pygame import Rect import pygame from .util import BASE_PATH pygame.font.init() DEMIBOLD_BIG = pygame.font.Font(BASE_PATH + '/../lightsouls/data/LucidaSansDemiBold.ttf', 20) DEFAULT_COLOR = GREEN = (128, 255, 128, 0) class Frame: """ Rectangular piece of the screen. Manages relative positions of objects. """ def __init__(self, screen, rect, font=DEMIBOLD_BIG): """ rect - position and size of the frame in pixels (x, y, x, y) """ self.screen = screen self.rect = rect self.font = font @property def pos(self): return Vector(self.rect.x, self.rect.y) @property def size(self): return Vector(self.rect.width, self.rect.height) def get_dest_rect(self, rect): """Calculate absolute position of the given rect.""" pos = self.pos + Vector(rect.x, rect.y) return Rect(pos.x, pos.y, rect.width, rect.height) def blit(self, bitmap, rect, sourcerect): """Copies graphics on the screen (quick).""" destrect = self.get_dest_rect(rect) self.screen.blit(bitmap, destrect, sourcerect) def print_text(self, text, pos, font=DEMIBOLD_BIG, color=DEFAULT_COLOR): """Writes text on the screen.""" font = font or self.font color = color or self.color rendered = font.render(text, 1, color) pos = self.pos + pos self.screen.display.blit(rendered, tuple(pos)) def clear(self): """Clears the area in the frame.""" self.screen.blit(self.screen.background, self.rect, \ Rect(0, 0, self.size.x, self.size.y)) def __repr__(self): return "[Frame '%s']"%(str(self.rect))
python
import pylab as pl fig = pl.figure() fig.subplots_adjust(bottom=0.025, left=0.025, top = 0.975, right=0.975) pl.subplot(2, 1, 1) pl.xticks(()), pl.yticks(()) pl.subplot(2, 3, 4) pl.xticks(()) pl.yticks(()) pl.subplot(2, 3, 5) pl.xticks(()) pl.yticks(()) pl.subplot(2, 3, 6) pl.xticks(()) pl.yticks(()) pl.show()
python
from .FeatureDescriptionLabel import * from .FeatureExtractionLogic import * from .FeatureWidgets import *
python
''' The np.npv() function estimates the present values for a given set of future cash flows. The first input value is the discount rate, and the second input is an array of future cash flows. This np.npv() function mimics Excel's NPV function. Like Excel, np.npv() is not a true NPV function. It is actually a PV function. It estimates the present value of future cash flows by assuming the first cash flow happens at the end of the first period. ''' import scipy as sp cashflows=[50,40,20,10,50] npv=sp.npv(0.1,cashflows) #estimate NPV npvrounded = round(npv,2) the npv caculated here is not consistent to execel need to be found why. print(npvrounded)
python
from tempfile import NamedTemporaryFile import boto3 from rivet import inform, s3_path_utils from rivet.s3_client_config import get_s3_client_kwargs from rivet.storage_formats import get_storage_fn def write(obj, path, bucket=None, show_progressbar=True, *args, **kwargs): """ Writes an object to a specified file format and uploads it to S3. Storage format is determined by file extension, to prevent extension-less files in S3. Args: obj (object): The object to be uploaded to S3 path (str): The path to save obj to bucket (str, optional): The S3 bucket to save 'obj' in show_progresbar (bool, default True): Whether to show a progress bar Returns: str: The full path to the object in S3, without the 's3://' prefix """ path = s3_path_utils.clean_path(path) bucket = bucket or s3_path_utils.get_default_bucket() bucket = s3_path_utils.clean_bucket(bucket) filetype = s3_path_utils.get_filetype(path) write_fn = get_storage_fn(filetype, 'write') s3 = boto3.client('s3') with NamedTemporaryFile(suffix='.' + filetype) as tmpfile: inform('Writing object to tempfile...') write_fn(obj, tmpfile, *args, **kwargs) s3_kwargs = get_s3_client_kwargs(tmpfile.name, bucket, operation='write', show_progressbar=show_progressbar) inform('Uploading to s3://{}/{}...'.format(bucket, path)) s3.upload_file(tmpfile.name, bucket, path, **s3_kwargs) return '/'.join([bucket, path]) def upload_file(local_file_path, path, bucket=None, show_progressbar=True): """ Uploads a file from local storage directly to S3 Args: local_file_path (str): Location of the file to upload path (str): The key the file is to be stored under in S3 bucket (str, optional): The S3 bucket to store the object in show_progresbar (bool, default True): Whether to show a progress bar """ bucket = bucket or s3_path_utils.get_default_bucket() if local_file_path is None: raise ValueError('A local file location must be provided.') s3 = boto3.client('s3') s3_kwargs = get_s3_client_kwargs(local_file_path, bucket, operation='write', show_progressbar=show_progressbar) s3.upload_file(local_file_path, bucket, path, **s3_kwargs)
python
import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras tf.random.set_seed(2021) from models import DNMC, NMC, NSurv, MLP, train_model, evaluate_model df = pd.read_csv('http://pssp.srv.ualberta.ca/system/predictors/datasets/000/000/032/original/All_Data_updated_may2011_CLEANED.csv?1350302245') numrc_cols = df.nunique() > 2 df.loc[:, numrc_cols] = (df.loc[:, numrc_cols] - df.loc[:, numrc_cols].mean()) / df.loc[:, numrc_cols].std() OUTCOMES = ['SURVIVAL', 'CENSORED'] X = df.drop(OUTCOMES, axis=1).sample(frac=1, random_state=2021) X = X.values print('There are', X.shape[1], 'features') from generate_data import generate_semi_synthetic, generate_synth_censoring, onehot ### BEGIN COLLECTING RESULTS HERE ### all_results = [] all_weight_results = [] LEARNING_RATE = 1e-3 BATCH_SIZE = 100 N_BINS = 10 MAX_EPOCHS = 500 lr = 0.03 DATATYPE = 'synth_censoring' DEPENDENT_CENSORING = False RESULTS_NAME = '../results/NACD_' + DATATYPE + '.csv' assert DATATYPE in ['synth_censoring', 'synthetic', 'real'] # NOTE that we are skipping importance weights here. for random_state in [2020, 2016, 2013]: for num_distinct in [4, 8, 12, 16]: num_shared = 20 - num_distinct print('') print('Starting runs with random state', random_state, 'and %i distinct features' % num_distinct) print('') if DATATYPE == 'synthetic': synth = generate_semi_synthetic( X, num_distinct, num_shared, N_BINS, random_state, e_prob_spread=3., dependent_censoring=DEPENDENT_CENSORING) elif DATATYPE == 'synth_censoring': synth = generate_synth_censoring( X, df['SURVIVAL'].values, 1 - df['CENSORED'].values, num_distinct, N_BINS, random_state, e_prob_spread=3., dependent_censoring=DEPENDENT_CENSORING) x_train, x_val, x_test = X[:1500], X[1500:1900], X[1900:] y = onehot(synth['y_disc'], ncategories=10) y_train, y_val, y_test = y[:1500], y[1500:1900], y[1900:] s_train, s_val, s_test = synth['s'][:1500], synth['s'][1500:1900], synth['s'][1900:] e_train, e_val, e_test = synth['e'][:1500], synth['e'][1500:1900], synth['e'][1900:] #for lr in np.logspace(-2, -1, 6): # Run NMC print('Running NMC with lr =', lr) model = NMC(n_bins=N_BINS, lr=lr, dependent_censoring=DEPENDENT_CENSORING) train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) all_results.append( evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state)) # Run NSurv print('Running NSurv with lr =', lr) model = NSurv(n_bins=N_BINS, lr=lr, dependent_censoring=DEPENDENT_CENSORING) train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) all_results.append( evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state)) # Run MLP print('Running MLP with lr =', lr) model = MLP(lr=lr) train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) all_results.append( evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state)) # Run DNMC for ld in [1., 10.]: print('Running DNMC (with Psi) with lr =', lr, 'and ld =', ld) model = DNMC(n_bins=N_BINS, lr=lr, ld=ld, dependent_censoring=DEPENDENT_CENSORING) train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) all_results.append( evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state)) print('Running DNMC (NO Psi) with lr =', lr, 'and ld =', ld) model = DNMC(n_bins=N_BINS, lr=lr, ld=ld, include_psi=False) train_model( model, (x_train, y_train, s_train), (x_val, y_val, s_val), MAX_EPOCHS, batch_size=BATCH_SIZE, learning_rate=LEARNING_RATE) results = evaluate_model( model, (x_test, y_test, s_test), e_test, (synth['shared_features'], synth['tc_features'], synth['e_features']), dataset='nacd', random_state=random_state) results['model'] = 'DNMC_noPsi' all_results.append(results) pd.DataFrame(all_results).to_csv(RESULTS_NAME)
python
# test return statement def f(): return print(f()) def g(): return 1 print(g()) def f(x): return 1 if x else 2 print(f(0), f(1)) print("PASS")
python
from contextlib import suppress import warnings import urllib.parse import calendar from cromulent import model, vocab from cromulent.model import factory from cromulent.extract import extract_physical_dimensions from pipeline.util.cleaners import ymd_to_datetime factory.auto_id_type = 'uuid' vocab.add_art_setter() def add_crom_data(data: dict, what=None): data['_CROM_FACTORY'] = factory data['_LOD_OBJECT'] = what return data def get_crom_object(data: dict): if data is None: return None return data.get('_LOD_OBJECT') def remove_crom_object(data: dict): with suppress(KeyError): del data['_LOD_OBJECT'] del data['_CROM_FACTORY'] return data class MakeLinkedArtRecord: def set_referred_to_by(self, data, thing): for notedata in data.get('referred_to_by', []): if isinstance(notedata, tuple): content, itype = notedata if itype is not None: if isinstance(itype, type): note = itype(content=content) elif isinstance(itype, object): note = itype note.content = content else: note = vocab.Note(content=content) note.classified_as = itype elif isinstance(notedata, model.BaseResource): note = notedata elif isinstance(notedata, str): note = vocab.Note(content=notedata) else: note = notedata thing.referred_to_by = note def set_properties(self, data, thing): ''' The following keys in `data` are handled to set properties on `thing`: `referred_to_by` `identifiers` `names` - An array of arrays of one or two elements. The first element of each array is a name string, and is set as the value of a `model.Name` for `thing`. If there is a `dict` second element, its contents are used to assert properties of the name: - An array associated with the key `'referred_to_by'` will be used to assert that the `LinguisticObject`s (or `dict`s representing a `LinguisticObject`) refer to the name. - A value associated with the key `'classified_as'` (either a `model.Type` or a cromulent vocab class) will be asserted as the classification of the `model.Name`. Example data: { 'names': [ ['J. Paul Getty'], [ 'Getty', { 'classified_as': model.Type(ident='http://vocab.getty.edu/aat/300404670', label='Primary Name'), # or: 'classified_as': vocab.PrimaryName, 'referred_to_by': [ {'uri': 'tag:getty.edu,2019:digital:pipeline:REPLACE-WITH-UUID:knoedler#K-ROW-1-2-3'}, model.LinguisticObject(ident='tag:getty.edu,2019:digital:pipeline:REPLACE-WITH-UUID:knoedler#K-ROW-1-7-10'), ] } ] ] } ''' self.set_referred_to_by(data, thing) for c in data.get('classified_as', []): thing.classified_as = c for identifier in data.get('identifiers', []): if isinstance(identifier, tuple): content, itype = identifier if itype is not None: if isinstance(itype, type): ident = itype(ident='', content=content) if not content: warnings.warn(f'Setting empty identifier on {thing.id}') elif isinstance(itype, object): ident = itype ident.content = content if not content: warnings.warn(f'Setting empty identifier on {thing.id}') else: ident = model.Identifier(ident='') if not content: warnings.warn(f'Setting empty identifier on {thing.id}') ident.content = content ident.classified_as = itype else: ident = identifier # c = ident.content thing.identified_by = ident if not hasattr(thing, '_label') and 'label' in data: setattr(thing, '_label', data['label']) for namedata in data.get('names', []): # namedata should take the form of: # ["A. Name"] # ["A. Name", {'referred_to_by': [{'uri': 'URI-OF-LINGUISTIC_OBJECT'}, model.LinguisticObject()]}] if isinstance(namedata, tuple): name, *properties = namedata else: name = namedata properties = [] name_kwargs = {} for props in properties: if 'classified_as' in props: cl = props['classified_as'] del props['classified_as'] name_kwargs['title_type'] = cl n = set_la_name(thing, name, **name_kwargs) self.set_lo_properties(n, *properties) def set_lo_properties(self, n, *properties): for props in properties: assert isinstance(props, dict) for ref in props.get('referred_to_by', []): if isinstance(ref, dict): if 'uri' in ref: l = model.LinguisticObject(ident=ref['uri']) elif 'uuid' in data: l = model.LinguisticObject(ident="urn:uuid:%s" % ref['uuid']) else: raise Exception(f'MakeLinkedArtRecord call attempt to set name {name} with a non-identified reference: {ref}') elif isinstance(ref, object): l = ref else: raise Exception(f'MakeLinkedArtRecord call attempt to set name {name} with an unrecognized reference type: {ref}') n.referred_to_by = l def __call__(self, data: dict): if '_LOD_OBJECT' in data: thing = data['_LOD_OBJECT'] else: otype = data['object_type'] otypes = otype if isinstance(otype, list) else [otype] kwargs = {} if 'uri' in data: kwargs['ident'] = data['uri'] elif 'uuid' in data: kwargs['ident'] = "urn:uuid:%s" % data['uuid'] else: raise Exception('MakeLinkedArtRecord called with a dictionary with neither uuid or uri member') thing = vocab.make_multitype_obj(*otypes, **kwargs) self.set_properties(data, thing) return add_crom_data(data=data, what=thing) def set_la_name(thing, value, title_type=None, set_label=False): if value is None: return None if isinstance(value, tuple): label, language = value else: label = value language = None if set_label: if not label: warnings.warn(f'Setting empty label on {thing.id}') thing._label = label name = model.Name(ident='', content=label) if title_type is not None: if isinstance(title_type, model.Type): name.classified_as = title_type else: vocab.add_classification(name, title_type) thing.identified_by = name if language is not None: name.language = language return name class MakeLinkedArtLinguisticObject(MakeLinkedArtRecord): # TODO: document the expected format of data['translations'] # TODO: document the expected format of data['identifiers'] def set_properties(self, data, thing): super().set_properties(data, thing) # TODO: this whole title_type thing isn't right. most of the identifiers below aren't titles title_type = model.Type(ident='http://vocab.getty.edu/aat/300417193', label='Title') name = None if 'label' in data: name = set_la_name(thing, data['label'], title_type, set_label=True) for author in data.get('created_by', []): thing.created_by = author for a in data.get('used_for', []): thing.used_for = a for a in data.get('about', []): thing.about = a for t in data.get('translations', []): n = set_la_name(thing, t, title_type) if name is not None: n.translation_of = name for content, itype, notes in data.get('qualified_identifiers', []): ident = itype(content=content) if not content: warnings.warn(f'Setting empty identifier on {thing.id}') thing.identified_by = ident for n in notes: ident.referred_to_by = n code_type = None # TODO: is there a model.Type value for this sort of code? for c in data.get('classifications', []): if isinstance(c, model.Type): classification = c else: cid, label = c name = model.Name() name.classified_as = title_type name.content = label classification = model.Type(label=label) if not label: warnings.warn(f'Setting empty name on {classification.id}') classification.identified_by = name code = model.Identifier() code.classified_as = code_type if not cid: warnings.warn(f'Setting empty identifier on {code.id}') code.content = cid classification.identified_by = code thing.about = classification for c in data.get('indexing', []): if isinstance(c, tuple): cid, label = c name = model.Name() name.classified_as = title_type name.content = label indexing = model.Type(label=label) if not label: warnings.warn(f'Setting empty name on {indexing.id}') indexing.identified_by = name code = model.Identifier() code.classified_as = code_type code.content = cid if not cid: warnings.warn(f'Setting empty identifier on {code.id}') indexing.identified_by = code else: indexing = c thing.about = indexing parents = data.get('part_of', []) for parent_data in parents: parent = get_crom_object(parent_data) thing.part_of = parent children = data.get('part', []) for child_data in children: child = get_crom_object(child_data) thing.part = child for carrier in data.get('carried_by', []): hmo = get_crom_object(carrier) thing.carried_by = hmo for dimension in data.get('dimensions', []): thing.dimension = dimension def __call__(self, data: dict): if 'object_type' not in data or data['object_type'] == []: data['object_type'] = model.LinguisticObject return super().__call__(data) class MakeLinkedArtHumanMadeObject(MakeLinkedArtRecord): def set_properties(self, data, thing): super().set_properties(data, thing) title_type = model.Type(ident='http://vocab.getty.edu/aat/300417193', label='Title') # TODO: is this the right aat URI? if 'label' in data: set_la_name(thing, data['label'], title_type, set_label=True) if 'title' in data: # TODO: This needs to be a PrimaryName, not a Name classified as a Title title = data['title'] if isinstance(title, str): set_la_name(thing, title, title_type, set_label=True) elif isinstance(title, (list, tuple)): value, *properties = title n = set_la_name(thing, value, title_type, set_label=True) n.classified_as = title_type self.set_lo_properties(n, *properties) thing.identified_by = n parents = data.get('part_of', []) for parent_data in parents: parent = get_crom_object(parent_data) thing.part_of = parent for carried in data.get('carries', []): lo = get_crom_object(carried) thing.carries = lo for coll in data.get('member_of', []): thing.member_of = coll for annotation in data.get('annotations', []): a = model.Annotation(ident='', content=annotation) thing.carries = a class MakeLinkedArtAbstract(MakeLinkedArtLinguisticObject): pass class MakeLinkedArtAgent(MakeLinkedArtRecord): def set_properties(self, data, thing): super().set_properties(data, thing) with suppress(ValueError, TypeError): ulan = int(data.get('ulan')) if ulan: thing.exact_match = model.BaseResource(ident=f'http://vocab.getty.edu/ulan/{ulan}') if 'name' in data: title_type = model.Type(ident='http://vocab.getty.edu/aat/300417193', label='Title') name = data['name'] if name: if isinstance(name, str): set_la_name(thing, name, title_type, set_label=True) elif isinstance(name, (list, tuple)): value, *properties = name n = model.Name(ident='', content=value) n.classified_as = title_type self.set_lo_properties(n, *properties) thing.identified_by = n for uri in data.get('exact_match', []): thing.exact_match = uri for sdata in data.get('sojourns', []): label = sdata.get('label', 'Sojourn activity') stype = sdata.get('type', model.Activity) act = stype(ident='', label=label) ts = get_crom_object(sdata.get('timespan')) place = get_crom_object(sdata.get('place')) act.timespan = ts act.took_place_at = place thing.carried_out = act self.set_referred_to_by(sdata, act) # Locations are names of residence places (P74 -> E53) # XXX FIXME: Places are their own model if 'places' in data: for p in data['places']: if isinstance(p, model.Place): pl = p elif isinstance(p, dict): pl = get_crom_object(p) else: pl = model.Place(ident='', label=p) #pl._label = p['label'] #nm = model.Name() #nm.content = p['label'] #pl.identified_by = nm #for s in p['sources']: # l = model.LinguisticObject(ident="urn:uuid:%s" % s[1]) # l._label = _row_label(s[2], s[3], s[4]) # pl.referred_to_by = l thing.residence = pl class MakeLinkedArtOrganization(MakeLinkedArtAgent): def set_properties(self, data, thing): super().set_properties(data, thing) with suppress(KeyError): thing._label = str(data['label']) for event in data.get('events', []): thing.carried_out = event for n in data.get('nationality', []): thing.classified_as = n if data.get('formation'): b = model.Formation() ts = model.TimeSpan(ident='') if 'formation_clean' in data and data['formation_clean']: if data['formation_clean'][0]: ts.begin_of_the_begin = data['formation_clean'][0].strftime("%Y-%m-%dT%H:%M:%SZ") if data['formation_clean'][1]: ts.end_of_the_end = data['formation_clean'][1].strftime("%Y-%m-%dT%H:%M:%SZ") verbatim = data['formation'] ts._label = verbatim ts.identified_by = model.Name(ident='', content=verbatim) b.timespan = ts b._label = "Formation of %s" % thing._label thing.formed_by = b if data.get('dissolution'): d = model.Dissolution() ts = model.TimeSpan(ident='') if 'dissolution_clean' in data and data['dissolution_clean']: if data['dissolution_clean'][0]: ts.begin_of_the_begin = data['dissolution_clean'][0].strftime("%Y-%m-%dT%H:%M:%SZ") if data['dissolution_clean'][1]: ts.end_of_the_end = data['dissolution_clean'][1].strftime("%Y-%m-%dT%H:%M:%SZ") verbatim = data['dissolution'] ts._label = verbatim ts.identified_by = model.Name(ident='', content=verbatim) d.timespan = ts d._label = "Dissolution of %s" % thing._label thing.dissolved_by = d def __call__(self, data: dict): if 'object_type' not in data or data['object_type'] == []: data['object_type'] = model.Group return super().__call__(data) class MakeLinkedArtAuctionHouseOrganization(MakeLinkedArtOrganization): def __call__(self, data: dict): if 'object_type' not in data or data['object_type'] == []: data['object_type'] = vocab.AuctionHouseOrg return super().__call__(data) # XXX Reconcile with provenance.timespan_from_outer_bounds def make_ymd_timespan(data: dict, start_prefix="", end_prefix="", label=""): y = f'{start_prefix}year' m = f'{start_prefix}month' d = f'{start_prefix}day' y2 = f'{end_prefix}year' m2 = f'{end_prefix}month' d2 = f'{end_prefix}day' t = model.TimeSpan(ident='') if not label: label = ymd_to_label(data[y], data[m], data[d]) if y != y2: lbl2 = ymd_to_label(data[y2], data[m2], data[d2]) label = f'{label} to {lbl2}' t._label = label if not label: warnings.warn(f'Setting empty name on {t.id}') t.identified_by = model.Name(ident='', content=label) t.begin_of_the_begin = ymd_to_datetime(data[y], data[m], data[d]) t.end_of_the_end = ymd_to_datetime(data[y2], data[m2], data[d2], which="end") return t def ymd_to_label(year, month, day): # Return monthname day year if not year: return "Unknown" if not month: return str(year) if not isinstance(month, int): try: month = int(month) month_name = calendar.month_name[month] except: # Assume it's already a name of a month month_name = month else: month_name = calendar.month_name[month] if day: return f'{month_name} {day}, {year}' else: return f'{month_name} {year}' class MakeLinkedArtPerson(MakeLinkedArtAgent): def set_properties(self, data, who): super().set_properties(data, who) with suppress(KeyError): who._label = str(data['label']) for ns in ['aat_nationality_1', 'aat_nationality_2','aat_nationality_3']: # add nationality n = data.get(ns) # XXX Strip out antique / modern anonymous as a nationality if n: if int(n) in [300310546,300264736]: break natl = vocab.Nationality(ident="http://vocab.getty.edu/aat/%s" % n) who.classified_as = natl natl._label = str(data[ns+'_label']) else: break for n in data.get('nationality', []): if isinstance(n, model.BaseResource): who.classified_as = n for n in data.get('occupation', []): if isinstance(n, model.BaseResource): who.classified_as = n # nationality field can contain other information, but not useful. # XXX Intentionally ignored but validate with GRI if data.get('active_early') or data.get('active_late'): act = vocab.Active() ts = model.TimeSpan(ident='') if data['active_early']: ts.begin_of_the_begin = "%s-01-01:00:00:00Z" % (data['active_early'],) ts.end_of_the_begin = "%s-01-01:00:00:00Z" % (data['active_early']+1,) if data['active_late']: ts.begin_of_the_end = "%s-01-01:00:00:00Z" % (data['active_late'],) ts.end_of_the_end = "%s-01-01:00:00:00Z" % (data['active_late']+1,) ts._label = "%s-%s" % (data['active_early'], data['active_late']) act.timespan = ts who.carried_out = act for event in data.get('events', []): who.carried_out = event if data.get('birth'): b = model.Birth() ts = model.TimeSpan(ident='') if 'birth_clean' in data and data['birth_clean']: if data['birth_clean'][0]: ts.begin_of_the_begin = data['birth_clean'][0].strftime("%Y-%m-%dT%H:%M:%SZ") if data['birth_clean'][1]: ts.end_of_the_end = data['birth_clean'][1].strftime("%Y-%m-%dT%H:%M:%SZ") verbatim = data['birth'] ts._label = verbatim ts.identified_by = model.Name(ident='', content=verbatim) b.timespan = ts b._label = "Birth of %s" % who._label who.born = b if data.get('death'): d = model.Death() ts = model.TimeSpan(ident='') if 'death_clean' in data and data['death_clean']: if data['death_clean'][0]: ts.begin_of_the_begin = data['death_clean'][0].strftime("%Y-%m-%dT%H:%M:%SZ") if data['death_clean'][1]: ts.end_of_the_end = data['death_clean'][1].strftime("%Y-%m-%dT%H:%M:%SZ") verbatim = data['death'] ts._label = verbatim ts.identified_by = model.Name(ident='', content=verbatim) d.timespan = ts d._label = "Death of %s" % who._label who.died = d if 'contact_point' in data: for p in data['contact_point']: if isinstance(p, model.Identifier): pl = p elif isinstance(p, dict): pl = get_crom_object(p) else: pl = model.Identifier(ident='', content=p) who.contact_point = pl def __call__(self, data: dict): if 'object_type' not in data or data['object_type'] == []: data['object_type'] = model.Person return super().__call__(data) class MakeLinkedArtPlace(MakeLinkedArtRecord): TYPES = { 'city': vocab.instances['city'], 'province': vocab.instances['province'], 'state': vocab.instances['province'], 'country': vocab.instances['nation'], 'address': vocab.instances['address'] } def __init__(self, base_uri=None, *args, **kwargs): super().__init__(*args, **kwargs) self.base_uri = base_uri def set_properties(self, data, thing): name = data.get('name') data.setdefault('names', [name]) super().set_properties(data, thing) type_name = data.get('type', 'place').lower() label = name parent_data = data.get('part_of') place_type = MakeLinkedArtPlace.TYPES.get(type_name) parent = None if parent_data: parent_data = self(parent_data) parent = get_crom_object(parent_data) if label: try: label = f'{label}, {parent._label}' except AttributeError: print('*** NO LABEL IN PARENT:' + factory.toString(parent, False)) placeargs = {'label': label} if data.get('uri'): placeargs['ident'] = data['uri'] if place_type: thing.classified_as = place_type if not name: warnings.warn(f'Place with missing name on {thing.id}') if parent: # print(f'*** Setting parent on place object: {parent}') thing.part_of = parent def __call__(self, data: dict): if 'object_type' not in data or data['object_type'] == []: data['object_type'] = model.Place if self.base_uri and not data.get('uri'): data['uri'] = self.base_uri + urllib.parse.quote(data['name']) return super().__call__(data) def make_la_place(data:dict, base_uri=None): ''' Given a dictionary representing data about a place, construct a model.Place object, assign it as the crom data in the dictionary, and return the dictionary. The dictionary keys used to construct the place object are: - name - type (one of: 'City' or 'Country') - part_of (a recursive place dictionary) ''' TYPES = { 'city': vocab.instances['city'], 'province': vocab.instances['province'], 'state': vocab.instances['province'], 'country': vocab.instances['nation'], 'address': vocab.instances['address'] } if data is None: return None type_name = data.get('type', 'place').lower() name = data['name'] label = name parent_data = data.get('part_of') place_type = TYPES.get(type_name) parent = None if parent_data: parent_data = make_la_place(parent_data, base_uri=base_uri) parent = get_crom_object(parent_data) label = f'{label}, {parent._label}' placeargs = {'label': label} if data.get('uri'): placeargs['ident'] = data['uri'] elif base_uri: data['uri'] = base_uri + urllib.parse.quote(label) placeargs['ident'] = data['uri'] p = model.Place(**placeargs) if place_type: p.classified_as = place_type if name: p.identified_by = model.Name(ident='', content=name) else: warnings.warn(f'Place with missing name on {p.id}') if parent: p.part_of = parent return add_crom_data(data=data, what=p) class PopulateObject: ''' Shared functionality for project-specific bonobo node sub-classes to populate object records. ''' @staticmethod def populate_object_statements(data:dict, default_unit=None): hmo = get_crom_object(data) sales_record = get_crom_object(data.get('_record')) format = data.get('format') if format: formatstmt = vocab.PhysicalStatement(ident='', content=format) if sales_record: formatstmt.referred_to_by = sales_record hmo.referred_to_by = formatstmt materials = data.get('materials') if materials: matstmt = vocab.MaterialStatement(ident='', content=materials) if sales_record: matstmt.referred_to_by = sales_record hmo.referred_to_by = matstmt dimstr = data.get('dimensions') if dimstr: dimstmt = vocab.DimensionStatement(ident='', content=dimstr) if sales_record: dimstmt.referred_to_by = sales_record hmo.referred_to_by = dimstmt for dim in extract_physical_dimensions(dimstr, default_unit=default_unit): if sales_record: dim.referred_to_by = sales_record hmo.dimension = dim else: pass # print(f'No dimension data was parsed from the dimension statement: {dimstr}')
python
import logging import os import random from collections import defaultdict, namedtuple from threading import Lock, Thread from time import sleep from consul import Consul instance = namedtuple('serviceinstance', ['address', 'port']) service = namedtuple('service', ['ts', 'instances']) class ServiceInstance(instance): def as_uri(self, scheme='http', path=""): return "{0}://{1}:{2}/{3}".format(scheme, self.address, self.port, path) class ServiceCatalog: def __init__(self, host='localhost', port=8500, interval=30, env=os.environ): self.online_mode = self._get_online_mode(env) self.service_overrides = self._get_service_overrides(env) self._lock = Lock() self.cache = defaultdict(list) if self.online_mode: self.client = Consul(host=host, port=port, consistency='stale') self.interval = interval self.updater = Thread(name="Consul-update", target=self._update) self.updater.daemon = True self.updater.start() def _get_online_mode(self, env): """ Method returns flag whether this library should run in online mode (thus talking to consul) or offline mode - thus only use environment variables to serve the :return: """ offline_mode = env.get('SERVICECATALOG_OFFLINE_MODE', '0') # online mode is by default, so it's only disabled # when offline mode env. var is set to 1 return not offline_mode == '1' def _get_service_overrides(self, env): """ Method returns a map of service_name=ServiceInstance(host, port) which is read from environment variables. Eg. by setting these env. variables: SERVICECATALOG_SERVICE_HOST_AVAILABILITY_VARNISH=http://varnish SERVICECATALOG_SERVICE_PORT_AVAILABILITY_VARNISH=80 the service instance that will be returned for availability-varnish is ServiceInstance("http://varnish", 80). The port 80 is default and will be returned if it's not specified in env. vars. :param env: :return: """ service_host_prefix = "SERVICECATALOG_SERVICE_HOST_" service_port_prefix = "SERVICECATALOG_SERVICE_PORT_" result = {} hosts = {} ports = {} for key, value in env.items(): if key.startswith(service_host_prefix): # this should turn "SERVICECATALOG_SERVICE_HOST_AVAILABILITY_VARNISH" into "availability-varnish" service_name = key.replace(service_host_prefix, '').replace('_', '-').lower() hosts[service_name] = value elif key.startswith(service_port_prefix): # this should turn "SERVICECATALOG_SERVICE_PORT_AVAILABILITY_VARNISH" into "availability-varnish" service_name = key.replace(service_port_prefix, '').replace('_', '-').lower() try: ports[service_name] = int(value) except Exception: logging.error(f"Unsupported value {value} for {key} - should be number.") raise for service_name, host in hosts.items(): port = ports.get(service_name, 80) result[service_name] = service(None, [ServiceInstance(host, port)]) return result def fetch(self, name, index=None): overriden_value = self.service_overrides.get(name) if overriden_value: return overriden_value if not self.online_mode: return service(index, []) try: idx, result = self.client.catalog.service(name, index=index) return service(index, [ ServiceInstance(x['ServiceAddress'] or x["Address"], x["ServicePort"]) for x in result ]) except Exception as e: logging.error( "Failed while fetching data for %s", name, exc_info=True) def _update(self): self._isrunning = True while self._isrunning: for k, v in self.cache.items(): service = self.fetch(k) if service: self._lock.acquire() self.cache[k] = service self._lock.release() sleep(self.interval) def stop(self): self._isrunning = False def __getitem__(self, name): self._lock.acquire() if not self.cache[name]: logging.info( "Adding new service `%s` to the service catalog" % name) self.cache[name] = self.fetch(name) result = random.choice(self.cache[name].instances) self._lock.release() if not result: raise KeyError("Can't find service with name %s" % name) return result def all(self, name): self._lock.acquire() if not self.cache[name]: logging.info( "Adding new service `%s` to the service catalog" % name) self.cache[name] = self.fetch(name) self._lock.release() return self.cache[name].instances
python
from django.urls import path from material.admin.sites import site urlpatterns = [ path('', site.urls, name='base') ]
python
## this version of get_freq collects %AT-richness, gene expression data and SumFreq statistic on top of the data collated by get_freq.py import pandas as pd import numpy as np ## NOTE: All filenames are placeholders raw = pd.read_csv("REDItools_processed_dedup-filt.genann.txt", header = 0, sep = "\t") exp = pd.read_csv("Expression_Data/quant.sf", header=0, sep="\t") at_richness = pd.read_csv("at_richness.txt", header=0, sep="\t") gene_ann = pd.read_csv("Gene_Length_Data.txt", header = 0, sep = "\t") counting = raw[["GeneID", "Frequency"]] #print(test.head(5)) counting["NumLoci"] = 1 counting = counting.groupby("GeneID", as_index = False).sum() counting = counting[counting["GeneID"] != "-"] merged = pd.merge(counting, gene_ann, on = "GeneID") merged = merged[["GeneID", "Frequency", "NumLoci", "Length", "TranscriptID"]] merged["AvgFreq"] = merged["Frequency"]/merged["NumLoci"] exp_merged = pd.merge(merged, exp, left_on="TranscriptID", right_on="Name") exp_mergedClean = exp_merged[["GeneID", "Frequency", "NumLoci", "Length_x", "TranscriptID", "AvgFreq", "Name", "TPM", "NumReads"]] exp_mergedClean.rename(columns = {"Frequency" : "SumFreq"}, inplace=True) final_merged = pd.merge(exp_mergedClean, at_richness, on="TranscriptID") final_merged = final_merged[["GeneID", "SumFreq", "NumLoci", "Length_x", "TranscriptID", "AvgFreq", "TPM", "NumReads", "%AT_Richness"]] final_merged["SumFreq"] = final_merged["SumFreq"].round(decimals = 3) final_merged["AvgFreq"] = final_merged["AvgFreq"].round(decimals = 3) final_merged["%AT_Richness"] = final_merged["%AT_Richness"].round(decimals = 3) final_merged["TPM"] = final_merged["TPM"].round(decimals = 3) final_merged.rename(columns = {"Length_x" : "Length"}, inplace=True) #print(final_merged.head(5)) final_merged.to_csv("Sample_getFreq.txt", sep = "\t", header = True, index = False)
python
""" Pipeline code for training and evaluating the sentiment classifier. We use the Deepmoji architecture here, see https://github.com/bfelbo/DeepMoji for detail. """ import re import codecs import random import numpy as np import sys import json import argparse import pandas as pd import glob, os import matplotlib.pylab as plt sys.path.append("DeepMoji/deepmoji/") from sentence_tokenizer import SentenceTokenizer from model_def import deepmoji_architecture, load_specific_weights from finetuning import load_benchmark, finetune from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.model_selection import train_test_split MAX_LEN = 150 # def load_data(filename): # f = codecs.open(filename, "r", "utf-8") # data_pair = [] # for line in f: # line = line.strip().split("\t") # line = line.strip().split(",") # data_pair.append((line[0], line[1])) # return data_pair def load_data(filename): df = pd.read_csv(filename, sep="\t") data_pair = [] for index, row in df.iterrows(): data_pair.append((row[0], row[1], row[2])) return data_pair def prepare_5fold(data_pair): sind = 0 eind = 0 random.shuffle(data_pair) fold_size = int(len(data_pair) / 5) for fold in range(0, 5): sind = eind eind = sind + fold_size train_pair = data_pair[0:sind] + data_pair[eind:len(data_pair)] test_pair = data_pair[sind:eind] yield (train_pair, test_pair) def get_train_test_data(infile, dataset, fold): df_all = pd.read_excel(input_file, sheet_name="Sheet1", usecols="S, AF, T, AX", names=['dataset', 'oracle', 'text', 'id']) # df_all.insert(loc=0, column="id", value=df_all.index + 1) # df_all['id'] = df_all.index df_all = df_all[['id', 'text', 'oracle', 'dataset']] # print("length of all datasets %d" % len(df_all)) df_all.loc[df_all.oracle == 'o', 'oracle'] = '0' df_all.loc[df_all.oracle == 'n', 'oracle'] = '-1' df_all.loc[df_all.oracle == 'p', 'oracle'] = '1' # print(df_all.columns) dataset_df = df_all[df_all['dataset'].astype(str).str.lower().str.contains(dataset)] # print("lenght of the dataset %s is : %d"% (dataset, len(dataset_df))) dataset_test = dataset + "_test_" + str(fold) if(dataset == "datasetlinjira"): dataset_test = dataset + "_cleaned_test_" + str(fold) test_df = dataset_df[dataset_df['dataset'].str.lower() == dataset_test] test_ids = test_df['id'].tolist() train_df = dataset_df[~dataset_df['id'].isin(test_ids)] train_df = train_df.drop('dataset', axis = 1) # 0 means rows 1 means column test_df = test_df.drop('dataset', axis = 1) # 0 means rows 1 means column print("len of test_df %d and len of train_df %d"%(len(test_df), len(train_df))) assert len(train_df) + len(test_df) == len(dataset_df) train_pair = [] test_pair = [] for index, row in train_df.iterrows(): train_pair.append((row['id'], row['text'], row['oracle'])) for index, row in test_df.iterrows(): test_pair.append((row['id'], row['text'], row['oracle'])) # dataset_dir = "/home/mdabdullahal.alamin/alamin/sentiment/bert/dataset/" # train_df.to_csv( dataset_dir + "train.tsv", sep='\t', index=False, header = None) # test_df.to_csv( dataset_dir + "test.tsv", sep='\t', index=False, header = None) return train_pair, test_pair def get_train_test(infile, dataset, fold): train_pair, test_pair = get_train_test_data(infile=input_file, dataset = dataset, fold=fold) train_id = [p[0] for p in train_pair] train_text = [str(p[1]) for p in train_pair] train_label = [str(p[2]) for p in train_pair] test_id = [p[0] for p in test_pair] test_text = [str(p[1]) for p in test_pair] test_label = [str(p[2]) for p in test_pair] return train_id, train_text, train_label, test_id, test_text, test_label if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, required=True, choices=["SEntiMoji", "SEntiMoji-T", "SEntiMoji-G"], help="name of pretrained representation model") parser.add_argument("--task", type=str.lower, required=True, choices=["sentiment", "emotion"], help="specify task (sentiment or emotion)") parser.add_argument("--benchmark_dataset_name", type=str, required=False, choices=["Jira", "StackOverflow", "CodeReview", "JavaLib"], help="name of benchmark dataset") parser.add_argument("--emotion_type", type=str.lower, required=False, default=None, choices=["anger", "love", "deva", "joy", "sad"], help="specify emotion dataset") parser.add_argument("--use_own_dataset", action='store_true', help="whether use your own dataset or not") parser.add_argument("--own_dataset_dir", type=str, required=False, default=None, help="directory of your train data file") parser.add_argument("--own_dataset_file", type=str, required=False, default=None, help="file name of your train data file") parser.add_argument("--sentisead", action='store_true', help="This will load code to run sentisead") args = parser.parse_args() print("args:") d = args.__dict__ for key,value in d.items(): print("%s = %s"%(key,value)) # parse arguments model_path = "../../model/representation_model/model_%s.hdf5" % args.model vocab_path = "vocabulary/vocabulary_%s.json" % args.model out_dir = "../../output/out/" base_dir = "/home/mdabdullahal.alamin/alamin/sentiment/sentimoji" # load vocabulary with open(vocab_path, "r") as f_vocab: vocabulary = json.load(f_vocab) try: # use provided dataset if not args.use_own_dataset: if args.benchmark_dataset_name is None: raise ValueError("should provide benchmark dataset name") if args.task == "sentiment": # data_path = "../../data/benchmark_dataset/sentiment/%s.txt" % args.benchmark_dataset_name data_path = "../../data/benchmark_dataset/sentiment/%s.tsv" % args.benchmark_dataset_name label2index_path = "label2index/sentiment/label2index_%s.json" % args.benchmark_dataset_name else: trans_dict = {"Jira" : "JIRA", "StackOverflow" : "SO"} if args.benchmark_dataset_name not in trans_dict: raise ValueError("invalid dataset name for emotion task") data_file_name = "%s_%s" % (trans_dict[args.benchmark_dataset_name ], args.emotion_type.upper()) data_path = "../../data/benchmark_dataset/emotion/%s/%s.txt" % (args.benchmark_dataset_name , data_file_name) if args.emotion_type == 'deva': if args.benchmark_dataset_name != "Jira": raise ValueError("invalide dataset name for deva, requires Jira") label2index_path = "label2index/emotion/label2index_5class.json" else: label2index_path = "label2index/emotion/label2index_2class.json" # load data and label2index file data_pair = load_data(data_path) with open(label2index_path, "r") as f_label: label2index = json.load(f_label) index2label = {i: l for l, i in label2index.items()} elif args.sentisead is not None: print("=============== We are going to train SentiMoji against Sentisead dataset ==============") label2index = {"0": 0, "1": 1, "-1": 2} index2label = {i: l for l, i in label2index.items()} # prepare your own data else: if args.own_dataset_dir is None or args.own_dataset_file is None: raise ValueError("should specify your own dataset directory and filename") # load data data_path = "{}/{}".format(args.own_dataset_dir, args.own_dataset_file) data_pair = load_data(data_path) # generate label2index file labels = set([pair[1] for pair in data_pair]) label2index = {} for label in labels: label2index[label] = len(label2index) index2label = {i: l for l, i in label2index.items()} label2index_path = "{}/{}".format(args.own_dataset_dir, "label2index.json") with open(label2index_path, 'w') as f: json.dump(label2index, f) except RuntimeError as e: print("Error:", repr(e)) # split 5 fold # data_5fold = prepare_5fold(data_pair) # sentence tokenizer (MAXLEN means the max length of input text) st = SentenceTokenizer(vocabulary, MAX_LEN) fold = 0 # print(label2index) # 5 fold # dataset = dataset.lower() input_file = os.path.join(base_dir, "data", "Disa_ResultsConsolidatedWithEnsembleAssessment.xlsx") datasets = ["DatasetLinJIRA", "BenchmarkUddinSO", "DatasetLinAppReviews", "DatasetLinSO", "DatasetSenti4SDSO", "OrtuJIRA"] # datasets = [ "OrtuJIRA"] # dataset = "OrtuJIRA" # model # model = deepmoji_architecture(nb_classes=nb_classes, # nb_tokens=nb_tokens, # maxlen=MAX_LEN, embed_dropout_rate=0.25, final_dropout_rate=0.5, embed_l2=1E-6) # # model.summary() # # load pretrained representation model # load_specific_weights(model, model_path, nb_tokens, MAX_LEN, # exclude_names=["softmax"]) for dataset in datasets: dataset = dataset.lower() for fold in range(10): # for item in data_5fold: # prepare training, validation, testing set # train_pair, test_pair = get_train_test_data(infile=input_file, dataset = dataset, fold=fold) train_id, train_text, train_label, test_id, test_text, test_label = get_train_test(infile=input_file, dataset = dataset, fold=fold) # print(type(train_text[0])) train_X, _, _ = st.tokenize_sentences(train_text) test_X, _, _ = st.tokenize_sentences(test_text) train_y = np.array([label2index[l] for l in train_label]) test_y = np.array([label2index[l] for l in test_label]) nb_classes = len(label2index) nb_tokens = len(vocabulary) # use 20% of the training set for validation train_X, val_X, train_y, val_y = train_test_split(train_X, train_y, test_size=0.2, random_state=0) # # model model = deepmoji_architecture(nb_classes=nb_classes, nb_tokens=nb_tokens, maxlen=MAX_LEN, embed_dropout_rate=0.25, final_dropout_rate=0.5, embed_l2=1E-6) # # model.summary() # # load pretrained representation model load_specific_weights(model, model_path, nb_tokens, MAX_LEN, exclude_names=["softmax"]) # # # train model model, acc = finetune(model, [train_X, val_X, test_X], [train_y, val_y, test_y], nb_classes, 100, method="chain-thaw", verbose=2, nb_epochs=1) pred_y_prob = model.predict(test_X) if nb_classes == 2: pred_y = [0 if p < 0.5 else 1 for p in pred_y_prob] else: pred_y = np.argmax(pred_y_prob, axis=1) # evaluation print("*****************************************") print("Fold %d" % fold) accuracy = accuracy_score(test_y, pred_y) print("Accuracy: %.3f" % accuracy) # precision = precision_score(test_y, pred_y, average=None) # recall = recall_score(test_y, pred_y, average=None) # f1score = f1_score(test_y, pred_y, average=None) labels = list(set(test_y)) precision = precision_score(test_y, pred_y, average=None, labels = labels) recall = recall_score(test_y, pred_y, average=None, labels = labels) f1score = f1_score(test_y, pred_y, average=None, labels = labels) for index in range(0, len(labels)): print("label: %s" % index2label[index]) print("Precision: %.3f, Recall: %.3f, F1 score: %.3f" % (precision[index], recall[index], f1score[index])) print("*****************************************") # save predict result if not args.use_own_dataset: if args.task == "sentiment": save_name = "result_%s_%s_fold%d.txt" % (args.model, args.benchmark_dataset_name, fold) elif args.task == "emotion": save_name = "result_%s_%s_%s_fold%d.txt" % (args.model, args.benchmark_dataset_name, args.emotion_type, fold) elif args.sentisead: save_name = dataset +"_result_fold%d.txt" % fold # os.path.join(dataset, save_name) else: save_name = "result_fold%d.txt" % fold save_name = os.path.join(out_dir, save_name) # if(not os.path.exists(save_name)): # os.makedirs(save_name) with open(save_name, "w", encoding="utf-8") as f: for i in range(0, len(test_text)): f.write("%s\t%s\t%s\t%s\r\n" % (test_id[i], test_text[i], index2label[pred_y[i]], test_label[i])) print("#%d test results has been saved to: %s" % (len(test_text), save_name)) fold += 1 output_dir = "../../model/trained_model" + str(fold) + ".h5" if args.sentisead: output_dir = "../../model/sentisead/" output_dir = os.path.join(output_dir, dataset) if(not os.path.exists(output_dir)): print("creating model file %s" % output_dir) os.makedirs(output_dir) output_dir = os.path.join(output_dir, "trained_model" + str(fold) + ".h5" ) # model.save_weights(output_dir) # print("Trained Models output has been saved to " + output_dir) # if(fold == 2): # break # break
python
# SPDX-License-Identifier: MIT # Copyright (C) 2021 Max Bachmann from rapidfuzz.cpp_process import extract, extractOne, extract_iter try: from rapidfuzz.cpp_process_cdist import cdist except ImportError: def cdist(*args, **kwargs): raise NotImplementedError("implementation requires numpy to be installed")
python
from django.shortcuts import render, redirect from hujan_ui import maas from hujan_ui.maas.utils import MAAS from .forms import VlanForm, VlanEditForm from django.utils.translation import ugettext_lazy as _ import sweetify from hujan_ui.maas.exceptions import MAASError def index(request): try: vlans = maas.get_vlans() except (MAASError, ConnectionError, TimeoutError) as e: vlans = None sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000) context = { 'title': 'Vlan List', 'vlans': vlans } return render(request, 'maas/vlans/index.html', context) def add(request): form = VlanForm(request.POST or None) if form.is_valid(): try: m = MAAS() data = form.clean() fabId = data['fabric_id'] resp = m.post(f'fabrics/{fabId}/vlans/', data=data) if resp.status_code in m.ok: sweetify.success(request, _('Vlan Added Successful'), timer=3000) return redirect('maas:subnets:index') sweetify.warning(request, _(resp.text), timer=5000) except (MAASError, ConnectionError, TimeoutError) as e: sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000) context = { 'title': _('Add Vlan'), 'form': form } return render(request, 'maas/vlans/add.html', context) def edit(request, vlan_id): try: vlan = maas.get_vlans(vlan_id) form = VlanEditForm(request.POST or None, initial=vlan) if form.is_valid(): m = MAAS() data = form.clean() fabId = data['fabric_id'] vid = data['vid'] resp = m.put(f'fabrics/{fabId}/vlans/{vid}/',data=data) if resp.status_code in m.ok: sweetify.success(request, _('Vlan Updated Successful'), timer=3000) return redirect('maas:subnets:index') sweetify.warning(request, _(resp.text), timer=5000) except (MAASError, ConnectionError, TimeoutError) as e: sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000) context = { 'title': 'Edit Vlan', 'form': form } return render(request, 'maas/vlans/add.html', context) def detail(request, vlan_id): try: vlan = maas.get_vlans(vlan_id) if vlan: context = { 'title': _('Detail Vlan - {}'.format(vlan['fabric'])), 'vlan': vlan } return render(request, 'maas/vlans/detail.html', context) except (MAASError, ConnectionError, TimeoutError) as e: sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000) return redirect('maas:vlans:index') def delete(request, vlan_id): try: vlan = maas.get_vlans(vlan_id) fid = vlan['fabric_id'] vid = vlan['vid'] m = MAAS() resp = m.delete(f'fabrics/{fid}/vlans/{vid}/') if resp.status_code in m.ok: sweetify.success(request, _('Vlan Deleted Successful'), timer=5000) return redirect('maas:subnets:index') return redirect('maas:subnets:index') except (MAASError, ConnectionError, TimeoutError) as e: sweetify.sweetalert(request, 'Warning', icon='error', text=str(e), button='Ok', timer=5000)
python
# Generated by Django 2.1.7 on 2019-03-01 13:53 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('news', '0002_auto_20161125_0846'), ] operations = [ migrations.AlterModelOptions( name='news', options={'ordering': ('pub_date',), 'verbose_name_plural': 'news'}, ), ]
python
import datetime import re import socket from jwt.exceptions import ExpiredSignatureError, InvalidSignatureError from mongoengine.errors import ( DoesNotExist, NotUniqueError, ValidationError as MongoValidationError, ) from pymongo.errors import DocumentTooLarge from thriftpy2.thrift import TException from tornado.web import HTTPError, RequestHandler import bg_utils import bg_utils.mongo.models import brew_view from brew_view.authorization import AuthMixin, coalesce_permissions from brew_view.metrics import http_api_latency_total, request_latency from brewtils.errors import ( ConflictError, ModelError, ModelValidationError, RequestForbidden, RequestPublishException, WaitExceededError, AuthorizationRequired, ) from brewtils.models import Event class BaseHandler(AuthMixin, RequestHandler): """Base handler from which all handlers inherit""" MONGO_ID_PATTERN = r".*/([0-9a-f]{24}).*" REFRESH_COOKIE_NAME = "refresh_id" REFRESH_COOKIE_EXP = 14 charset_re = re.compile(r"charset=(.*)$") error_map = { MongoValidationError: {"status_code": 400}, ModelError: {"status_code": 400}, bg_utils.bg_thrift.InvalidSystem: {"status_code": 400}, ExpiredSignatureError: {"status_code": 401}, AuthorizationRequired: {"status_code": 401}, RequestForbidden: {"status_code": 403}, InvalidSignatureError: {"status_code": 403}, DoesNotExist: {"status_code": 404, "message": "Resource does not exist"}, WaitExceededError: {"status_code": 408, "message": "Max wait time exceeded"}, ConflictError: {"status_code": 409}, NotUniqueError: {"status_code": 409, "message": "Resource already exists"}, DocumentTooLarge: {"status_code": 413, "message": "Resource too large"}, RequestPublishException: {"status_code": 502}, bg_utils.bg_thrift.BaseException: { "status_code": 502, "message": "An error occurred " "on the backend", }, TException: {"status_code": 503, "message": "Could not connect to Bartender"}, socket.timeout: {"status_code": 504, "message": "Backend request timed out"}, } def get_refresh_id_from_cookie(self): token_id = self.get_secure_cookie(self.REFRESH_COOKIE_NAME) if token_id: return token_id.decode() return None def _get_user_from_cookie(self): refresh_id = self.get_refresh_id_from_cookie() if not refresh_id: return None token = bg_utils.mongo.models.RefreshToken.objects.get(id=refresh_id) now = datetime.datetime.utcnow() if not token or token.expires < now: return None principal = token.get_principal() if not principal: return None _, principal.permissions = coalesce_permissions(principal.roles) token.expires = now + datetime.timedelta(days=self.REFRESH_COOKIE_EXP) token.save() return principal def get_current_user(self): user = AuthMixin.get_current_user(self) if not user or user == brew_view.anonymous_principal: cookie_user = self._get_user_from_cookie() if cookie_user: user = cookie_user return user def set_default_headers(self): """Headers set here will be applied to all responses""" self.set_header("BG-Version", brew_view.__version__) if brew_view.config.cors_enabled: self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Headers", "Content-Type") self.set_header( "Access-Control-Allow-Methods", "GET, POST, PATCH, DELETE, OPTIONS" ) @property def prometheus_endpoint(self): """Removes Mongo ID from endpoint.""" to_return = self.request.path.rstrip("/") for mongo_id in re.findall(self.MONGO_ID_PATTERN, self.request.path): to_return = to_return.replace(mongo_id, "<ID>") return to_return def prepare(self): """Called before each verb handler""" # Used for calculating request handling duration self.request.created_time = datetime.datetime.utcnow() # This is used for sending event notifications self.request.event = Event() self.request.event_extras = {} content_type = self.request.headers.get("content-type", "") if self.request.method.upper() in ["POST", "PATCH"] and content_type: content_type = content_type.split(";") self.request.mime_type = content_type[0] if self.request.mime_type not in [ "application/json", "application/x-www-form-urlencoded", ]: raise ModelValidationError("Unsupported or missing content-type header") # Attempt to parse out the charset and decode the body, default to utf-8 charset = "utf-8" if len(content_type) > 1: search_result = self.charset_re.search(content_type[1]) if search_result: charset = search_result.group(1) self.request.charset = charset self.request.decoded_body = self.request.body.decode(charset) def on_finish(self): """Called after a handler completes processing""" # This is gross, but in some cases we have to do these in the handler if getattr(self.request, "publish_metrics", True): http_api_latency_total.labels( method=self.request.method.upper(), route=self.prometheus_endpoint, status=self.get_status(), ).observe(request_latency(self.request.created_time)) if self.request.event.name and getattr(self.request, "publish_event", True): brew_view.event_publishers.publish_event( self.request.event, **self.request.event_extras ) def options(self, *args, **kwargs): if brew_view.config.cors_enabled: self.set_status(204) else: raise HTTPError(403, reason="CORS is disabled") def write_error(self, status_code, **kwargs): """Transform an exception into a response. This protects controllers from having to write a lot of the same code over and over and over. Controllers can, of course, overwrite error handlers and return their own responses if necessary, but generally, this is where error handling should occur. When an exception is handled this function makes two passes through error_map. The first pass is to see if the exception type can be matched exactly. If there is no exact type match the second pass will attempt to match using isinstance. If a message is provided in the error_map it takes precedence over the exception message. ***NOTE*** Nontrivial inheritance trees will almost definitely break. This is a BEST EFFORT using a simple isinstance check on an unordered data structure. So if an exception class has both a parent and a grandparent in the error_map there is no guarantee about which message / status code will be chosen. The same applies to exceptions that use multiple inheritance. ***LOGGING*** An exception raised in a controller method will generate logging to the tornado.application logger that includes a stacktrace. That logging occurs before this method is invoked. The result of this method will generate logging to the tornado.access logger as usual. So there is no need to do additional logging here as the 'real' exception will already have been logged. :param status_code: a status_code that will be used if no match is found in the error map :return: None """ code = 0 message = "" if "exc_info" in kwargs: typ3 = kwargs["exc_info"][0] e = kwargs["exc_info"][1] error_dict = None if typ3 in self.error_map.keys(): error_dict = self.error_map[typ3] else: for error_type in self.error_map.keys(): if isinstance(e, error_type): error_dict = self.error_map[error_type] break if error_dict: code = error_dict.get("status_code", 500) message = error_dict.get("message", str(e)) elif brew_view.config.debug_mode: message = str(e) code = code or status_code or 500 message = message or ( "Encountered unknown exception. Please check " "with your System Administrator." ) self.request.event.error = True self.request.event.payload = {"message": message} self.set_header("Content-Type", "application/json; charset=UTF-8") self.set_status(code) self.finish({"message": message})
python
from data_interface import Dataset, Data_Interface from utils import functions as ufunc import geopandas as gpd import matplotlib.pyplot as plt import numpy as np import os import rasterio as rio import rasterio.mask as riom import shapely from IPython import embed import sys sys.path.append('/home/seba/Projects/swisssmartfarming') rgb_path = ('/media/seba/Samsung_2TB/forest-project/qgis/gubler/rgb/' '20200626_flight2_blackfly_rgb_transparent_mosaic_group1.tif') ms_path = ('/media/seba/Samsung_2TB/forest-project/qgis/gubler/nir/' '20200626_flight2_photonfocus_nir_transparent_reflectance_group1.tif') masks_path = ('/media/seba/Samsung_2TB/forest-project/qgis/gubler/shapes/' 'trees.shp') boundary_path = ('/media/seba/Samsung_2TB/forest-project/qgis/gubler/shapes/' 'boundary.shp') dataset = rio.open(rgb_path) shapefile = gpd.read_file(masks_path) shapes = shapefile.geometry # (img_mask, transf_mask) = riom.mask(dataset, shapes) # img_mask = np.swapaxes(img_mask, 0, 2) # plt.imshow(img_mask[:,:,0:3]) boundary = gpd.read_file(boundary_path) tree_masks = gpd.read_file(masks_path) dataset = Dataset( name='gubler', date='20200626', rgb_path=rgb_path, ms_path=ms_path, mask_shapefile=tree_masks, outer_shapefile=boundary, rgb_bands_to_read=[0, 1, 2], ms_bands_to_read=None, ) dataset = [dataset] di_train = Data_Interface(dataset, {'tree': 1, 'car': 2}) img, msk = di_train.get_pair() # plt.imshow(msk) save_path = '/media/seba/Samsung_2TB/forest-project/qgis/gubler/train' di_train.save(save_path=save_path) # x1003_path = '/media/seba/Samsung_2TB/forest-project/qgis/gubler/train/masks/x1003_y1009.png' # x1003 = ufunc.read_img2array(x1003_path)
python
#!/usr/bin/env python3 # Copyright (c) 2022, the Dart project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. # Invoke the `tools/generate_package_config.dart` script. import os import os.path import platform import subprocess import sys USE_PYTHON3 = True def is_windows(): os_id = platform.system() return os_id == 'Windows' def checked_in_sdk_path(): tools_dir = os.path.dirname(os.path.realpath(__file__)) return os.path.join(tools_dir, 'sdks', 'dart-sdk') def checked_in_sdk_executable(): name = 'dart' if is_windows(): name = 'dart.exe' return os.path.join(checked_in_sdk_path(), 'bin', name) def generate_package_config(): tools_dir = os.path.dirname(os.path.realpath(__file__)) process = subprocess.run([ checked_in_sdk_executable(), os.path.join(tools_dir, 'generate_package_config.dart') ]) return process.returncode def Main(): sys.exit(generate_package_config()) if __name__ == '__main__': Main()
python
# -*- coding: UTF-8 -*- """ cookie_parser.py Copyright 2015 Andres Riancho This file is part of w3af, http://w3af.org/ . w3af is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 2 of the License. w3af is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with w3af; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """ import Cookie import sys # Cookie pickling bug is fixed in Python 2.7.9 and Python 3.4.3+ # http://bugs.python.org/issue22775 COOKIE_PICKLES_PROPERLY = ( (sys.version_info[:2] == (2, 7) and sys.version_info >= (2, 7, 9)) or sys.version_info >= (3, 4, 3) ) COOKIE_HEADERS = ('set-cookie', 'cookie', 'cookie2') class SerializableSimpleCookie(Cookie.SimpleCookie): """ Had to sub-class in order to be able to correctly serialize cookies https://code.djangoproject.com/ticket/15863 https://code.djangoproject.com/attachment/ticket/15863/ticket_15863.diff """ if not COOKIE_PICKLES_PROPERLY: def __setitem__(self, key, value): # Apply the fix from http://bugs.python.org/issue22775 where # it's not fixed in Python itself if isinstance(value, Cookie.Morsel): # allow assignment of constructed Morsels (e.g. for pickling) dict.__setitem__(self, key, value) else: super(SerializableSimpleCookie, self).__setitem__(key, value) def parse_cookie(cookie_header_value): """ Parses the value of a "Set-Cookie" header into a Cookie.SimpleCookie object :param cookie_header_value: The value of the "Set-Cookie" header :return: A Cookie.SimpleCookie instance. Might raise exceptions if the cookie value is not in valid format """ cookie_object = SerializableSimpleCookie() # FIXME: Workaround for bug in Python's Cookie.py # # if type(rawdata) == type(""): # self.__ParseString(rawdata) # # Should read "if isinstance(rawdata, basestring)" cookie_header_value = cookie_header_value.encode('utf-8') # Note to self: This line may print some chars to the console cookie_object.load(cookie_header_value) return cookie_object
python
""" The variables submodule. This module contains symbolic representations of all ARTS workspace variables. The variables are loaded dynamically when the module is imported, which ensures that they up to date with the current ARTS build. TODO: The group names list is redudant w.rt. group_ids.keys(). Should be removed. Attributes: group_names([str]): List of strings holding the groups of ARTS WSV variables. group_ids(dict): Dictionary mapping group names to the group IDs which identify groups in the ARTS C API. """ import ctypes as c import os import numpy as np import re import scipy as sp import tempfile from typhon.arts.workspace.api import arts_api from typhon.arts.workspace.agendas import Agenda from typhon.arts.xml.names import tensor_names class WorkspaceVariable: """ The WorkspaceVariable represents ARTS workspace variables in a symbolic way. This means that they are not associated with a single workspace and therefore do not have a unique value. Their value in a given workspacecan be accessed, however, using the value() method. Attributes: ws_id(int): The Index variable identifying the variable in the ARTS C API. name(str): The name of the workspace variable. group(str): The name of the group this variable belongs to. description(str): The documentation of the variable as in methods.cc """ def __init__(self, ws_id, name, group, description, ws = None): self.ws_id = ws_id self.name = name self.group = group self.group_id = group_ids[group] self.description = description self.ws = ws self.ndim = None if self.group == "Vector": self.ndim = 1 if self.group == "Matrix": self.ndim = 2 m = re.match(r"^Tensor(\d)$", self.group) if m: self.ndim = int(m.group(1)) self.update() def __getstate__(self): return self.ws_id, self.name, self.group, \ self.group_id, self.description, self.ndim def __setstate__(self, state): self.ws_id, self.name, self.group, self.group_id, self.description,\ self.ndim = state def __repr__(self): s = "ARTS Workspace Variable\n\n" s += "Name: " + self.name + "\n" s += "Group: " + self.group + "\n\n" s += self.description return s def __str__(self): return self.__repr__() def __setattr__(self, name, value): if name == "value": if self.ws is None: raise Exception("Cannot set value of WSV without associated " " workspace.") else: self.ws.__setattr__(self.name, value) else: super().__setattr__(name, value) def print(self): """ Print variable value using ARTS Print(...) WSM. Raises: Exception: If the variable has no associated workspace. """ if (self.ws): self.ws.Print(self, 1) else: raise Exception("Can't print variable without associated ARTS workspace.") @staticmethod def get_variable_name(i): """ Lookup the name of a variable given its workspace index. Args: i(int): The index of the workspace variable. Returns: str: The name of the workspace variable. """ s = arts_api.get_variable(i) name = s.name.decode("utf8") return name @staticmethod def get_group_id(value): """ This static method is used to determine how (and if) a given python variable can be mapped to a ARTS workspace variable group. The returned group id is required to add the variable to a workspace. Args: value(any): The python variable to map to the ARTS group. Returns: int: The index of the group which can be used to represent the python variable or None if the type is not supported. """ if isinstance(value, WorkspaceVariable): return group_ids[value.group] elif isinstance(value, Agenda): return group_ids["Agenda"] elif isinstance(value, np.long): return group_ids["Index"] elif isinstance(value, (float, np.double)): return group_ids["Numeric"] elif isinstance(value, str): return group_ids["String"] elif isinstance(value, np.ndarray): if value.ndim == 1: return group_ids["Vector"] elif value.ndim == 2: return group_ids["Matrix"] elif value.ndim == 3: return group_ids["Tensor3"] elif value.ndim == 4: return group_ids["Tensor4"] elif value.ndim == 5: return group_ids["Tensor5"] elif value.ndim == 6: return group_ids["Tensor6"] elif value.ndim == 7: return group_ids["Tensor7"] else: raise ValueError( "Numpy arrays are only supported up to 7 dimensions." ) elif sp.sparse.issparse(value): return group_ids["Sparse"] elif type(value) == list: group_name = "" nested_value = value while type(nested_value) == list and len(nested_value) > 0: nested_value = nested_value[0] group_name += "ArrayOf" if type(nested_value) == list and len(nested_value) == 0: raise ValueError("Empty lists are currently not handled.") else: typename = type(nested_value).__name__ if isinstance(nested_value, str): group_name += "String" return group_ids[group_name] elif isinstance(nested_value, np.long): group_name += "Index" return group_ids[group_name] elif isinstance(nested_value, (float, np.double)): raise ValueError("Vectors, Matrices or Tensors should be" " passed as numpy.ndarray and not as" " lists.") elif hasattr(nested_value, 'write_xml') and typename in group_names: return group_ids[group_name + typename] elif isinstance(nested_value, np.ndarray): group_name += tensor_names[len(nested_value.shape) - 1] return group_ids[group_name] else: raise ValueError( f"Nested array with internal type " f"{type(nested_value)} not supported.") elif hasattr(value, 'write_xml') and type(value).__name__ in group_names: return group_ids[type(value).__name__] else: raise ValueError(f"Type {type(value)} currently not supported.") @classmethod def convert(cls, group, value): """ Tries to convert a given python object to an object of the python class representing the given ARTS WSV group. Args: group(string): The name of an ARTS WSV group. group(any): The object to convert Returns: (any): The converted object. """ if (group == "Index"): return int(value) if (group == "String"): return value if (group == "ArrayOfString"): return [str(i) for i in value] if (group == "Numeric"): return np.float64(value) if (group == "Vector"): return np.array(value, dtype=np.float64, order='C', ndmin=1) if (group == "Matrix"): return np.array(value, dtype=np.float64, order='C', ndmin=2) if (group == "Sparse"): return sp.sparse.coo_matrix(value) if (group[:6] == "Tensor"): dim = int(group[6]) return np.array(value, dtype=np.float64, order='C', ndmin=dim) if group.startswith("ArrayOf"): subgroup = group[7:] if hasattr(value, "__iter__"): return [cls.convert(subgroup, v) for v in value] else: return [cls.convert(subgroup, value)] return None @staticmethod def iter(): """ Iterator returning a WorkspaceVariable object for each ARTS WSV available. """ for i in range(arts_api.get_number_of_variables()): s = arts_api.get_variable(i) name = s.name.decode("utf8") description = s.description.decode("utf") group = group_names[s.group] yield WorkspaceVariable(i, name, group, description) @property def initialized(self): ws = self.ws if ws is None: raise ValueError("WorkspaceVariable object needs associated" " Workspace to determine value.") v = arts_api.get_variable_value(ws.ptr, self.ws_id, self.group_id) return v.initialized @property def value(self): """ Return the value of the variable in a given workspace. By default this function will check the value in the workspace associated with the variable of in the workspace object provided as argument to the function call. If the variable has an associated workspace the workspace provided as argument will be ignored. Returns: The value of the workspace variable represented by an object of the corresponding python types. Raises: Exception: If the type of the workspace variable is not supported by the interface. """ from typhon.arts.types import classes as typhon_classes if (self.ws): ws = self.ws if not ws: raise ValueError("WorkspaceVariable object need Workspace to determine value.") v = arts_api.get_variable_value(ws.ptr, self.ws_id, self.group_id) if not v.initialized: raise Exception("WorkspaceVariable " + self.name + " is uninitialized.") if self.group in typhon_classes: cls = typhon_classes[self.group] if hasattr(cls, "__from_variable_value_struct__"): return cls.__from_variable_value_struct__(v) if self.group == "Index": return c.cast(v.ptr, c.POINTER(c.c_long))[0] elif self.group == "Numeric": return c.cast(v.ptr, c.POINTER(c.c_double))[0] elif self.group == "String": return (c.cast(v.ptr, c.c_char_p)).value.decode("utf8") elif self.group == "ArrayOfIndex": return [c.cast(v.ptr, c.POINTER(c.c_long))[i] for i in range(v.dimensions[0])] elif self.group == "Sparse": m = v.dimensions[0] n = v.dimensions[1] nnz = v.dimensions[2] if nnz == 0: return sp.sparse.csr_matrix(0) else: print(m, n, nnz) data = np.ctypeslib.as_array(c.cast(v.ptr, c.POINTER(c.c_double)), (nnz,)) row_indices = np.ctypeslib.as_array(v.inner_ptr, (nnz,)) col_starts = np.ctypeslib.as_array(v.outer_ptr, (m + 1,)) return sp.sparse.csr_matrix((data, row_indices, col_starts), shape=(m,n)) elif self.group == "Agenda": return Agenda(v.ptr) elif self.ndim: shape = [] size = 1 for i in range(self.ndim): shape.append(v.dimensions[i]) size *= v.dimensions[i] if size > 0: self.__array_interface__ = {"shape" : tuple(shape), "typestr" : "|f8", "data" : (v.ptr, False), "version" : 3} return np.asarray(self) else: return np.zeros(shape) else: try: return self.to_typhon() except: raise Exception("Type of workspace variable is not supported " + " by the interface.") def update(self): """ Update data references of the object. References to vector, matrices and tensors may change and must therefore be updated dynamically to ensure they are consistent with the state of the associated workspace. This method takes care of that. """ if not self.ws==None and self.ndim: v = arts_api.get_variable_value(self.ws.ptr, self.ws_id, self.group_id) shape = [] for i in range(self.ndim): shape.append(v.dimensions[i]) self.__array_interface__ = {"shape" : tuple(shape), "typestr" : "|f8", "data" : (v.ptr, False), "version" : 3} def erase(self): """ Erase workspace variable from its associated workspace. """ if self.ws: arts_api.erase_variable(self.ws.ptr, self.ws_id, self.group_id) self.ws = None def describe(self): """ Print the description of the variable as given in ARTS methods.cc """ print(self.description.format()) def to_typhon(self): """ Return the value of this variable as a typhon type. This function writes the value of the variable to a temporary file and reads it into Python using typhon load function. The purpose of this function is to access WSV whose groups are not natively supported by the C API. Returns: A typhon object with the same value as the WSV in the associated workspace. """ from typhon.arts.xml import load if not self.ws: raise Exception("Cannot retrieve the value of a variable without " + " associated Workspace.") with tempfile.TemporaryDirectory() as tmpdir: tfile = os.path.join(tmpdir, 'wsv.xml') self.ws.WriteXML("binary", self, tfile) v = load(tfile) return v def from_typhon(self, var): """ Set the value of this WSV in the associated workspace to the given typhon type. This function writes the value in ASCII format to a temporary file and reads it into the workspace Args: var: The value to which this WSV should be set in the associated workspace. """ from typhon.arts.xml import save if not self.ws: raise Exception("Cannot set the value of a variable without " + " associated Workspace.") with tempfile.TemporaryDirectory() as tmpdir: tfile = os.path.join(tmpdir, 'wsv.xml') save(var, tfile, format='binary') self.ws.ReadXML(self, tfile) # Get ARTS WSV groups group_names = [arts_api.get_group_name(i).decode("utf8") for i in range(arts_api.get_number_of_groups())] group_ids = dict([(id, name) for (name,id) in enumerate(group_names)]) workspace_variables = dict() for v in WorkspaceVariable.iter(): globals()[v.name] = v workspace_variables[v.name] = v
python
from collections import OrderedDict from time import time import unittest try: from django.test.runner import DiscoverRunner except ImportError: raise("Django 1.8 or 1.9 needs to be installed to use this test runner.") from .tabulate import tabulate class Bcolors: MAGENTA = '\033[95m' BLUE = '\033[1;94m' TURQ = '\033[96m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' END = '\033[0m' def disable(self): self.HEADER = '' self.OKBLUE = '' self.OKGREEN = '' self.WARNING = '' self.FAIL = '' self.ENDC = '' def get_color(runtime, longest_test): """ Returns color based on test time. Tests under .5s get GREEN Tests higher than .5 are divided into three segments slow, painful, agonizing Yellow, Magenta, Red """ if runtime < .5: return Bcolors.GREEN segment = ((longest_test - .5) / 3) runtime -= .5 if runtime <= segment: return Bcolors.YELLOW elif runtime <= segment * 2: return Bcolors.MAGENTA return Bcolors.RED class BenchTextTestResult(unittest.TextTestResult): """Overrides TextTestRunner to add benchmartk tool""" def __init__(self, *args, **kwargs): self.benchmark = kwargs.pop('benchmark') super(BenchTextTestResult, self).__init__(*args, **kwargs) self.bench_dict = OrderedDict() def startTestRun(self): pass def write_totals(self, table, class_name, totals): table.append({ "Test": "---------------------------", "Runtime": "-------", "Percent": "-------", }) table.append({ "Test": "{}{}{}".format(Bcolors.TURQ, class_name, Bcolors.END), "Runtime": "{0}{1:.5f}{2}".format( Bcolors.TURQ, totals['runtime'], Bcolors.END ), "Percent": "{}{:>7.2f}%{}".format( Bcolors.TURQ, totals['percent'], Bcolors.END) }) def stopTestRun(self): if not self.benchmark: return total_run_time = 0 longest_test = 0 # Loop through tests to get total run time for class_name, runtimes in self.bench_dict.items(): runtimes['runtime'] = runtimes['stop'] - runtimes['start'] total_run_time += runtimes['runtime'] longest_test = max(longest_test, runtimes['runtime']) table = list() totals = {'runtime': 0, 'percent': 0} class_name = '' for full_path, runtimes in self.bench_dict.items(): runtime = runtimes['runtime'] color = get_color(runtime, longest_test) # Write header/divider for new class if class_name != runtimes['class_name']: if totals['runtime'] > 0: self.write_totals(table, class_name, totals) totals = {'runtime': 0, 'percent': 0} class_name = runtimes['class_name'] module = runtimes['module'] table.append({}) table.append({"Test": "{}{}.{}{}".format( Bcolors.BLUE, module, class_name, Bcolors.END )}) percent = runtime / total_run_time * 100 totals['runtime'] += runtime totals['percent'] += percent table.append({ "Test": ": " + runtimes['test_name'], "Runtime": "{0}{1:.5f}{2}".format( color, runtime, Bcolors.END ), "Percent": "{:>7.2f}%".format(percent) }) self.write_totals(table, class_name, totals) self.stream.writeln() self.stream.writeln() self.stream.writeln(tabulate( table, headers="keys", aligns=('left', 'right', 'right') )) def parseTest(self, test): module = test.__module__ class_name = test.__class__.__name__ test_name = test._testMethodName uniq = "{}.{}.{}".format(module, class_name, test_name) return uniq, module, class_name, test_name def startTest(self, test): # Run at start of each test method uniq, module, class_name, test_name = self.parseTest(test) self.bench_dict[uniq] = { 'start': time(), 'test_name': test_name, 'class_name': class_name, 'module': module, } super(BenchTextTestResult, self).startTest(test) def stopTest(self, test): uniq, module, class_name, test_name = self.parseTest(test) super(BenchTextTestResult, self).stopTest(test) self.bench_dict[uniq]['stop'] = time() class BenchTextTestRunner(unittest.TextTestRunner): """Overrides TextTestRunner to add benchmartk tool""" resultclass = BenchTextTestResult def __init__(self, *args, **kwargs): self.benchmark = kwargs.pop('benchmark') super(BenchTextTestRunner, self).__init__(*args, **kwargs) def _makeResult(self): return self.resultclass( self.stream, self.descriptions, self.verbosity, benchmark=self.benchmark ) class BenchRunner(DiscoverRunner): test_runner = BenchTextTestRunner def __init__(self, *args, **kwargs): super(BenchRunner, self).__init__(*args, **kwargs) self.benchmark = kwargs.get('benchmark', False) @classmethod def add_arguments(cls, parser): super(BenchRunner, cls).add_arguments(parser) parser.add_argument('-b', '--benchmark', action='store_true', dest='benchmark', default=False, help='Record and display a benchark of the run tests.') def run_suite(self, suite, **kwargs): resultclass = self.get_resultclass() return self.test_runner( verbosity=self.verbosity, failfast=self.failfast, resultclass=resultclass, benchmark=self.benchmark, ).run(suite)
python
#!/usr/bin/env python # Copyright (C) 2013 Apple Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. import re def cssminify(css): rules = ( (r"\/\*.*?\*\/", ""), # delete comments (r"\n", ""), # delete new lines (r"\s+", " "), # change multiple spaces to one space (r"\s?([;{},~>!])\s?", r"\1"), # delete space where it is not needed (r":\s", ":"), # delete spaces after colons, but not before. E.g. do not break selectors "a :focus", "b :matches(...)", "c :not(...)" where the leading space is significant (r"\s?([-+])(?:\s(?![0-9(])(?!var))", r"\1"), # delete whitespace around + and - when not followed by a number, paren, or var(). E.g. strip for selector "a + b" but not "calc(a + b)" which requires spaces. (r";}", "}") # change ';}' to '}' because the semicolon is not needed ) css = css.replace("\r\n", "\n") for rule in rules: css = re.compile(rule[0], re.MULTILINE | re.UNICODE | re.DOTALL).sub(rule[1], css) return css if __name__ == "__main__": import sys if sys.version_info[0] == 3 and sys.stdin.encoding != 'UTF-8': import io sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='UTF-8') sys.stdout.write(cssminify(sys.stdin.read()))
python
import click import requests from bs4 import BeautifulSoup from ....utils.logging import logger url = "https://www.codechef.com" def login_web(self): global codechef_session codechef_session = self.session username = click.prompt('username') password = click.prompt('password', hide_input=True) login(username, password) session_data = { 'cookies': codechef_session.cookies } logger.debug('returning session data\n %s' % session_data) return session_data def login(username, password): login_url = url+"/" login_page = codechef_session.get(login_url) form_feilds = BeautifulSoup(login_page.text, "html.parser").findAll("input") form_data = {"pass": password, "name": username} for i in form_feilds: attrs = i.attrs if "name" in attrs: if "value" in attrs and attrs["value"]: form_data[attrs["name"]] = attrs["value"] try: logged_page = codechef_session.post(login_url, form_data) except BaseException: raise else: # logout all other sessions as codechef doesn't allow multiple sessions if("session/limit" in logged_page.url): click.confirm("Session limit exceeded\n" + "Do you want to logout of other sessions", default=True, abort=True) logger.info("logging you out of all other sessions\n" + "this may take some time...") if "session/limit" in logged_page.url: logout_other_session() # codechef doesn't check cookies and trivially displays # the latest as current session # handle this using modifying logout_other_session by # logging out after checking session cookies # and matching with form data. trivially the following solution works logged_page = codechef_session.post(url, form_data) if len( BeautifulSoup( logged_page.text, "html.parser").findAll("input")) > 0 and is_logged_in(): click.confirm( "You are/have tried to login to codechef while" + "the script was running\nDo you want to try login again?", default=True, abort=True) login(username, password) else: if(is_logged_in()): return else: raise Exception("credential_error") def logout_other_session(): global codechef_session sess_url = url+"/session/limit" try: session_page = codechef_session.get(sess_url) except BaseException: raise form_feilds = BeautifulSoup( session_page.text, "html.parser").findAll("input") form_data = {} logger.debug(form_feilds) for j in range(len(form_feilds)-5): i = form_feilds[j] attrs = i.attrs if "name" in attrs: if "value" in attrs and attrs["value"]: form_data[attrs["name"]] = attrs["value"] for j in [-1, -2, -3, -4]: i = form_feilds[j] attrs = i.attrs if "name" in attrs: if "value" in attrs and attrs["value"]: form_data[attrs["name"]] = attrs["value"] try: # no need to assign to a variable logger.debug(form_data) codechef_session.post(sess_url, data=form_data) except BaseException: raise def is_logged_in(): global codechef_session user_url = "https://www.codechef.com/api/user/me" try: page = codechef_session.get(user_url).json() except BaseException: return None if(not page["user"]["username"]): return False else: return True
python
import socket, argparse, termcolor, threading open_ports = [] def get_open_ports(host, ports): global open_ports for port in ports: try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(0.5) s.connect((host, port)) open_ports.append(port) print(f"{termcolor.colored('[+] Open:', 'green')} {port}") s.close() except: pass return open_ports def divide_chunks(l, n): for i in range(0, len(l), n): yield l[i:i + n] parser = argparse.ArgumentParser() parser.add_argument("-t", "--threads", help="Number of threads", type=int, default=10) parser.add_argument("-p", "--ports", help="Ports to scan", type=list, default=range(1, 65536)) parser.add_argument("-i", "--ip", help="IP to scan", type=str, default="", required=True) args = parser.parse_args() host = args.ip ports = args.ports threads = args.threads print(f"[+] Scanning {host}") chunks = list(divide_chunks(ports, len(ports)//threads+1)) for i in range(threads): t = threading.Thread(target=get_open_ports, args=(host, chunks[i])) t.start() t.join(0.1)
python
from urllib.parse import ParseResult, urlencode, urlparse class URLUtility(object): """Contains different helper methods simplifying URL construction.""" @staticmethod def build_url(base_url, query_parameters): """Construct a URL with specified query parameters. :param base_url: Base URL :type base_url: str :param query_parameters: Dictionary containing query parameters :type query_parameters: Dict :return: Constructed URL :rtype: str """ result = urlparse(base_url) result = ParseResult( result.scheme, result.netloc, result.path, result.params, urlencode(query_parameters), result.fragment, ) return result.geturl()
python
import sys from queue import PriorityQueue from utils import Point import numpy as np class Astar(object): def __init__(self): self.N = 0 self.V = [] self.E = [] self.closed = set([]) def goalTest(self, u): return u == self.N - 1 def moveGen(self, u): return zip(range(self.N), self.E[u]) def f(self, u): return self.g(u) + self.h2(u) def g(self, u): return self.V[u].value def h1(self, u): return 10*self.V[u].distance(self.V[-1]) def h2 (self, u): return np.exp(- self.V[u].distance(self.V[-1]) ) def h3(self, u): return self.V[u].distance(self.V[-1]) def takeInput(self, filename): with open(filename, "r") as file: self.N = int( next(file).rstrip() ) readLine = lambda x: list(map(int, x.rstrip().split())) self.V = [ Point( *readLine(next(file)) ) for i in range(self.N) ] self.E = [ readLine(next(file)) for i in range(self.N) ] def reconstructPath(self): v = self.N - 1 path = [] while v is not None: path.append(v) v = self.V[v].parent path.reverse() cost = sum(self.E[path[i-1]][path[i]] for i in range(1, len(path))) return cost, path def propagateImprovement(self, u): for v, w in self.moveGen(u): if w != 0: newVal = self.g(u) + w if newVal < self.g(v): self.V[v].parent = u self.V[v].value = newVal if(v in self.closed): self.propagateImprovement(v) def getShortestPath(self): """ calculate the shortest path from vertex 0 and N-1 returns cost, path g(u): path length from 0 to u h1(u): euclidean distance from u to goal f(u) = g(u) + h1(u), used as p in priority queue """ Q = PriorityQueue() # implemented with lazy update self.V[0].value = 0 Q.put( (self.f(0), 0) ) self.closed = set([0]) while not Q.empty(): f, u = Q.get() if self.goalTest(u): return self.reconstructPath() self.closed.add(u) for v, w in self.moveGen(u): if w != 0 and v not in self.closed: # add to queue only if this reduces the path length newValue = self.g(u) + w if newValue < self.g(v): self.V[v].value = newValue self.V[v].parent = u Q.put( (self.f(v), v) ) if w != 0 and v in self.closed: newValue = self.g(u) + w if newValue < self.g(v): self.V[v].parent = u self.V[v].value = newValue self.propagateImprovement(v) def testPrint(self, filename): self.takeInput(filename) cost, path = self.getShortestPath() print(cost) print(*path, sep=" ") A = Astar() A.testPrint(sys.argv[1])
python
import os import re import tempfile import subprocess import typing from typing import Any import logging from rever.tools import replace_in_file from conda_forge_tick.xonsh_utils import indir from conda_forge_tick.utils import eval_cmd from conda_forge_tick.recipe_parser import CondaMetaYAML from conda_forge_tick.migrators.core import ( MiniMigrator, _get_source_code, ) LOGGER = logging.getLogger("conda_forge_tick.migrators.cross_compile") class UpdateConfigSubGuessMigrator(MiniMigrator): post_migration = True def filter(self, attrs: "AttrsTypedDict", not_bad_str_start: str = "") -> bool: build_reqs = attrs.get("requirements", {}).get("build", set()) needed = False for compiler in [ "fortran_compiler_stub", "c_compiler_stub", "cxx_compiler_stub", ]: if compiler in build_reqs: needed = True break return not needed def migrate(self, recipe_dir: str, attrs: "AttrsTypedDict", **kwargs: Any) -> None: cb_work_dir = _get_source_code(recipe_dir) if cb_work_dir is None: return directories = set() with indir(cb_work_dir): for dp, dn, fn in os.walk("."): for f in fn: if f != "config.sub": continue if os.path.exists(os.path.join(dp, "config.guess")): directories.add(dp) if not directories: return with indir(recipe_dir): if not os.path.exists("build.sh"): return with open("build.sh", "r") as f: lines = list(f.readlines()) insert_at = 0 if lines[0].startswith("#"): insert_at = 1 for d in directories: lines.insert( insert_at, f"cp $BUILD_PREFIX/share/libtool/build-aux/config.* {d}\n", ) lines.insert(insert_at, "# Get an updated config.sub and config.guess\n") with open("build.sh", "w") as f: f.write("".join(lines)) with open("meta.yaml") as f: lines = f.splitlines() for i, line in enumerate(lines): if line.strip().startswith("- {{ compiler"): new_line = " " * (len(line) - len(line.lstrip())) new_line += "- libtool # [unix]\n" lines.insert(i, new_line) break with open("meta.yaml", "w") as f: f.write("".join(lines))
python
from argparse import ArgumentParser from functools import partial from traceback import StackSummary import asyncio import enum import logging import ssl import time import os from stem import CircStatus # type: ignore from stem.control import Controller, EventType # type: ignore from stem.response.events import CircuitEvent, FFMeasEvent # type: ignore from transitions import Machine # type: ignore from typing import Tuple, Union, Set, Dict from .. import tor_client from .. import msg from ..tor_ctrl_msg import MeasrStartMeas class CoordProtocol(asyncio.Protocol): transport = None def connection_made(self, transport): log.debug('Connected to coord') self.transport = transport def connection_lost(self, exc): machine.change_state_nonfatal_error('Lost connection with coord') pass def data_received(self, data: bytes): ''' Receive data from the coordinator. Parse it into a FFMsg and tell other code about the message. It's possible that this is called before the entire message is received. In that case, we'll need to edit this function to buffer bytes until the entire message has arrived. ''' log.info('Received %d bytes: %s', len(data), data) m = msg.FFMsg.deserialize(data) machine.notif_coord_msg(m) class Measurement: ''' State related to a single measurement. ''' #: keep a copy of :class:`flashflow.msg.ConnectToRelay` command so we can #: send it back to the coord when we're ready to go (or have failed) connect_msg: msg.ConnectToRelay #: Our circuit ids with the relay. Filled in once we know what they are #: (they're launched) but not yet bullt circs: Set[int] #: Our built circuit ids with the relay. Filled in as we learn of launched #: circuits becoming built. ready_circs: Set[int] #: Our circuit ids that we've been told have CLOSED or FAILED at any point bad_circs: Set[int] def __init__(self, connect_msg: msg.ConnectToRelay): self.connect_msg = connect_msg self.circs = set() self.ready_circs = set() self.bad_circs = set() @property def meas_id(self) -> int: ''' The measurement ID ''' return self.connect_msg.meas_id @property def relay_fp(self) -> str: ''' The fingerprint of the relay to measure ''' return self.connect_msg.fp @property def meas_duration(self) -> int: ''' The duration, in seconds, that active measurement should last. ''' return self.connect_msg.dur @property def waiting_circs(self) -> Set[int]: ''' Circs that we have LAUNCHED but have not yet added to ready_circs because we haven't seen BUILT yet. Note that as far as this function is concerned, there's no such thing as a circuit becoming un-BUILT. This functiion doesn't know anything about circuits closing. Other code needs to manipulate circs and ready_circs as it deems fit. ''' return self.circs - self.ready_circs class States(enum.Enum): ''' States that we, as a FlashFlow measurer, can be in. ''' #: State in which we are created and to which we return when there's a #: non-fatal error START = enum.auto() #: First "real" state. Launch a tor client and connect to it. ENSURE_CONN_W_TOR = enum.auto() #: Second real state. Connect to the coordinator. ENSURE_CONN_W_COORD = enum.auto() #: Normal state. We're doing measurements or waiting to be told to do them. #: We are usually here. READY = enum.auto() #: There was some sort of error that calls for cleaning everything up and #: essentially relaunching, but we shouldn't outright die. NONFATAL_ERROR = enum.auto() #: There is a serious error that isn't recoverable. Just cleanup and die. FATAL_ERROR = enum.auto() class StateMachine(Machine): ''' State machine and main control flow hub for FlashFlow measurer. change_state_*: State transitions are named change_state_* and don't exist here in the code. The Machine class takes care of making them based on the triggers in the list of possible transitions. For example: change_state_starting is named as the trigger for transitions from either START or NONFATAL_ERROR into ENSURE_CONN_W_TOR. on_enter_*: This is how the Machine class finds functions to call upon entering the given state. For example, on_enter_NONFATAL_ERROR() is called when we are transitioning to the NONFATAL_ERROR state. These functions should be kept short. Significant work/logic should be done in other functions that these call or schedule for calling later. _*: Other internal functions. See their documentation for more information on them. ''' # conf # This is set in __init__ tor_client: Controller # how we communicate with the coord coord_trans: asyncio.WriteTransport coord_proto: CoordProtocol measurements: Dict[int, Measurement] def __init__(self, conf): self.conf = conf self.measurements = {} super().__init__( model=self, states=States, transitions=[ { 'trigger': 'change_state_starting', 'source': [States.START, States.NONFATAL_ERROR], 'dest': States.ENSURE_CONN_W_TOR, }, { 'trigger': 'change_state_connected_to_tor', 'source': States.ENSURE_CONN_W_TOR, 'dest': States.ENSURE_CONN_W_COORD, }, { 'trigger': 'change_state_connected_to_coord', 'source': States.ENSURE_CONN_W_COORD, 'dest': States.READY, }, { 'trigger': 'change_state_nonfatal_error', 'source': '*', 'dest': States.NONFATAL_ERROR, }, { 'trigger': 'change_state_fatal_error', 'source': '*', 'dest': States.FATAL_ERROR, }, ], initial=States.START, # Do not create .to_<state>() methods, which allow transition to # <state> regardless of current state auto_transitions=False, ) def _ensure_conn_w_tor(self): ''' Main function in the ENSURE_CONN_W_TOR state. Launch a tor client and connect to it. Save the Controller object. ''' assert self.state == States.ENSURE_CONN_W_TOR # TODO: what happens if tor client disappears? Exception thrown? What?? # And what should we do about it? Try to relaunch? Just die? Choose # **something** c = tor_client.launch( self.conf.getpath('tor', 'tor_bin'), self.conf.getpath('measurer', 'tor_datadir'), self.conf.get('tor', 'torrc_extra_lines') ) if not c: log.error('Unable to launch and connect to tor client') self.change_state_fatal_error() return c.add_event_listener(self.notif_circ_event, EventType.CIRC) c.add_event_listener(self.notif_ffmeas_event, EventType.FF_MEAS) self.tor_client = c self.change_state_connected_to_tor() def _ensure_conn_w_coord(self, delay: float): ''' Main function in the ENSURE_CONN_W_COORD state. Repeatedly try connecting to the coordinator until we are successful or have a fatal error warranting completely giving up on life. This function uses asynchronous python: the connection is represented by a transport and protocol, and we try connecting asynchronously and use a callback to find out the result. That said, the work done here should probably be the only thing going on. ''' assert self.state == States.ENSURE_CONN_W_COORD # TODO: what if connection goes away? # Get the (host, port) from "host:port" coord_addr_port = self.conf.getaddr('measurer', 'coord_addr') if coord_addr_port is None: log.error('Don\'t know where coord is') self.change_state_fatal_error() return # Callback to get the result of one connection attempt. If it didn't # work and it wasn't fatal, schedule calling this function again some # time in the future. If fatal, die. If successful, save the transport # and protocol and move on! def cb(fut): nonlocal delay # It's possible that the programmer didn't catch all exceptions. # If the result is an exception, this *should* bubble up to the # default exception handler, _exception_handler(...). success_code, stuff_or_error = fut.result() # Now check if we were successful, fatally unable to connect, or if # we should retry. if success_code == CoordConnRes.FATAL_ERROR: log.error( 'Fatal error connecting to coordinator: %s', stuff_or_error) self.change_state_fatal_error() return elif success_code == CoordConnRes.RETRY_ERROR: delay = min(2 * delay, 60) log.warn( 'Unable to connect to coordinator: %s. Retrying in %.2fs.', stuff_or_error, delay) loop.call_later( delay, partial(self._ensure_conn_w_coord, delay)) return assert success_code == CoordConnRes.SUCCESS assert not isinstance(stuff_or_error, str) self.coord_trans, self.coord_proto = stuff_or_error self.change_state_connected_to_coord() # Kick off the asyncronous attempt to connect and attach the above # callback so we can get the result. task = asyncio.Task(_try_connect_to_coord( coord_addr_port, self.conf.getpath('measurer', 'key'), self.conf.getpath('measurer', 'coord_cert'), )) task.add_done_callback(cb) # This is asynchronous python. We end immediately and the callback will # eventually be called with the connection results. Nothing left to do # for now. def _complete_cleanup(self): ''' Cleanup all of our state while being very careful to not allow any exceptions to bubble up. Use this when in an error state and you want to cleanup before starting over or just dying. ''' if hasattr(self, 'tor_client') and self.tor_client: log.info('cleanup: closing tor') try: self.tor_client.close() except Exception as e: log.error('Error closing tor: %s', e) if hasattr(self, 'coord_trans') and self.coord_trans: log.info('cleanup: closing coord transport') try: self.coord_trans.close() except Exception as e: log.error('Error closing transport with coord: %s', e) if hasattr(self, 'coord_proto') and self.coord_proto: # nothing to do pass if hasattr(self, 'measurements') and self.measurements: log.info( 'cleanup: forgetting about %d measurements', len(self.measurements)) self.measurements = {} def _die(self): ''' End execution of the program. ''' loop.stop() # ######################################################################## # STATE CHANGE EVENTS. These are called when entering the specified state. # ######################################################################## def on_enter_READY(self): pass def on_enter_ENSURE_CONN_W_TOR(self): loop.call_soon(self._ensure_conn_w_tor) def on_enter_ENSURE_CONN_W_COORD(self): loop.call_soon(partial(self._ensure_conn_w_coord, 0.5)) def on_enter_NONFATAL_ERROR(self, err_msg: str): log.error('nonfatal error: %s', err_msg) loop.call_soon(self._complete_cleanup) loop.call_soon(self.change_state_starting) def on_enter_FATAL_ERROR(self): # log.error('We encountered a fatal error :(') self._complete_cleanup() self._die() # ######################################################################## # MESSAGES FROM COORD. These are called when the coordinator tells us # something. # ######################################################################## def notif_coord_msg(self, message: msg.FFMsg): msg_type = type(message) if self.state != States.READY: log.warn( 'Coord sent us message but we are not ready. Dropping. %s', message) return # The asserts below are for shutting up mypy if msg_type == msg.ConnectToRelay: assert isinstance(message, msg.ConnectToRelay) return self._notif_coord_msg_ConnectToRelay(message) elif msg_type == msg.Failure: assert isinstance(message, msg.Failure) return self._notif_coord_msg_Failure(message) elif msg_type == msg.Go: assert isinstance(message, msg.Go) return self._notif_coord_msg_Go(message) log.warn( 'Unexpected/unhandled %s message. Dropping. %s', msg_type, message) def _notif_coord_msg_ConnectToRelay(self, message: msg.ConnectToRelay): # caller should have verified and logged about this already assert self.state == States.READY meas_id = message.meas_id if meas_id in self.measurements: fail_msg = msg.Failure(msg.FailCode.M_DUPE_MEAS_ID, meas_id) log.error(fail_msg) self.coord_trans.write(fail_msg.serialize()) return meas = Measurement(message) ret = tor_client.send_msg( self.tor_client, MeasrStartMeas( meas.meas_id, meas.relay_fp, message.n_circs, meas.meas_duration)) # Make sure the circuit launches went well. Note they aren't built yet. # It's just that tor found nothing obviously wrong with trying to build # these circuits. if not ret.is_ok(): fail_msg = msg.Failure( msg.FailCode.LAUNCH_CIRCS, meas_id, extra_info=str(ret)) log.error(fail_msg) self.coord_trans.write(fail_msg.serialize()) return # We expect to see "250 FF_MEAS 0 LAUNCHED CIRCS=1,2,3,4,5", where the # 0 is the measurement ID we told the tor client, and the actual list # of launched circuits is CIRCS the comma-separated list code, _, content = ret.content()[0] # Already checked this above with ret.is_ok() assert code == '250' parts = content.split() if len(parts) != 4 or \ not parts[0] == 'FF_MEAS' or \ not parts[2] == 'LAUNCHED' or \ not parts[3].startswith('CIRCS='): fail_msg = msg.Failure( msg.FailCode.MALFORMED_TOR_RESP, meas_id, extra_info=str(ret)) log.error(fail_msg) self.coord_trans.write(fail_msg.serialize()) return meas.circs.update({ int(circ_id_str) for circ_id_str in parts[3].split('=')[1].split(',') }) log.info( 'Launched %d circuits with relay %s: %s', len(meas.circs), meas.relay_fp, meas.circs) self.measurements[meas_id] = meas # That's all for now. We stay in this state until Tor tells us it has # finished building all circuits def _notif_coord_msg_Go(self, go_msg: msg.Go): # caller should have verified and logged about this already assert self.state == States.READY meas_id = go_msg.meas_id if meas_id not in self.measurements: fail_msg = msg.Failure(msg.FailCode.M_UNKNOWN_MEAS_ID, meas_id) log.error(fail_msg) self.coord_trans.write(fail_msg.serialize()) # TODO: cleanup Measurement return meas = self.measurements[meas_id] start_msg = MeasrStartMeas( meas.meas_id, meas.relay_fp, len(meas.ready_circs), meas.meas_duration) ret = tor_client.send_msg(self.tor_client, start_msg) if not ret.is_ok(): fail_msg = msg.Failure(msg.FailCode.M_START_ACTIVE_MEAS, meas_id) log.error(fail_msg) self.coord_trans.write(fail_msg.serialize()) # TODO: cleanup Measurement return # ######################################################################## # MISC EVENTS. These are called from other parts of the measr code. # ######################################################################## def notif_ffmeas_event(self, event: FFMeasEvent): ''' Called from stem to tell us about FF_MEAS events. These events come from a different thread. We tell the main thread's loop (in a threadsafe manner) to handle this event in the similarly named function with a leading underscore. ''' loop.call_soon_threadsafe(partial(self._notif_ffmeas_event, event)) def _notif_ffmeas_event(self, event: FFMeasEvent): ''' Actually handle the FF_MEAS event. We look for: - per-second BW_REPORTs of the amount of measurement traffic sent and received, and we will fowarded those on to the coordinator. - a END message at the end signally success. ''' if event.ffmeas_type == 'BW_REPORT': log.debug( 'Forwarding report of %d/%d sent/recv meas bytes', event.sent, event.recv) report = msg.BwReport( event.meas_id, time.time(), event.sent, event.recv) self.coord_trans.write(report.serialize()) return elif event.ffmeas_type == 'END': log.info( 'Tor client tells us meas %d finished %ssuccessfully%s', event.meas_id, '' if event.success else 'un', '. Cleaning up.' if event.meas_id in self.measurements else ', but we don\'t know about it. Dropping.') if event.meas_id not in self.measurements: return del self.measurements[event.meas_id] return log.warn( 'Unexpected FF_MEAS event type %s. Dropping.', event.ffmeas_type) return def notif_circ_event(self, event: CircuitEvent): ''' Called from stem to tell us about circuit events. These events come from a different thread. We tell the main thread's loop (in a threadsafe manner) to handle this event in the similarly named function with a leading underscore. ''' loop.call_soon_threadsafe(partial(self._notif_circ_event, event)) def _notif_circ_event(self, event: CircuitEvent): ''' Actually handle the circuit event. We usually don't care, but sometimes we are waiting on circuits to be built with a relay. This runs in the main thread's loop unlike the similarly named function (without a leading underscore) that tells the loop to call us. ''' circ_id = int(event.id) # We don't care about anything unless we're in the main state where we # do measurements if self.state != States.READY: return # Make sure it's a circuit we care about all_circs: Set[int] = set.union( # in case there's no measurements, add empty set to avoid errors set(), *[meas.circs for meas in self.measurements.values()]) waiting_circs: Set[int] = set.union( # in case there's no measurements, add empty set to avoid errors set(), *[meas.waiting_circs for meas in self.measurements.values()]) if circ_id not in all_circs: # log.warn( # 'Ignoring CIRC event not for us. %d not in any ' # 'measurement\'s set of all circuits', # circ_id) return # Act based on the type of CIRC event if event.status == CircStatus.BUILT: if circ_id not in waiting_circs: log.warn( 'CIRC BUILT event for circ %d we do care about but that ' 'isn\'t waiting. Shouldn\'t be possible. %s. Ignoring.', circ_id, event) return # Tell all interested Measurements (should just be one, but do all # that claim to care about this circuit, just in case) that the # circuit is built for meas in self.measurements.values(): if circ_id not in meas.circs: continue meas.ready_circs.add(circ_id) log.debug( 'Circ %d added to meas %d\'s built circs. Now ' 'have %d/%d', circ_id, meas.meas_id, len(meas.ready_circs), len(meas.circs)) # If all are built, then tell coord this measurement is ready if len(meas.ready_circs) < len(meas.circs): continue log.info('Meas %d built all circs', meas.meas_id) self.coord_trans.write(msg.ConnectedToRelay( meas.connect_msg).serialize()) return elif event.status in [CircStatus.LAUNCHED, CircStatus.EXTENDED]: # ignore these return elif event.status in [CircStatus.CLOSED, CircStatus.FAILED]: # Tell all interested Measurements (should just be one, but do all # that claim to care about this circuit, just in case) that the # circuit has closed or failed for meas in self.measurements.values(): if circ_id not in meas.circs: continue meas.bad_circs.add(circ_id) log.info( 'Meas %d\'s circ %d is now closed/failed: %s', meas.meas_id, circ_id, event) return # It's for us, but don't know how to handle it yet log.warn('Not handling CIRC event for us: %s', event) class CoordConnRes(enum.Enum): ''' Part of the return value of :meth:`_try_connect_to_coord`. ''' #: We successfully connected to the coord, shook our TLS hands, and all is #: well. SUCCESS = enum.auto() #: We were not successful, but whatever happened may be temporary and it's #: logical to try connecting again in the future. RETRY_ERROR = enum.auto() #: We were not successful, and trying again in the future is extremely #: unlikely to be successful. We should give up. FATAL_ERROR = enum.auto() async def _try_connect_to_coord( addr_port: Tuple[str, int], our_key: str, coord_cert: str, ) -> Tuple[ CoordConnRes, Union[ str, Tuple[asyncio.BaseTransport, asyncio.BaseProtocol]]]: ''' Try to connect to the coordinator at the given (host, port) tuple. Perform the TLS handshake using our client TLS key in the file `our_key` and only trusting the coord server cert in the file `coord_cert`. Returns a tuple in all cases. The first item indicates success with CoordConnRes. If it is an *_ERROR, then the second item is a string with more details. If it is SUCCESS, then the second item is the transport and protocol with the coordinator. This function is a coroutine and all exceptions **should** be handled within this function's body. If they aren't, that's a programming error. To handle the case of unhandled exceptions, wrap this function in a Task/Future, then catch and handle the generic Exception. def cb(fut): # handle the completion of the Task, whether successful or not pass task = asyncio.Task(_try_connect_to_coord(...)) task.add_done_callback(cb) try: result = task.result() except Exception as e: log.error( 'An unhandled exception occurred. Tell your programmer: %s', e) # Additional code to handle the error, as necessary ''' if not os.path.isfile(our_key): return CoordConnRes.FATAL_ERROR, our_key + ' does not exist' if not os.path.isfile(coord_cert): return CoordConnRes.FATAL_ERROR, coord_cert + ' does not exist' ssl_context = ssl.SSLContext() # Load our TLS private key and certificate ssl_context.load_cert_chain(our_key) # Load the certificate of the coord ssl_context.load_verify_locations(coord_cert) ssl_context.verify_mode = ssl.CERT_REQUIRED try: res = await loop.create_connection( CoordProtocol, addr_port[0], addr_port[1], ssl=ssl_context, ) except OSError as e: return CoordConnRes.RETRY_ERROR, str(e) return CoordConnRes.SUCCESS, res def _exception_handler(loop, context): log.error('%s', context['message']) if 'exception' in context: log.error(context['exception']) if 'handle' in context: log.error(context['handle']) if 'source_traceback' in context: log.error('Traceback:') summary = StackSummary.from_list(context['source_traceback']) for line_super in summary.format(): # The above line has multiple lines in it for line in line_super.split('\n'): if len(line): log.error(' %s', line) else: log.error('Traceback not available. Run with PYTHONASYNCIODEBUG=1') machine.change_state_fatal_error() # # Not sure if this would actually work here. Maybe add to the logging config # # file? # # https://docs.python.org/3.6/library/asyncio-dev.html#logging # logging.getLogger('asyncio').setLevel(logging.WARNING) log = logging.getLogger(__name__) loop = asyncio.get_event_loop() machine: StateMachine def gen_parser(sub) -> ArgumentParser: ''' Add the cmd line options for this FlashFlow command ''' d = 'Run as a FlashFlow measurer.' p = sub.add_parser('measurer', description=d) return p # This function needs **some sort** of type annotation so that mypy will check # the things it does. Adding the return value (e.g. '-> None') is enough def main(args, conf) -> None: global machine os.makedirs(conf.getpath('measurer', 'datadir'), mode=0o700, exist_ok=True) os.makedirs(conf.getpath('measurer', 'keydir'), mode=0o700, exist_ok=True) machine = StateMachine(conf) loop.set_exception_handler(_exception_handler) loop.call_soon(machine.change_state_starting) try: loop.run_forever() finally: loop.run_until_complete(loop.shutdown_asyncgens()) loop.close() return
python
from collections import Counter def read_sequence(datapath): protein_sequence = [] cleavage_site = [] # Loop condition conveniently discards the description lines with open(datapath, 'r') as f: while f.readline() is not '': # Slicing with :-1 to discard "\n" character protein_sequence.append(f.readline()[:-1]) cleavage_site.append(f.readline()[:-1]) return protein_sequence, cleavage_site def return_alphabet(sequence_list): # Returns the alphabet present in sequence_list. Useful for dimension minimality. alphabet = Counter() for seq in sequence_list: for letter in seq: alphabet[letter] += 1 alphabet = sorted(list(alphabet)) return alphabet def return_cleavpos(cleavage_list): # Returns a list with the position of the cleavage point for each sequence in cleavage_list. position_list = [0] * len(cleavage_list) cont = 0 for seq in cleavage_list: # Index is found using binary search. start = 0 end = len(seq) index = int((end + start) / 2) while seq[index] is not 'C': if seq[index] == 'S': start = index else: end = index index = int((end + start) / 2) position_list[cont] = index cont += 1 return position_list def all_subsequences(sequence, p, q): n = len(sequence) subseq_list = [] i = 0 while i < n - p - q: subseq_list.append(sequence[i:i + p + q]) i += 1 return subseq_list if __name__ == "__main__": # Functionality testing data_path = "/Users/bernardoveronese/Documents/INF442/INF442_Project2/Datasets/" data_file = "EUKSIG_13.red.txt" seq, cleav = read_sequence(data_path + data_file) arr = return_cleavpos(cleav) print(arr) alphabet = return_alphabet(seq) print(alphabet) print(dim)
python
리스트 = [100,200,300] for i in 리스트: print(i+10) menu = ["김밥","라면","튀김"] for i in menu: print("오늘의 메뉴:", i) 리스트 = ["하이닉스","삼성전자","LG전자"] for i in 리스트: print(len(i)) 리스트 = ['dog','cat', 'parrot'] for i in 리스트: print(i[0]) 리스트 = [1,2,3] for i in 리스트: print("3 x ", i) 리스트 = [1,2,3] for i in 리스트: print("3 x ", i, "=", i*3) 리스트 = ['가','나','다','라'] for i in 리스트[1:]: print(i) 리스트 = ['가','나','다','라'] for i in 리스트[::2]: print(i) 리스트 = ['가','나','다','라'] for i in 리스트[::-1]: print(i)
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Apr 17 09:17:38 2021 @author: maxmhuggins """ import matplotlib.pyplot as plt PV_i = 640 k = .25 time = range(0, 24) PV = [PV_i] for i in range(0, len(time)-1): PV.append(PV[i-1]*k+PV[i-1]) plt.plot(time, PV) print('Final value: %.2f' % PV[-1])
python
#! python3 # imageSiteDownloader.py ''' Write a program that goes to a photo-sharing site like Flickr or Imgur, searches for a category of photos, and then downloads all the resulting images. You could write a program that works with any photo site that has a search feature. ''' import requests, bs4, os, pprint, re os.chdir('C:\\Users\\Mack W\\Documents\\Python\\automateTheBoringStuffWithPython\\Chapter 11 Web Scraping\\Practice Projects') url = re.compile(r'c1.*\.jpg') # Which image site print('Website: ', end='') website = input().lower() # Which category print('Search: ', end='') search = input().lower() path = os.getcwd() + '\\' + search + '.txt' # Request site if os.path.isfile(path) == False: if website == 'flickr': res = requests.get('https://www.flickr.com/search/?text=%s' % search) elif website == 'imgur': res = requests.get('https://imgur.com/search?q=%s' % search) elif website == 'instagram': print('Instagram') else: print('It has to be either: flickr, imgur, or instagram.') print('Please run the program again.') res.raise_for_status() # Write html to file file = open('%s.txt' % search, 'wb') for chunk in res.iter_content(100000): file.write(chunk) file.close() # Create beautiful soup object file = open('%s.txt' % search) soup = bs4.BeautifulSoup(file, features="lxml") if os.path.isdir(search) == False: os.makedirs(search) os.chdir(search) if website == 'flickr': elems = soup.select('div[class="view photo-list-photo-view requiredToShowOnServer awake"]') for i in range(len(elems)): # find image url mo = url.search(elems[i].get('style')) res = requests.get('http://'+ mo.group()) res.raise_for_status() # Save image file = open('%d.jpg' % i, 'wb') for chunk in res.iter_content(100000): file.write(chunk) file.close() elif website == 'imgur': elems = soup.select('') elif website == 'instagram': elems = soup.select('')
python
# Python RegExp Syntax to Javascript RegExp Syntax Translator # This code was pulled from the repository at: # https://github.com/GULPF/rescrypt # Original license was MIT but was converted to Apache v2 for # ease of integrating with the Transcrypt project # # XXX: don't redefine those here T = (1<<0) TEMPLATE = T I = (1<<1) IGNORECASE = I # Deprecated L = (1<<2) LOCALE = L M = (1<<3) MULTILINE = M S = (1 << 4) DOTALL = S # Legacy - Unicode by default in Python 3 U = (1 << 5) UNICODE = U X = (1 << 6) VERBOSE = X DEBUG = (1<<7) A = (1<<8) ASCII = A # This is a javascript specific flag Y = (1 << 16) STICKY = Y G = (1 << 17) GLOBAL = G # This flag is used to indicate that re module should use # the javascript regex engine directly and not attempt to # translate the regex string into a python regex J = (1<<19) JSSTRICT = J __pragma__ ('tconv') def _read_escape(rgx, idx, append_to): # XXX: This must handle the case in `if c == '\\'`?: if rgx[idx] == '\\': if idx + 1 >= len(rgx): pass # XXX: exception # These three are regex escape codes # that doesn't exist in JS. if rgx[idx + 1] == 'A': append_to.append('^') elif rgx[idx + 1] == 'a': append_to.append('\\07') elif rgx[idx + 1] == 'Z': append_to.append('$') # Otherwise just leave as is. else: append_to.append('\\' + rgx[idx + 1]) idx += 2 else: append_to.append(rgx[idx]) idx += 1 return idx def _read_until(rgx, start, char, append_to): idx = start while idx < len(rgx) and rgx[idx] != char: idx = _read_escape(rgx, idx, append_to) if idx >= len(rgx): raise Exception("Unexpected end of input") # append_to.append(rgx[idx]) # idx += 1 return idx def _safe_char_at(s, idx): if idx >= len(s): return '' return s[idx] def translate(rgx, flags=0): # import re idx = 0 flagdict = { 'i': IGNORECASE, 'L': LOCALE, 'm': MULTILINE, 's': DOTALL, 'u': UNICODE, 'x': VERBOSE, 'a': ASCII } tokens = [] groupindex = {} n_capturings = 1 # Capturing indices start at 1 while idx < len(rgx): # The current and next character c = rgx[idx] n = _safe_char_at(rgx, idx + 1) # TODO: use read_escape instead if c == '\\': # These three are regex escape codes # that doesn't exist in JS. if n == 'A': value = '^' elif n == 'a': value = '\\07' elif n == 'Z': value = '$' # Otherwise just leave as is. else: value = '\\' + n tokens.append(value) idx += 2 elif c == '$': # '$' has slightly different semantics in Python and JS. # Note that /\Z/ in Python is equal to /$/ in JS. tokens.append('(?=\\n?$)') idx += 1 elif c == '{': # Rewrite `{,b}` to `{0,b}`. # Leave others as is. if n == ',': itr = idx + 2 b_nbrs = [] while rgx[itr] in '0123456789' and itr < len(rgx): b_nbrs.append(rgx[itr]) itr += 1 if rgx[itr] == '}': tokens.extend(["{", "0", ","] + b_nbrs) idx += 2 + len(b_nbrs) else: tokens.extend(["{", ","]) idx += 2 else: tokens.append(rgx[idx]) idx += 1 elif c == '[': # This requires no rewriting, but we need # to consume everything until the next # unescaped ']' to make sure that what's # inside of the set isn't interpreted as something # special (e.g /[(]/ is valid but /(/ isn't) tokens.append(rgx[idx]) idx += 1 if rgx[idx] == '^': tokens.append(rgx[idx]) idx += 1 # As a special rule, Python allows a literal ']' as the first # member of a set. E.g /[]]/ is a set containing ']', # and /[^]]/ is an inverted set containing ']'. if n == ']': tokens.append('\\' + n) idx += 1 idx = _read_until(rgx, idx, ']', tokens) tokens.append(']') idx += 1 elif c == '(' and n == '?': # Extension notation. n2 = _safe_char_at(rgx, idx + 2) n3 = _safe_char_at(rgx, idx + 3) # Named group def. # XXX: For simplicity this allows any chars in group name # but Python only allows valid identfiers. if n2 == 'P' and n3 == '<': namearr = [] idx += 4 # skip (?P< idx = _read_until(rgx, idx, '>', namearr) idx += 1 # skip '>' groupindex["".join(namearr)] = n_capturings n_capturings += 1 tokens.append('(') # Named group ref. elif n2 == 'P' and n3 == '=': namearr = [] idx += 4 # skip (?P= idx = _read_until(rgx, idx + 4, ')', namearr) idx += 1 # skip '>' name = "".join(namearr) if name not in groupindex: raise error("Unknown named capturing group: " + name) tokens.append('\\' + groupindex[name]) # Comment elif n2 == '#': idx = _read_until(rgx, idx, ')', []) idx += 1 # Skip ) # Flag elif n2 in flagdict: idx += 2 # NOTE: No reason to care about escape # sequences here since the only # valid letters are 'iLmsux'. while idx < len(rgx) and rgx[idx] != ')': if rgx[idx] not in flagdict: break flags |= flagdict[rgx[idx]] idx += 1 if idx == len(rgx): raise error("Expected '(' but found " + rgx[idx]) if rgx[idx] != ')': if rgx[idx] in ["-", ":"]: raise error("The '(?imsx-imsx:...)' regex syntax " + "is not supported by Transcrypt.") raise error("Unknown regex flag '" + rgx[idx] + "'") idx += 1 elif (n2 == '<' and n3 == '=') or (n2 == '<' and n3 == '!'): raise Exception("Regex lookbehinds are not supported by Transcrypt") elif n2 == ':': tokens.append(rgx[idx]) idx += 1 # XXX: implement # One of: # - lookahead # - neg lookahead # - if then else # Note that we are probably not able to implement # lookbehinds. else: raise Exception("Unknown regex extension '" + n2 + "'") else: if c == '(': n_capturings += 1 tokens.append(rgx[idx]) idx += 1 if flags & DOTALL: for idx, token in enumerate(tokens): if token == '.': tokens[idx] = r'[\s\S]' return "".join(tokens), flags, groupindex, n_capturings - 1 print("input", r"(?P<prefix>[a-zA-Z]+)://(?P<suffix>[^/]*)") print("output", translate(r"(?P<prefix>[a-zA-Z]+)://(?P<suffix>[^/]*)"))
python
from deepmath.deephol import predictions def _proof_state_from_search(predictor, node): return predictor.ProofState(goal='goal')
python
from matplotlib import pyplot as plt import numpy as np from math import ceil def comp_dist(sample: list): y = list() for i in range(len(sample)): y.append(i) y = np.array(y) sample_ = np.array(sample) plot = plt.plot(y, sample_, 'r.', markersize=1) plt.ylabel('Complexity') axis_x_max = int(ceil(len(sample) / 100.0)) * 100 plt.axis([0, axis_x_max, 0, 1]) plt.savefig("plot", dpi=250) plt.show() def triple(sample1, sample2, sample3, ws1, ws2, ws3): y1 = list() y2 = list() y3 = list() for i in range(len(sample1)): y1.append(i) y = np.array(y1) y1 = np.array(y1) for i in range(len(sample2)): y2.append(i) y = np.array(y2) y2 = np.array(y2) for i in range(len(sample3)): y3.append(i) y = np.array(y3) y3 = np.array(y3) sample_1 = np.array(sample1) sample_2 = np.array(sample2) sample_3 = np.array(sample3) marker_size_ = 0.75 plot = plt.plot(y1, sample_1, 'g.', label=str('Window ' + str(ws1)), markersize=marker_size_) plot = plt.plot(y2, sample_2, 'b.', label=str('Window ' + str(ws2)), markersize=marker_size_) plot = plt.plot(y3, sample_3, 'r.', label=str('Window ' + str(ws3)), markersize=marker_size_) plt.ylabel('Complexity') ax_x1 = int(ceil(len(sample1) / 100.0)) * 100 ax_x2 = int(ceil(len(sample2) / 100.0)) * 100 ax_x3 = int(ceil(len(sample3) / 100.0)) * 100 axis_x_max = max(ax_x1, ax_x2, ax_x3) plt.axis([0, axis_x_max, 0, 1]) plt.legend() plt.savefig("tplot", dpi=250) plt.show()
python
# Copied from the uvloop project. If you add a new unittest here, # please consider contributing it to the uvloop project. # # Portions copyright (c) 2015-present MagicStack Inc. http://magic.io import asyncio import logging import os import threading import time import weakref from unittest import mock import pytest import uvloop def test_close(loop): assert not loop.is_closed() loop.close() assert loop.is_closed() # it should be possible to call close() more than once loop.close() loop.close() # operation blocked when the loop is closed f = asyncio.Future(loop=loop) with pytest.raises(RuntimeError): loop.run_forever() with pytest.raises(RuntimeError): loop.run_until_complete(f) def test_handle_weakref(loop): wd = weakref.WeakValueDictionary() h = loop.call_soon(lambda: None) wd['h'] = h # Would fail without __weakref__ slot. def test_call_soon(loop): calls = [] def cb(inc): calls.append(inc) loop.stop() loop.call_soon(cb, 10) h = loop.call_soon(cb, 100) # self.assertIn('.cb', repr(h)) h.cancel() # self.assertIn('cancelled', repr(h)) loop.call_soon(cb, 1) loop.run_forever() assert calls == [10, 1] def test_call_soon_base_exc(loop): def cb(): raise KeyboardInterrupt() loop.call_soon(cb) with pytest.raises(KeyboardInterrupt): loop.run_forever() assert not loop.is_closed() @pytest.mark.parametrize('debug', [True, False]) @pytest.mark.parametrize( 'name, meth', [('call_soon', lambda loop, *args: loop.call_soon(*args)), ('call_later', lambda loop, *args: loop.call_later(0.01, *args))]) def test_calls_debug_reporting(loop, debug, name, meth): context = None def handler(loop, ctx): nonlocal context context = ctx loop.set_debug(debug) loop.set_exception_handler(handler) def cb(): 1 / 0 meth(loop, cb) assert context is None loop.run_until_complete(asyncio.sleep(0.05, loop=loop)) assert type(context['exception']) is ZeroDivisionError assert context['message'].startswith('Exception in callback') if debug: tb = context['source_traceback'] assert tb[-2].name == 'test_calls_debug_reporting' else: assert 'source_traceback' not in context del context def test_now_update(loop): async def run(): st = loop.time() time.sleep(0.05) return loop.time() - st delta = loop.run_until_complete(run()) assert delta > 0.049 and delta < 0.6 def test_call_later_1(loop): calls = [] def cb(inc=10, stop=False): calls.append(inc) assert loop.is_running() if stop: loop.call_soon(loop.stop) loop.call_later(0.05, cb) # canceled right away h = loop.call_later(0.05, cb, 100, True) # assert '.cb' in repr(h) h.cancel() # assert 'cancelled' in repr(h) loop.call_later(0.05, cb, 1, True) loop.call_later(1000, cb, 1000) # shouldn't be called started = time.monotonic() loop.run_forever() finished = time.monotonic() assert calls == [10, 1] assert not loop.is_running() assert finished - started < 0.1 assert finished - started > 0.04 def test_call_later_2(loop): # Test that loop.call_later triggers an update of # libuv cached time. async def main(): await asyncio.sleep(0.001, loop=loop) time.sleep(0.01) await asyncio.sleep(0.01, loop=loop) started = time.monotonic() loop.run_until_complete(main()) delta = time.monotonic() - started assert delta > 0.019 def test_call_later_negative(loop): calls = [] def cb(arg): calls.append(arg) loop.stop() loop.call_later(-1, cb, 'a') loop.run_forever() assert calls == ['a'] @pytest.mark.skipif(os.environ.get('TRAVIS_OS_NAME') is not None, reason='time is not monotonic on Travis') def test_call_at(loop): i = 0 def cb(inc): nonlocal i i += inc loop.stop() at = loop.time() + 0.05 loop.call_at(at, cb, 100).cancel() loop.call_at(at, cb, 10) started = time.monotonic() loop.run_forever() finished = time.monotonic() assert i == 10 assert finished - started < 0.07 assert finished - started > 0.045 def test_check_thread(loop, other_loop): def check_thread(loop, debug): def cb(): pass loop.set_debug(debug) if debug: msg = ("Non-thread-safe operation invoked on an " "event loop other than the current one") with pytest.raises(RuntimeError) as exc: loop.call_soon(cb) exc.match(msg) with pytest.raises(RuntimeError) as exc: loop.call_later(60, cb) exc.match(msg) with pytest.raises(RuntimeError) as exc: loop.call_at(loop.time() + 60, cb) exc.match(msg) else: loop.call_soon(cb) loop.call_later(60, cb) loop.call_at(loop.time() + 60, cb) def check_in_thread(loop, event, debug, create_loop, fut): # wait until the event loop is running event.wait() try: if create_loop: try: asyncio.set_event_loop(other_loop) check_thread(loop, debug) finally: asyncio.set_event_loop(None) else: check_thread(loop, debug) except Exception as exc: loop.call_soon_threadsafe(fut.set_exception, exc) else: loop.call_soon_threadsafe(fut.set_result, None) def test_thread(loop, debug, create_loop=False): event = threading.Event() fut = asyncio.Future(loop=loop) loop.call_soon(event.set) args = (loop, event, debug, create_loop, fut) thread = threading.Thread(target=check_in_thread, args=args) thread.start() loop.run_until_complete(fut) thread.join() # raise RuntimeError if the thread has no event loop # test_thread(loop, True) # check disabled if debug mode is disabled # test_thread(loop, False) # raise RuntimeError if the event loop of the thread is not the called # event loop # test_thread(loop, True, create_loop=True) # check disabled if debug mode is disabled # test_thread(loop, False, create_loop=True) def test_run_once_in_executor_plain(loop): called = [] def cb(arg): called.append(arg) async def runner(): await loop.run_in_executor(None, cb, 'a') loop.run_until_complete(runner()) assert called == ['a'] def test_set_debug(loop): loop.set_debug(True) assert loop.get_debug() loop.set_debug(False) assert not loop.get_debug() def test_run_until_complete_type_error(loop): with pytest.raises(TypeError): loop.run_until_complete('blah') def test_run_until_complete_loop(loop, other_loop): task = asyncio.Future(loop=loop) with pytest.raises(ValueError): other_loop.run_until_complete(task) def test_run_until_complete_error(loop): async def foo(): raise ValueError('aaa') with pytest.raises(ValueError, message='aaa'): loop.run_until_complete(foo()) @pytest.mark.skip(reason='tokio does not support this') def test_debug_slow_callbacks(loop): logger = logging.getLogger('asyncio') loop.set_debug(True) loop.slow_callback_duration = 0.2 loop.call_soon(lambda: time.sleep(0.3)) with mock.patch.object(logger, 'warning') as log: loop.run_until_complete(asyncio.sleep(0, loop=loop)) assert log.call_count == 1 # format message msg = log.call_args[0][0] % log.call_args[0][1:] assert 'Executing <Handle' in msg assert 'test_debug_slow_callbacks' in msg @pytest.mark.skip(reason='tokio does not support this') def test_debug_slow_timer_callbacks(loop): logger = logging.getLogger('asyncio') loop.set_debug(True) loop.slow_callback_duration = 0.2 loop.call_later(0.01, lambda: time.sleep(0.3)) with mock.patch.object(logger, 'warning') as log: loop.run_until_complete(asyncio.sleep(0.02, loop=loop)) assert log.call_count == 1 # format message # msg = log.call_args[0][0] % log.call_args[0][1:] # self.assertIn('Executing <Handle', msg) # self.assertIn('test_debug_slow_callbacks', msg) @pytest.mark.skip(reason='tokio does not support this') def test_default_exc_handler_callback(loop, mock_pattern): loop._process_events = mock.Mock() def zero_error(fut): fut.set_result(True) 1 / 0 logger = logging.getLogger('asyncio') # Test call_soon (events.Handle) with mock.patch.object(logger, 'error') as log: fut = asyncio.Future(loop=loop) loop.call_soon(zero_error, fut) fut.add_done_callback(lambda fut: loop.stop()) loop.run_forever() log.assert_called_with( mock_pattern('Exception in callback.*zero'), exc_info=mock.ANY) # Test call_later (events.TimerHandle) with mock.patch.object(logger, 'error') as log: fut = asyncio.Future(loop=loop) loop.call_later(0.01, zero_error, fut) fut.add_done_callback(lambda fut: loop.stop()) loop.run_forever() log.assert_called_with( mock_pattern('Exception in callback.*zero'), exc_info=mock.ANY) @pytest.mark.skip(reason='need tokio logging decision') def test_set_exc_handler_custom(loop, mock_pattern, match): logger = logging.getLogger('asyncio') def run_loop(): def zero_error(): loop.stop() 1 / 0 loop.call_soon(zero_error) loop.run_forever() errors = [] def handler(loop, exc): errors.append(exc) loop.set_debug(True) if hasattr(loop, 'get_exception_handler'): # Available since Python 3.5.2 assert loop.get_exception_handler() is None loop.set_exception_handler(handler) if hasattr(loop, 'get_exception_handler'): assert loop.get_exception_handler() is handler run_loop() assert len(errors) == 1 assert match(errors[-1]['message'], 'Exception in callback.*zero_error') loop.set_exception_handler(None) with mock.patch.object(logger, 'error') as log: run_loop() log.assert_called_with( mock_pattern('Exception in callback.*zero'), exc_info=mock.ANY) assert len(errors) == 1 @pytest.mark.skip(reason='need tokio logging decision') def test_set_exc_handler_broken(loop, mock_pattern): logger = logging.getLogger('asyncio') def run_loop(): def zero_error(): loop.stop() 1 / 0 loop.call_soon(zero_error) loop.run_forever() def handler(loop, context): raise AttributeError('spam') loop._process_events = mock.Mock() loop.set_exception_handler(handler) with mock.patch.object(logger, 'error') as log: run_loop() log.assert_called_with( mock_pattern('Unhandled error in exception handler'), exc_info=mock.ANY) def test_default_exc_handler_broken(loop, mock_pattern): logger = logging.getLogger('asyncio') _context = None class Loop(uvloop.Loop): _selector = mock.Mock() _process_events = mock.Mock() def default_exception_handler(self, context): nonlocal _context _context = context # Simulates custom buggy "default_exception_handler" raise ValueError('spam') loop = Loop() # self.addCleanup(loop.close) asyncio.set_event_loop(loop) def run_loop(): def zero_error(): loop.stop() 1 / 0 loop.call_soon(zero_error) loop.run_forever() with mock.patch.object(logger, 'error') as log: run_loop() log.assert_called_with( 'Exception in default exception handler', exc_info=True) def custom_handler(loop, context): raise ValueError('ham') _context = None loop.set_exception_handler(custom_handler) with mock.patch.object(logger, 'error') as log: run_loop() log.assert_called_with( mock_pattern('Exception in default exception.*' 'while handling.*in custom'), exc_info=True) # Check that original context was passed to default # exception handler. assert 'context' in _context assert (type(_context['context']['exception']) is ZeroDivisionError) @pytest.mark.skip(reason='need impl') def test_set_task_factory_invalid(loop): with pytest.raises( TypeError, message='task factory must be a callable or None'): loop.set_task_factory(1) assert loop.get_task_factory() is None @pytest.mark.skip(reason='need impl') def test_set_task_factory(loop): # loop._process_events = mock.Mock() class MyTask(asyncio.Task): pass @asyncio.coroutine def coro(): pass def factory(loop, coro): return MyTask(coro, loop=loop) assert loop.get_task_factory() is None loop.set_task_factory(factory) assert loop.get_task_factory() is factory task = loop.create_task(coro()) assert isinstance(task, MyTask) loop.run_until_complete(task) loop.set_task_factory(None) assert loop.get_task_factory() is None task = loop.create_task(coro()) assert isinstance(task, asyncio.Task) assert not isinstance(task, MyTask) loop.run_until_complete(task)
python
"""Numpy to Javascript (JSON) conversion Assumes numpy matrices are nx8 where first 3 columns contain x, y, z respectively. Checks for `data/*.npy` by default, below. Uses the filename, stripped, for the data dictionary key. Remember that classes 1, 2, 3 are colored red, green, blue respectively. All other classes are colored grey. Usage: to_json.py to_json.py <folder> <start> <end> """ import glob import os import json import numpy as np import sys folder, start, end = '0005_pred', 0, 50 arguments = sys.argv if len(arguments) == 4: folder, (start, end) = arguments[1], map(int, arguments[2:]) def convert(format): data = {} for path in list(sorted(glob.iglob(format)))[start:end]: key = os.path.basename(path).replace('.npy', '') datum = np.load(path) delta_w = (datum.shape[1] - 512) // 2 datum = datum[:, delta_w: datum.shape[1] - delta_w:, :] datum = datum.reshape((-1, datum.shape[-1])).astype(float) data[key] = {'vertices': [{'x': r[0], 'y': r[1], 'z': r[2], 'class': int(r[5])} for r in datum]} with open('js/output.js', 'w') as f: f.write('var data = %s' % json.dumps(data).replace('"', "'")) print('wrote to js/output.js') def main(): print('Read from', folder) convert('data/%s/*.npy' % folder) if __name__ == '__main__': main()
python
from setuptools import setup setup( name = 'objectDetectionD3MWrapper', version = '0.1.0', description = 'Keras implementation of RetinaNet as a D3M primitive.', author = 'Sanjeev Namjoshi', author_email = '[email protected]', packages = ['objectDetectionD3MWrapper'], install_requires = ['numpy>=1.15.4,<=1.17.3', 'object_detection_retinanet @ git+https://github.com/NewKnowledge/object-detection-retinanet@beca7ff86faa2295408e46fe221a3c7437cfdc81#egg=object_detection_retinanet'], entry_points = { 'd3m.primitives': [ 'object_detection.retinanet = objectDetectionD3MWrapper:ObjectDetectionRNPrimitive' ], }, )
python
import sys import interpreter from interpreter.main import Interpreter # main def main(): # check passed parameter length if len(sys.argv) != 2: return code = '' with open(sys.argv[1], "r") as file: code = file.read() i = Interpreter(code) msg, code, _, _ = i.run() print('\nReturned with code ' + str(code) + ' : ' + msg) return if __name__ == "__main__": main()
python
from mmdet.apis import init_detector, inference_detector, show_result config_file = 'configs/faster_rcnn_r50_fpn_1x.py' checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth' # build the model from a config file and a checkpoint file # model = init_detector(config_file, checkpoint_file, device='cuda:0') model = init_detector(config_file, checkpoint_file, device='cuda:0') # test a single image and show the results img = 'test.jpg' # or img = mmcv.imread(img), which will only load it once result = inference_detector(model, img) show_result(img, result, model.CLASSES) # test a list of images and write the results to image files imgs = ['test1.jpg', 'test2.jpg'] for i, result in enumerate(inference_detector(model, imgs)): show_result(imgs[i], result, model.CLASSES, out_file='result_{}.jpg'.format(i))
python
import setuptools setuptools.setup( name = 'django-livereload-notifier', keywords = 'django, development, server, runserver, livereload', description = 'LiveReload with the Django development server', long_description = open('README.md').read(), author = 'n4bz0r', author_email = '[email protected]', version = '0.1', license = 'MIT License', url = 'https://github.com/n4bz0r/django-livereload-notifier', include_package_data = True, packages = setuptools.find_packages(), classifiers = [ 'Framework :: Django', 'Environment :: Web Environment', 'Programming Language :: Python :: 3', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'License :: OSI Approved :: MIT License', 'Topic :: Software Development :: Libraries :: Python Modules', ], install_requires = [ 'beautifulsoup4>=4.3.2', 'watchdog>=0.10.3', ], )
python
from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from data_refinery_api.test.test_api_general import API_VERSION from data_refinery_common.models import ( ComputationalResult, Organism, OrganismIndex, Processor, Sample, SampleResultAssociation, ) class ProcessorTestCases(APITestCase): def setUp(self): salmon_quant_env = { "os_distribution": "Ubuntu 16.04.4 LTS", "os_pkg": {"python3": "3.5.1-3", "python3-pip": "8.1.1-2ubuntu0.4"}, "cmd_line": {"salmon --version": "salmon 0.9.1"}, "python": {"Django": "2.0.6", "data-refinery-common": "0.5.0"}, } self.salmon_quant_proc = Processor.objects.create( name="Salmon Quant", version="0.45", docker_image="ccdl/salmon_img:v1.23", environment=salmon_quant_env, ) salmontools_env = { "os_distribution": "Ubuntu 16.04.4 LTS", "os_pkg": { "python3": "3.5.1-3", "python3-pip": "8.1.1-2ubuntu0.4", "g++": "4:5.3.1-1ubuntu1", "cmake": "3.5.1-1ubuntu3", }, "cmd_line": {"salmontools --version": "Salmon Tools 0.1.0"}, "python": {"Django": "2.0.6", "data-refinery-common": "0.5.0"}, } Processor.objects.create( name="Salmontools", version="1.83", docker_image="ccdl/salmontools_img:v0.45", environment=salmontools_env, ) def tearDown(self): ComputationalResult.objects.all().delete() Organism.objects.all().delete() OrganismIndex.objects.all().delete() Processor.objects.all().delete() Sample.objects.all().delete() SampleResultAssociation.objects.all().delete() def test_endpoint(self): response = self.client.get(reverse("processors", kwargs={"version": API_VERSION})) self.assertEqual(response.status_code, status.HTTP_200_OK) processors = response.json()["results"] self.assertEqual(processors[0]["name"], "Salmon Quant") self.assertEqual(processors[0]["environment"]["os_pkg"]["python3"], "3.5.1-3") self.assertEqual(processors[1]["name"], "Salmontools") self.assertEqual( processors[1]["environment"]["cmd_line"]["salmontools --version"], "Salmon Tools 0.1.0" ) def test_processor_and_organism_in_sample(self): sample = Sample.objects.create(accession_code="ACCESSION", title="fake sample") homo_sapiens = Organism(name="HOMO_SAPIENS", taxonomy_id=9606, is_scientific_name=True) homo_sapiens.save() transcriptome_result = ComputationalResult.objects.create() organism_index = OrganismIndex.objects.create( organism=homo_sapiens, result=transcriptome_result, index_type="TRANSCRIPTOME_LONG" ) result = ComputationalResult.objects.create( processor=self.salmon_quant_proc, organism_index=organism_index ) SampleResultAssociation.objects.create(sample=sample, result=result) response = self.client.get( reverse( "samples_detail", kwargs={"accession_code": sample.accession_code, "version": API_VERSION}, ) ) self.assertEqual(response.status_code, status.HTTP_200_OK) processor = response.json()["results"][0]["processor"] self.assertEqual(processor["name"], self.salmon_quant_proc.name) self.assertEqual( processor["environment"]["os_pkg"]["python3"], self.salmon_quant_proc.environment["os_pkg"]["python3"], ) organism_index = response.json()["results"][0]["organism_index"] self.assertEqual(organism_index["result_id"], transcriptome_result.id) self.assertEqual(organism_index["index_type"], "TRANSCRIPTOME_LONG")
python
""" Zeroing out gradients in PyTorch ================================ It is beneficial to zero out gradients when building a neural network. This is because by default, gradients are accumulated in buffers (i.e, not overwritten) whenever ``.backward()`` is called. Introduction ------------ When training your neural network, models are able to increase their accuracy through gradient descent. In short, gradient descent is the process of minimizing our loss (or error) by tweaking the weights and biases in our model. ``torch.Tensor`` is the central class of PyTorch. When you create a tensor, if you set its attribute ``.requires_grad`` as ``True``, the package tracks all operations on it. This happens on subsequent backward passes. The gradient for this tensor will be accumulated into ``.grad`` attribute. The accumulation (or sum) of all the gradients is calculated when .backward() is called on the loss tensor. There are cases where it may be necessary to zero-out the gradients of a tensor. For example: when you start your training loop, you should zero out the gradients so that you can perform this tracking correctly. In this recipe, we will learn how to zero out gradients using the PyTorch library. We will demonstrate how to do this by training a neural network on the ``CIFAR10`` dataset built into PyTorch. Setup ----- Since we will be training data in this recipe, if you are in a runable notebook, it is best to switch the runtime to GPU or TPU. Before we begin, we need to install ``torch`` and ``torchvision`` if they aren’t already available. :: pip install torchvision """ ###################################################################### # Steps # ----- # # Steps 1 through 4 set up our data and neural network for training. The # process of zeroing out the gradients happens in step 5. If you already # have your data and neural network built, skip to 5. # # 1. Import all necessary libraries for loading our data # 2. Load and normalize the dataset # 3. Build the neural network # 4. Define the loss function # 5. Zero the gradients while training the network # # 1. Import necessary libraries for loading our data # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # For this recipe, we will just be using ``torch`` and ``torchvision`` to # access the dataset. # import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms ###################################################################### # 2. Load and normalize the dataset # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # PyTorch features various built-in datasets (see the Loading Data recipe # for more information). # transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ###################################################################### # 3. Build the neural network # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # We will use a convolutional neural network. To learn more see the # Defining a Neural Network recipe. # class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ###################################################################### # 4. Define a Loss function and optimizer # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Let’s use a Classification Cross-Entropy loss and SGD with momentum. # net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ###################################################################### # 5. Zero the gradients while training the network # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # This is when things start to get interesting. We simply have to loop # over our data iterator, and feed the inputs to the network and optimize. # # Notice that for each entity of data, we zero out the gradients. This is # to ensure that we aren’t tracking any unnecessary information when we # train our neural network. # for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ###################################################################### # You can also use ``model.zero_grad()``. This is the same as using # ``optimizer.zero_grad()`` as long as all your model parameters are in # that optimizer. Use your best judgement to decide which one to use. # # Congratulations! You have successfully zeroed out gradients PyTorch. # # Learn More # ---------- # # Take a look at these other recipes to continue your learning: # # - `Loading data in PyTorch <https://pytorch.org/tutorials/recipes/recipes/loading_data_recipe.html>`__ # - `Saving and loading models across devices in PyTorch <https://pytorch.org/tutorials/recipes/recipes/save_load_across_devices.html>`__
python
# # Copyright (c) 2016, deepsense.io # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from future.builtins import object, str from neptune.generated.swagger_client.path_constants import REST_PATH, WS_PATH class Address(object): def __init__(self, host, port): self.host = host self.port = port def __str__(self): _port_part = ':' + str(self.port) if self.port else '' return self.host + _port_part def to_url(self): return str(self) def http_url_from_address(address, secure): protocol = "https://" if secure else "http://" return protocol + address.to_url() def rest_url_from_address(address, secure): return http_url_from_address(address, secure) + REST_PATH def ws_url_from_address(address, secure): protocol = "wss://" if secure else "ws://" return protocol + address.to_url() + WS_PATH
python
import sys sys.path.append('../pycaruna') import json import os from datetime import date, datetime, timedelta from pycaruna import Caruna, Resolution def make_min_hour_datetime(date): return datetime.combine(date, datetime.min.time()) def make_max_hour_datetime(date): return datetime.combine(date, datetime.max.time()).replace(microsecond=0) if __name__ == '__main__': username = os.getenv('CARUNA_USERNAME') password = os.getenv('CARUNA_PASSWORD') if username is None or password is None: raise Exception('CARUNA_USERNAME and CARUNA_PASSWORD must be defined') client = Caruna(username, password) client.login() # Get customer details and metering points so we can get the required identifiers customer = client.get_user_profile() metering_points = client.get_metering_points(customer['username']) # Fetch data from midnight 00:00 7 days ago to 23:59 today start_time = make_min_hour_datetime(date.today() - timedelta(days=7)).astimezone().isoformat() end_time = make_max_hour_datetime(date.today()).astimezone().isoformat() metering_point = metering_points[0]['meteringPoint']['meteringPointNumber'] consumption = client.get_consumption(customer['username'], metering_points[0]['meteringPoint']['meteringPointNumber'], Resolution.DAYS, True, start_time, end_time) # Extract the relevant data, filter out days without values (usually the most recent datapoint) filtered_consumption = [item for item in consumption if item['values']] mapped_consumption = list(map(lambda item: { 'date': make_max_hour_datetime( date.today().replace(year=item['year'], month=item['month'], day=item['day'])).isoformat(), 'kwh_total': item['values']['EL_ENERGY_CONSUMPTION#0']['value'], 'kwh_night': item['values']['EL_ENERGY_CONSUMPTION#2']['value'], 'kwh_day': item['values']['EL_ENERGY_CONSUMPTION#3']['value'], }, filtered_consumption)) print(json.dumps(mapped_consumption))
python
import FWCore.ParameterSet.Config as cms from RecoBTag.Skimming.btagDijet_SkimPaths_cff import * from RecoBTag.Skimming.btagElecInJet_SkimPaths_cff import * from RecoBTag.Skimming.btagMuonInJet_SkimPaths_cff import * from RecoBTag.Skimming.btagGenBb_SkimPaths_cff import *
python
import math def get_divisors(n): divisors = 0 max = math.sqrt(n) i = 1 while i <= max: if n % i == 0: divisors += 2 i += 1 return divisors triangle = 1 counter = 2 testing = True while testing: if get_divisors(triangle) >= 500: print(triangle) testing = False triangle += counter counter += 1
python
# # ECE 5725 final project # RPi Robot Mover # Fall 2021 # Authors: Xu Hai (xh357), Yaqun Niu (yn232) # import cv2 import colorList import picamera import io import os import time import threading import numpy as np from piecamera import PieCamera import pygame.mixer # Capture the main color in front of the camera for one frame def get_color(frame): hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) maxsum = -100 color = None color_dict = colorList.getColorList() # Image process to get for d in color_dict: mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1]) cv2.imwrite(d + '.jpg', mask) binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1] binary = cv2.dilate(binary, None, iterations=2) cnts, h = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:] sum = 0 for c in cnts: sum += cv2.contourArea(c) if sum > maxsum: maxsum = sum color = d return color # Get the hsv of the main color in front of the camera during the period def get_hsv(): # Load color hsv from a pre-built color list color_dict = colorList.getColorList() camera = PieCamera() key = -1 result_1 = "None" i = 0 same_color = True # Play the sound to inform the user # that the robot starts to capture the color pygame.mixer.init() pygame.mixer.music.load(os.getcwd() + "/sound/test.wav") pygame.mixer.music.play(-1) time.sleep(1) pygame.mixer.music.stop() # Make sure the robot get the main color during the period while key == -1: ret, frame = camera.read() if ret is True and same_color: result = get_color(frame) if result == result_1: i += 1 if i >= 50: same_color = False print(result) # Play the sound to inform the user # that the robot has captured the color pygame.mixer.music.load(os.getcwd() + "/sound/success.wav") pygame.mixer.music.play(-1) time.sleep(2) pygame.mixer.music.stop() break else: i = 0 result_1 = result # Close the camera to release the resource camera.close() return result
python
#!/usr/bin/env python # # PyUSBtmc # get_data.py # # Copyright (c) 2011 Mike Hadmack # This code is distributed under the MIT license import numpy import sys from matplotlib import pyplot from pyusbtmc import RigolScope """ Capture data from Rigol oscilloscope and write to a file usage: python save_channel.py <filename> if filename is not given STDOUT will be used""" try: filename = sys.argv[1] except: filename = "" if filename == "--help": print """Usage: 1%s [filename]\n Reads both traces from oscilloscope and writes as ASCII tabular data to filename. If no filename is given the program outputs to STDOUT. STDOUT can be directed into a file or piped into another application. For example:\n 1%s myfile\n 1%s > myfile\n 1%s | ./plot_data.py"""%sys.argv[0] sys.exit(1) print filename scope = RigolScope("/dev/usbtmc0") scope.grabData() scope.writeWaveformToFile(filename) scope.close()
python
"""Script to load model from file""" import pickle from sympy.utilities.lambdify import lambdify from mihifepe.simulation import model # pylint: disable = invalid-name config_filename = "GEN_MODEL_CONFIG_FILENAME_PLACEHOLDER" # This string gets replaced by name of config file during simulation with open(config_filename, "rb") as config_file: model_filename = pickle.load(config_file) noise_multiplier = pickle.load(config_file) noise_type = pickle.load(config_file) with open(model_filename, "rb") as model_file: sym_vars = pickle.load(model_file) sym_features, sym_noise, sym_model_fn = sym_vars model_fn = lambdify([sym_features, sym_noise], sym_model_fn, "numpy") model = model.Model(model_fn, noise_multiplier, noise_type)
python
from django.urls import path from . import views urlpatterns=[ path('', views.index,name='index'), path('login/',views.login, name='login'), path('register/', views.register, name='register'), path('profile/', views.profile, name='profile'), path('logout/', views.logout, name='logout'), path('notifications/', views.notifications, name='notifications'), path('homepage/<int:auth_id>/', views.homepage, name='homepage'), ]
python
import pandas as pd import matplotlib.pyplot as plt from datetime import date lower_limit = 25 date = str(date.today()) df = pd.read_excel(date + ".xlsx") lower_limit_list = [] for i in df['Sr No.']: lower_limit_list.append(lower_limit) plt.figure() plt.subplot(3, 1, (1, 2)) plt.plot(df['Sr No.'], df['Ready To Buy Price'], color='r', label='Sold') plt.plot(df['Sr No.'], df['Ready To Sell Price'], color='g', label='Bought') plt.grid(b=True, which='both', axis='both') plt.legend() plt.ylabel('Price') plt.title('Summary of ' + date) plt.subplot(3, 1, 3) plt.plot(df['Sr No.'], df['RSI'], color='blue', label='RSI') plt.plot(df['Sr No.'], lower_limit_list, color='yellow') plt.grid(b=True, which='both', axis='both') plt.legend() plt.xlabel('minute') plt.ylabel('RSI') plt.savefig('graph.png')
python
import cv2 import urllib.request as req url = 'http://uta.pw/shodou/img/28/214.png' req.urlretrieve(url, '../datasets/opencv/downimage.png') img = cv2.imread('../datasets/opencv/downimage.png') print(img) import matplotlib.pyplot as plt img = cv2.imread('../datasets/opencv/test.jpg') plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.show() cv2.imwrite('../datasets/opencv/result/test.png',img) # img_resize img2 = cv2.resize(img, (600,300)) cv2.imwrite('../datasets/opencv/result/test_resize.png', img2) plt.imshow(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)) plt.show() # img_crop img3 = img[150:450, 150:450] cv2.imwrite('../datasets/opencv/result/test_crop.png', img3) plt.imshow(cv2.cvtColor(img3, cv2.COLOR_BGR2RGB)) plt.show()
python
def menu(): print("") print("") print(" Welcome to Hotel Database Management Software") print("") print("") print("1-Add new customer details") print("2-Modify already existing customer details") print("3-Search customer details") print("4-View all customer details") print("5-Delete customer details") print("6-Exit the program") print("") user_input=int(input("Enter your choice(1-6): ")) if user_input==1: add() elif user_input==2: modify() elif user_input==3: search() elif user_input==4: view() elif user_input==5: remove() elif user_input==6: exit() def add(): print("") Name1=input("Enter your first name: ") print("") Name2=input("Enter your last name: ") print("") Phone_Num=input("Enter your phone number(without +91): ") print("") print("These are the rooms that are currently available") print("1-Normal (500/Day)") print("2-Deluxe (1000/Day)") print("3-Super Deluxe (1500/Day)") print("4-Premium Deluxe (2000/Day)") print("") Room_Type=int(input("Which type you want(1-4): ")) print("") if Room_Type==1: x=500 Room_Type="Normal" elif Room_Type==2: x=1000 Room_Type='Deluxe' elif Room_Type==3: x=1500 Room_Type='Super Deluxe' elif Room_Type==4: x=2000 Room_Type='Premium' Days=int(input("How many days you will stay: ")) Money=x*Days Money=str(Money) print("") print("You have to pay ",(Money)) print("") Payment=input("Mode of payment(Card/Cash/Online): ").capitalize() if Payment == "Card": print("Payment with card") elif Payment == "Cash": print("Payment with cash") elif Payment == "Online": print("Online payment") print("") File=open('Management.txt','r') string=File.read() string = string.replace("\'", "\"") dictionary=json.loads(string) File.close() if len(dictionary.get('Room'))==0: Room_num='501' else: listt=dictionary.get('Room') tempp=len(listt)-1 temppp=int(listt[tempp]) Room_num=(1+temppp) Room_num=str(Room_num) print('You have been assigned Room Number',Room_num) print(f"name : {Name1} {Name2}") print(f"phone number : +91{Phone_Num}") print(f"Room type : {Room_Type}") print(f"Stay (day) : {Days}") dictionary['First_Name'].append(Name1) dictionary['Last_Name'].append(Name2) dictionary['Phone_num'].append(Phone_Num) dictionary['Room_Type'].append(Room_Type) dictionary['Days'].append(Days) dictionary['Price'].append(Money) dictionary['Room'].append(Room_num) File=open("Management.txt",'w',encoding="utf-8") File.write(str(dictionary)) File.close() print("") print("Your data has been successfully added to our database.") exit_menu() import os import json filecheck = os.path.isfile('Management.txt') if filecheck == False : File = open("Management.txt", 'a', encoding="utf-8") temp1 = {'First_Name': [], 'Last_Name': [], 'Phone_num': [], 'Room_Type': [], 'Days': [], 'Price': [], 'Room':[]} File.write(str(temp1)) File.close() def modify(): File=open('Management.txt','r') string=File.read() string = string.replace("\'", "\"") dictionary=json.loads(string) File.close() dict_num=dictionary.get("Room") dict_len=len(dict_num) if dict_len==0: print("") print("There is no data in our database") print("") menu() else: print("") Room=(input("Enter your Room Number: ")) listt=dictionary['Room'] index=int(listt.index(Room)) print("") print("1-Change your first name") print("2-Change your last name") print("3-Change your phone number") print("") choice=(input("Enter your choice: ")) print("") File=open("Management.txt",'w',encoding="utf-8") if choice == str(1): user_input=input('Enter New First Name: ') listt1=dictionary['First_Name'] listt1[index]=user_input dictionary['First_Name']=None dictionary['First_Name']=listt1 File.write(str(dictionary)) File.close() elif choice == str(2): user_input = input('Enter New Last Name: ') listt1 = dictionary['Last_Name'] listt1[index] = user_input dictionary['Last_Name'] = None dictionary['Last_Name'] = listt1 File.write(str(dictionary)) File.close() elif choice == str(3): user_input = input('Enter New Phone Number: ') listt1 = dictionary['Phone_num'] listt1[index] = user_input dictionary['Phone_num'] = None dictionary['Phone_num'] = listt1 File.write(str(dictionary)) File.close() print("") print("Your data has been successfully updated") exit_menu() def search(): File=open('Management.txt','r') string=File.read() string = string.replace("\'", "\"") dictionary=json.loads(string) File.close() dict_num=dictionary.get("Room") dict_len=len(dict_num) if dict_len==0: print("") print("There is no data in our database") print("") menu() else: print("") Room = (input("Enter your Room Number: ")) print("") listt = dictionary['Room'] index = int(listt.index(Room)) listt_fname=dictionary.get('First_Name') listt_lname=dictionary.get('Last_Name') listt_phone=dictionary.get('Phone_num') listt_type=dictionary.get('Room_Type') listt_days=dictionary.get('Days') listt_price=dictionary.get('Price') listt_num=dictionary.get('Room') print("") print("First Name:",listt_fname[index]) print("Last Name:",listt_lname[index]) print("Phone number:",listt_phone[index]) print("Room Type:",listt_type[index]) print('Days staying:',listt_days[index]) print('Money paid:',listt_price[index]) print('Room Number:',listt_num[index]) exit_menu() def remove(): File=open('Management.txt','r') string=File.read() string = string.replace("\'", "\"") dictionary=json.loads(string) File.close() dict_num=dictionary.get("Room") dict_len=len(dict_num) if dict_len==0: print("") print("There is no data in our database") print("") menu() else: print("") Room = (input("Enter your Room Number: ")) print("") listt = dictionary['Room'] index = int(listt.index(Room)) listt_fname = dictionary.get('First_Name') listt_lname = dictionary.get('Last_Name') listt_phone = dictionary.get('Phone_num') listt_type = dictionary.get('Room_Type') listt_days = dictionary.get('Days') listt_price = dictionary.get('Price') listt_num = dictionary.get('Room') del listt_fname[index] del listt_lname[index] del listt_phone[index] del listt_type[index] del listt_days[index] del listt_price[index] del listt_num[index] dictionary['First_Name'] = None dictionary['First_Name'] = listt_fname dictionary['Last_Name']= None dictionary['Last_Name']= listt_lname dictionary['Phone_num']= None dictionary['Phone_num']=listt_phone dictionary['Room_Type']=None dictionary['Room_Type']=listt_type dictionary['Days']=None dictionary['Days']=listt_days dictionary['Price']=None dictionary['Price']=listt_price dictionary['Room']=None dictionary['Room']=listt_num file1=open('Management.txt','w',encoding="utf-8") file1.write(str(dictionary)) file1.close() print("Details has been removed successfully") exit_menu() def view(): File=open('Management.txt','r') string=File.read() string = string.replace("\'", "\"") dictionary=json.loads(string) File.close() dict_num=dictionary.get("Room") dict_len=len(dict_num) if dict_len==0: print("") print("There is no data in our database") print("") menu() else: listt = dictionary['Room'] a = len(listt) index=0 while index!=a: listt_fname = dictionary.get('First_Name') listt_lname = dictionary.get('Last_Name') listt_phone = dictionary.get('Phone_num') listt_type = dictionary.get('Room_Type') listt_days = dictionary.get('Days') listt_price = dictionary.get('Price') listt_num = dictionary.get('Room') print("") print("First Name:", listt_fname[index]) print("Last Name:", listt_lname[index]) print("Phone number:", listt_phone[index]) print("Room Type:", listt_type[index]) print('Days staying:', listt_days[index]) print('Money paid:', listt_price[index]) print('Room Number:', listt_num[index]) print("") index=index+1 exit_menu() def exit(): print("") print(' Thanks for visiting') print(" Goodbye") def exit_menu(): print("") print("Do you want to exit the program or return to main menu") print("1-Main Menu") print("2-Exit") print("") user_input=int(input("Enter your choice: ")) if user_input==2: exit() elif user_input==1: menu() try: menu() except KeyboardInterrupt as exit: print("\nexiting...!") # menu()
python
#!/usr/bin/env python # coding: utf-8 # pipenv install grpcio==1.42.0 flask gunicorn keras-image-helper # USE: # (base) ➜ ~ curl -X POST -d "{\"url\":\"http://bit.ly/mlbookcamp-pants\"}" -H 'Content-Type: application/json' localhost:9696/predict # { # "dress": -1.8682903051376343, # "hat": -4.761245250701904, # "longsleeve": -2.316983461380005, # "outwear": -1.0625708103179932, # "pants": 9.887161254882812, # "shirt": -2.8124334812164307, # "shoes": -3.6662826538085938, # "shorts": 3.200361728668213, # "skirt": -2.6023378372192383, # "t-shirt": -4.835046291351318 # } # Call server: # curl -X POST -d "{\"url\":\"http://bit.ly/mlbookcamp-pants\"}" -H 'Content-Type: application/json' localhost:9696/predict #create grpc client, load predict image and return prediction import grpc import os from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc from keras_image_helper import create_preprocessor from proto import np_to_protobuf model_classes = ['dress', 'hat', 'longsleeve', 'outwear', 'pants', 'shirt', 'shoes', 'shorts', 'skirt', 't-shirt'] tf_host = os.getenv("TF_SERVING_HOST", "localhost:8500") print("TF host on " + str(tf_host)) channel = grpc.insecure_channel(tf_host) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) preprocessor = create_preprocessor('xception', target_size=(299,299)) def prepare_request(inputX): pb_request = predict_pb2.PredictRequest() pb_request.model_spec.name="clothing-model" pb_request.model_spec.signature_name = "serving_default" pb_request.inputs['input_8'].CopyFrom(np_to_protobuf(inputX)) return pb_request def prepare_response(pb_response): preds = pb_response.outputs['dense_7'].float_val return dict(zip(model_classes, preds)) def predict(url): # url = 'http://bit.ly/mlbookcamp-pants' X = preprocessor.from_url(url) request = prepare_request(X) pb_response = stub.Predict(request, timeout=20.0) return prepare_response(pb_response) from flask import Flask from flask import request from flask import jsonify app = Flask('script') @app.route('/predict', methods=['POST']) def predict_endpoint(): print("Request: "+str(request)) data = request.get_json() print("Request json: "+str(data)) url = data['url'] result = predict(url) json_result = jsonify(result) print("Response data: "+str(result)) print("Response: "+str(json_result)) return json_result if __name__=='__main__': # result = predict('http://bit.ly/mlbookcamp-pants') # print(result) app.run(debug=True, host='0.0.0.0', port=9696)
python
#!/usr/bin/python3 """Manage the image disk.""" import os import argparse from azure.mgmt.compute import ComputeManagementClient from azure.common.credentials import ServicePrincipalCredentials def connect(): """Set up Azure Login Credentials from Environmental Variables.""" credentials = ServicePrincipalCredentials( client_id=os.environ.get('ARM_CLIENT_ID'), secret=os.environ.get('ARM_CLIENT_SECRET'), tenant=os.environ.get('ARM_TENANT_ID') ) compute_client = ComputeManagementClient(credentials, os.environ.get('ARM_SUBSCRIPTION_ID')) imageName = 'nf-' + os.environ.get('IMAGE_TYPE') + '-' + os.environ.get('IMAGE_VERSION') return compute_client, imageName def image_create(): """Try to create an image from a blob storage disk.""" imageId = os.environ.get('IMAGE_ID') compute_client, imageName = connect() async_image_creation = compute_client.images.create_or_update( os.environ.get('GROUP_NAME'), imageName, { 'location': os.environ.get('DISK_LOC'), 'hyper_vgeneration': 'v1', 'storage_profile': { 'os_disk': { 'os_type': 'Linux', 'os_state': "Generalized", 'blob_uri': "https://clouddevimages.blob.core.windows.net/system/Microsoft.Compute/Images/builds/%s-osDisk.%s.vhd" % (imageName, imageId), 'caching': "ReadWrite" } } } ) async_image_creation.wait() print(async_image_creation.result()) def image_delete(): """Try to delete create image from blob storage disk.""" compute_client, imageName = connect() async_image_deletion = compute_client.images.delete( os.environ.get('GROUP_NAME'), imageName, custom_headers=None, raw=False, polling=True ) async_image_deletion.wait() print(async_image_deletion.result()) def image_get(): """Try to show details of the created image from blob storage disk.""" compute_client, imageName = connect() async_image_get = compute_client.images.get( os.environ.get('GROUP_NAME'), imageName, custom_headers=None, raw=False, polling=True ) print(async_image_get) if __name__ == '__main__': parser = argparse.ArgumentParser(description='New Image Operations') parser.add_argument("--action", choices=['create', 'delete', 'get'], help="Action you want to do on the new image create, delete", required=True) args = parser.parse_args() if args.action == 'create': image_create() if args.action == 'delete': image_delete() if args.action == 'get': image_get()
python
from django.urls import path from blog.views import * from blog.feeds import LatestEntriesFeed app_name = 'blog' urlpatterns = [ path('' , blog_view , name="index"), path('<int:pid>' , blog_single , name="single"), path('category/<str:cat_name>' , blog_view , name="category"), path('tag/<str:tag_name>' , blog_view , name="tag"), path('author/<str:author_username>' , blog_view , name='author'), path('search/',blog_search , name='search'), path('rss/feed/', LatestEntriesFeed()), path('test' , test , name='test') ]
python
from django.conf.urls import patterns, url from django.contrib import admin from django.views.generic import TemplateView admin.autodiscover() urlpatterns = patterns('brainstorming.views', url(r'^$', 'index', name='home'), url(r'^(?P<brainstorming_id>\w{12})/notification$', 'notification', name='notification'), url(r'^(?P<brainstorming_id>\w{12})/edit$', 'edit', name='edit'), url(r'^(?P<brainstorming_id>\w{12})/export$', 'export', name='export'), url(r'^(?P<brainstorming_id>\w{12})/?', 'brainstorming', name='brainstorming'), url(r'^.*$', TemplateView.as_view(template_name="index.html")), )
python
import torch from torch import nn from .mobilenet_v2 import MobileNetV2 class Block(nn.Module): def __init__(self, num_residual_layers, in_channels, out_channels, kernel_size=3, stride=2, padding=1, remove_last_relu=False): super(Block, self).__init__() if remove_last_relu and num_residual_layers == 0: self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding), nn.BatchNorm2d(out_channels) ) else: self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding), nn.BatchNorm2d(out_channels), nn.PReLU() ) layers = [] for i in range(num_residual_layers): if remove_last_relu and i + 1 == num_residual_layers: layer = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.PReLU(), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.BatchNorm2d(out_channels) ) else: layer = nn.Sequential( nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.BatchNorm2d(out_channels), nn.PReLU(), nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, padding=padding), nn.BatchNorm2d(out_channels), nn.PReLU() ) layers.append(layer) self.layers = nn.ModuleList(layers) def forward(self, x): x = self.conv(x) for layer in self.layers: residual = layer(x) x = x + residual return x class AngularLinear(nn.Module): def __init__(self, in_channels, out_channels): super(AngularLinear, self).__init__() self.fc = nn.Linear(in_channels, out_channels, bias=False) def forward(self, x): logits = self.fc(x) weight_norm = (self.fc.weight ** 2).sum(dim=1, keepdim=True).sqrt() logits = logits / weight_norm.t() return logits class SpereFaceNet(nn.Module): def __init__(self, input_size, dim: int, num_residual_layers_per_block, out_channels_per_block): super(SpereFaceNet, self).__init__() blocks = [] in_channels = 3 for i, (num, out_channels) in enumerate(zip(num_residual_layers_per_block, out_channels_per_block)): remove_last_relu = (i + 1 == len(num_residual_layers_per_block)) block = Block(num, in_channels, out_channels, remove_last_relu=remove_last_relu) in_channels = out_channels blocks.append(block) self.blocks = nn.ModuleList(blocks) if isinstance(input_size, int): input_size = (input_size, input_size) assert len(input_size) == 2 assert input_size[0] % 16 == 0 assert input_size[1] % 16 == 0 feature_map_size = (int(input_size[0]/16), int(input_size[1]/16)) self.fc = nn.Linear(feature_map_size[0] * feature_map_size[1] * out_channels_per_block[-1], dim) def forward(self, x): for block in self.blocks: x = block(x) x = x.view(x.size(0), -1) features = self.fc(x) return features class SphereFace(nn.Module): def __init__(self, base_net, dim: int, num_classes: int=None): super(SphereFace, self).__init__() self.base_net = base_net if num_classes is not None: self.fc = AngularLinear(dim, num_classes) def forward(self, x): x = self.base_net(x) if self.training: # normalize weight per class logits = self.fc(x) return x, logits else: return x def save(self, model_path: str): torch.save(self.state_dict(), model_path) def load(self, model): state_dict = torch.load(model, map_location=lambda storage, loc: storage) if not hasattr(self, 'fc'): state_dict = {k: v for k, v in state_dict.items() if k not in set(["fc.fc.weight"])} self.load_state_dict(state_dict) def mobilenet_sphereface(dim=512, input_size=160, num_classes: int=None): base_net = MobileNetV2(n_class=dim, input_size=input_size, width_mult=1., use_batch_norm=True, onnx_compatible=True) net = SphereFace(base_net, dim, num_classes) return net def sphereface4(dim=512, input_size=(112, 96), num_classes: int=None): base_net = SpereFaceNet(input_size, dim, [0, 0, 0, 0], [64, 128, 256, 512]) net = SphereFace(base_net, dim, num_classes) return net def sphereface10(dim=512, input_size=(112, 96), num_classes: int=None): base_net = SpereFaceNet(input_size, dim, [0, 1, 2, 0], [64, 128, 256, 512]) net = SphereFace(base_net, dim, num_classes) return net def sphereface20(dim=512, input_size=(112, 96), num_classes: int=None): base_net = SpereFaceNet(input_size, dim, [1, 2, 4, 1], [64, 128, 256, 512]) net = SphereFace(base_net, dim, num_classes) return net def sphereface36(dim=512, input_size=(112, 96), num_classes: int=None): base_net = SpereFaceNet(input_size, dim, [1, 4, 8, 2], [64, 128, 256, 512]) net = SphereFace(base_net, dim, num_classes) return net def sphereface64(dim=512, input_size=(112, 96), num_classes: int=None): base_net = SpereFaceNet(input_size, dim, [3, 8, 16, 3], [64, 128, 256, 512]) net = SphereFace(base_net, dim, num_classes) return net
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains tpDcc-tools-scripteditor client implementation """ from __future__ import print_function, division, absolute_import from tpDcc.core import client class ScriptEditorClient(client.DccClient, object): PORT = 43451 def get_dcc_completion_directory(self): """ Returns directory where DCC API completion stubs files are located :return: str """ cmd = { 'cmd': 'get_dcc_completion_directory' } reply_dict = self.send(cmd) if not self.is_valid_reply(reply_dict): return False return reply_dict['result'] def get_auto_import(self): cmd = { 'cmd': 'get_auto_import' } reply_dict = self.send(cmd) if not self.is_valid_reply(reply_dict): return None return reply_dict['result'] def wrap_dropped_text(self, namespace, text, alt_modifier=False): cmd = { 'cmd': 'wrap_dropped_text', 'namespace': namespace, 'text': text, 'alt_modifier': alt_modifier, } reply_dict = self.send(cmd) if not self.is_valid_reply(reply_dict): return None return reply_dict['result'] def completer(self, namespace, line): cmd = { 'cmd': 'completer', 'namespace': namespace, 'line': line } reply_dict = self.send(cmd) if not self.is_valid_reply(reply_dict): return None, None return reply_dict['result']
python
import re, sys import base64 import json def start_item(line): regex = r"<item><type>(([A-Fa-f0-9]{2}){4})</type><code>(([A-Fa-f0-9]{2}){4})</code><length>(\d*)</length>" matches = re.findall(regex, line) typ = matches[0][0].decode('hex') code = matches[0][2].decode('hex') length = int(matches[0][4]) return (typ, code, length) def start_data(line): try: assert line == '<data encoding="base64">\n' except AssertionError: if line.startswith("<data"): return 0 return -1 return 0 def read_data(line, length): b64size = 4*((length+2)/3); try: data = base64.b64decode(line[:b64size]) except TypeError: data = "" pass return data def guessImageMime(magic): if magic.startswith('\xff\xd8'): return 'image/jpeg' elif magic.startswith('\x89PNG\r\n\x1a\r'): return 'image/png' else: return "image/jpg" if __name__ == "__main__": metadata = {} fi = sys.stdin while True: line = sys.stdin.readline() if not line: #EOF break sys.stdout.flush() if not line.startswith("<item>"): continue typ, code, length = start_item(line) data = "" if (length > 0): r = start_data(sys.stdin.readline()) if (r == -1): continue data = read_data(sys.stdin.readline(), length) # Everything read if (typ == "core"): if (code == "asal"): metadata['Album Name'] = data elif (code == "asar"): metadata['Artist'] = data #elif (code == "ascm"): # metadata['Comment'] = data #elif (code == "asgn"): # metadata['Genre'] = data elif (code == "minm"): metadata['Title'] = data #elif (code == "ascp"): # metadata['Composer'] = data #elif (code == "asdt"): # metadata['File Kind'] = data #elif (code == "assn"): # metadata['Sort as'] = data #elif (code == "clip"): # metadata['IP'] = data if (typ == "ssnc" and code == "snam"): metadata['snam'] = data if (typ == "ssnc" and code == "prgr"): metadata['prgr'] = data if (typ == "ssnc" and code == "pfls"): metadata = {} print json.dumps({}) sys.stdout.flush() if (typ == "ssnc" and code == "pend"): metadata = {} print json.dumps({}) sys.stdout.flush() if (typ == "ssnc" and code == "prsm"): metadata['pause'] = False if (typ == "ssnc" and code == "pbeg"): metadata['pause'] = False if (typ == "ssnc" and code == "PICT"): if (len(data) == 0): print json.dumps({"image": ""}) else: mime = guessImageMime(data) print json.dumps({"image": "data:" + mime + ";base64," + base64.b64encode(data)}) sys.stdout.flush() if (typ == "ssnc" and code == "mden"): print json.dumps(metadata) sys.stdout.flush() metadata = {}
python
# The Hirst Paining Project # Create a painting with 10 by 10 rows of spots # Each dot should be 20 in size and 50 spacing between them from turtle import Turtle, Screen import random def main(): # Color palette color_list = [ (203, 164, 109), (154, 75, 48), (223, 201, 135), (53, 94, 125), (173, 153, 39), (137, 31, 20), (133, 163, 185), (199, 92, 72), (46, 123, 87), (72, 44, 36), (13, 98, 72), (145, 179, 147), (93, 73, 75), (233, 176, 165), (161, 143, 159), (54, 46, 51), (184, 205, 172), (35, 61, 75), (21, 85, 90), (153, 17, 19), (84, 147, 130), (39, 66, 90), (184, 89, 93), (11, 73, 67), (105, 127, 155), (218, 177, 182) ] # Define turtle and screen turtle = Turtle() screen = Screen() # Turtle speed turtle.speed(0) # Hide turtle turtle.hideturtle() # Setup screen mode to 255 screen.colormode(255) # Make the turtle start from left bottom corner turtle.penup() turtle.sety(-300) for j in range(10): turtle.penup() turtle.sety(turtle.ycor() + 50) turtle.setx(-250) for i in range(10): turtle.color(random.choice(color_list)) turtle.dot(20) turtle.penup() turtle.forward(50) turtle.pendown() screen.exitonclick() if __name__ == "__main__": main()
python
import os import db from datetime import datetime import logging from config import Environment from fuzzywuzzy import process, fuzz import nltk import multiprocessing ev = Environment() logger = logging.getLogger(ev.app_name) # nltk punkt sentence trainer. nltk.download('punkt') detector = nltk.data.load('tokenizers/punkt/english.pickle') def create_diff(data_dict): current_report_file = data_dict['current_file'] last_report_file = data_dict['old_file'] record_id = data_dict['id'] with open(os.path.join(ev.output_cleaned_files, current_report_file)) as current_report: current_report_list = current_report.read().splitlines() with open(os.path.join(ev.output_cleaned_files, last_report_file)) as current_report: last_report_list = current_report.read().splitlines() # remove exact lines from each other current_report_dedup_list = [line for line in current_report_list if line not in last_report_list] last_report_dedup_list = [line for line in last_report_list if line not in current_report_list] # list of sentences in each file current_report_sentences = list(detector.tokenize(' '.join(current_report_dedup_list).strip())) last_report_sentences = list(detector.tokenize(' '.join(last_report_dedup_list).strip())) # for each new sentence in the report look to see if we have a fuzzy match of 85% of better against any # sentence in the older report. If not consider it a new sentence. new_sentences = list() for sentence in current_report_sentences: match = process.extractOne(sentence, last_report_sentences, score_cutoff=85, scorer=fuzz.QRatio) if match is None: new_sentences.append(sentence) if new_sentences: new_sentence = '\n'.join(new_sentences) # Google Natural Language will not accept an input greater than 60K characters if len(new_sentence) > 60000: new_sentence = new_sentence[:59999] conn = db.connect_to_db() cursor = conn.cursor() sql = 'UPDATE marko_finance SET difference_from_last_report=? WHERE id=?' cursor.execute(sql, (new_sentence, record_id)) conn.commit() conn.close() logger.info(f'Difference logged between {current_report_file} and {last_report_file}') return def get_differences(): logger.info(f'Started processing differences.') conn = db.connect_to_db() sql = '''SELECT id, cik, file_name, date_accepted, difference_from_last_report, prc_change2 FROM marko_finance ORDER BY cik, date_accepted''' cursor = conn.cursor() cursor.execute(sql) results = cursor.fetchall() old_cik = None old_date = None old_filename = None find_differences_list = list() for record in results: (record_id, cik, filename, date_accepted, difference, prc_change) = record converted_date = datetime.strptime(date_accepted, '%Y-%m-%d %H:%M:%S') if prc_change and difference is None and cik == old_cik: week_difference = (converted_date - old_date).days / 7 if 9 <= week_difference <= 17: find_differences_list.append({ 'id': record_id, 'cik': cik, 'current_file': filename, 'old_file': old_filename }) old_cik = cik old_date = converted_date old_filename = filename conn.close() with multiprocessing.Pool(processes=ev.number_of_cores) as pool: pool.map(create_diff, find_differences_list) pool.close() pool.join() logger.info(f'Finished processing differences.')
python
""" Manual script for merging csvs into one large CSV per state with plan info. FIXME: Incorporate this into a script with arguments. """ import gc import logging import pandas as pd logging.basicConfig(level=logging.INFO) HEALTHCARE_GOV_PATH = '/home/jovyan/work/data/healthcare_gov' state = 'FL' # Hard coded due to lack of Company info in Machine Readable PUF. # TODO: Automate this dictionary creation. issuer_dict = { '16842': 'BCBS', '21663': 'Celtic/Ambetter', '30252': '30252', '36194': '36194', '43274': '43274', '48129': '48129', '54172': 'Molina', '56503': '56503', '93299': '93299', '98869': '98869', } csvs = [HEALTHCARE_GOV_PATH + '/{}/{}.csv'.format(state, issuer) for issuer in issuer_dict.keys()] logging.info('CSVs being read in: {}'.format(csvs)) dfs = [pd.read_csv(csv) for csv in csvs] for issuer_id, df in zip(issuer_dict.keys(), dfs): df['IssuerId'] = int(issuer_id) df['CompanyName'] = issuer_dict[issuer_id] logging.info('{} provider dataframes loaded in'.format(len(dfs))) plans = pd.read_csv(HEALTHCARE_GOV_PATH + '/Plan_Attributes_PUF.csv') plans = plans[plans.StateCode == state] # Reduce the number of columns in the plans data. plans = plans[[ 'BusinessYear', 'StateCode', 'IssuerId', 'SourceName', 'ImportDate', 'MarketCoverage', 'DentalOnlyPlan', 'TIN', 'StandardComponentId', 'PlanMarketingName', 'HIOSProductId', 'HPID', 'NetworkId', 'ServiceAreaId', 'FormularyId', 'IsNewPlan', 'PlanType', 'MetalLevel', 'DesignType', 'UniquePlanDesign', 'QHPNonQHPTypeId', 'PlanEffectiveDate', 'PlanExpirationDate', 'NationalNetwork', 'FormularyURL', 'PlanId', 'PlanVariantMarketingName', 'CSRVariationType' ]] # Reduce to 1 line per Standard Component Id (a.k.a plan_id in provider file). plans.drop_duplicates(subset=['StandardComponentId'], inplace=True) plans = plans[plans.DentalOnlyPlan == 'No'] logging.info('Number of rows in plans df: {}'.format(plans.shape[0])) in_state_plan_ids = set(plans.StandardComponentId) all_the_plans = pd.concat(dfs) logging.info('Lines in concatenated provider dataframes: {}'.format(all_the_plans.shape[0])) all_the_plans = all_the_plans[all_the_plans.Plan_Id.isin(in_state_plan_ids)] logging.info('Lines in concatenated provider dataframes (in-state): {}'.format( all_the_plans.shape[0])) # Reduce memory consumption. del dfs gc.collect() # Join Plan and Provider dataframes. logging.info('Joining plan and provider dataframes...') merged = pd.merge( all_the_plans, plans, how='left', left_on='Plan_Id', right_on='StandardComponentId') logging.info('Joining complete!') logging.info('Number of lines in the final merged dataframe: {}'.format(merged.shape[0])) del all_the_plans gc.collect() target_path = 'HEALTHCARE_GOV_PATH/all_of_{}.csv'.format(state) merged.to_csv(target_path, index=False) logging.info('{} lines of data for {} written to csv'.format(merged.shape[0], state))
python
import cairo import vector import rectangle from .widget import Widget class CheckBox(Widget): _on_image = None _off_image = None _clicked_image = None _disabled_image = None _clicked = False _moused = False clickable = True mousable = True text = None toggled_responder = None is_toggled = None is_disabled = None def __init__(self, resource_manager, text, toggled): Widget.__init__(self, resource_manager) self._on_image = resource_manager.load_image("res/bzcoptionbuttonon.png") self.image_resolution = vector.Resolution(self._on_image.get_width(), self._on_image.get_height()) self._off_image = resource_manager.load_image("res/bzcoptionbuttonoff.png") self._clicked_image = resource_manager.load_image("res/bzcoptionbuttonclk.png") self._disabled_image = resource_manager.load_image("res/bzcoptionbuttondis.png") self.text = text self.toggled_responder = toggled self.is_toggled = False self.is_disabled = False def get_dimensions(self): return vector.Vector(self._off_image.get_width(), self._off_image.get_height()) def get_rectangle(self): return rectangle.Rectangle(self.position, self.get_dimensions()) def draw(self, cr, window, resource_manager): image = self._off_image if (not self.is_disabled and self._moused is True): image = self._on_image if (self.is_toggled is True): image = self._clicked_image cr.save() cr.set_source_surface(self._disabled_image, self.position.x, self.position.y) cr.paint() # Draw the image first if (not self.is_disabled): cr.set_source_surface(image, self.position.x + 12, self.position.y) cr.paint() cr.set_source_rgb(0, 1, 0) # Draw the text cr.select_font_face("Arial", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) cr.set_font_size(13) (x, y, width, height, dx, dy) = cr.text_extents(self.text) cr.move_to(self.position.x + self.image_resolution.x + 25, self.position.y + (self.image_resolution.y / 2) + (height/ 2)) cr.show_text(self.text) cr.restore() def on_mouse_click(self, window, resource_manager, location): rect = self.get_rectangle() if (not self.is_disabled and rect.contains_point(location)): self._clicked = True def on_mouse_release(self, window, resource_manager, location): rect = self.get_rectangle() if (not self.is_disabled and rect.contains_point(location)): self._clicked = False self.is_toggled = not self.is_toggled if (self.toggled_responder is not None): self.toggled_responder(self, window, resource_manager, self.is_toggled) def on_mouse_move(self, window, resource_manager, location): rect = self.get_rectangle() if (rect.contains_point(location)): self._moused = True return self._moused = False
python
from django.shortcuts import render from django.views.generic.base import View from django.http import HttpResponseRedirect from django.urls import reverse from django.contrib.auth import login, logout from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib import messages from .forms import LoginForm, SettingsForm from django.utils.translation import ugettext_lazy as _ class LoginView(View): """ Backend for the login template in login.html """ template_login = "login.html" def get(self, *args, **kwargs): if self.request.user.is_authenticated: return forward_if_authenticated(self.request) next = None if "next" in self.request.GET: next = self.request.GET.get("next") form = LoginForm() content = { "form": form, "next": next } return render(self.request, self.template_login, content) def post(self, *args, **kwargs): # create a form instance and populate it with data from the request: form = LoginForm(self.request.POST) next = None if "next" in self.request.GET: next = self.request.GET.get("next") if form.is_valid(): user = form.login(self.request) if user is not None: login(self.request, user) return forward_if_authenticated(self.request) content = { "form": form, "next": next } return render(self.request, self.template_login, content) class LogoutView(View): """ Backend for the logout template in logout.html """ def get(self, *args, **kwargs): logout(self.request) return HttpResponseRedirect(reverse('dashboard')) def post(self, *args, **kwargs): pass class SettingsView(LoginRequiredMixin, View): """ Backend for the settings template in settings.html """ template_settings = "settings.html" def get(self, *args, **kwargs): user = self.request.user form = SettingsForm( {'sending_email_once_a_day': user.sending_email_once_a_day}) content = { "form": form } return render(self.request, self.template_settings, content) def post(self, *args, **kwargs): user = self.request.user form = SettingsForm(self.request.POST) if form.is_valid(): # Enables daily summary email user.sending_email_once_a_day = form.cleaned_data[ "sending_email_once_a_day"] user.save() messages.success(self.request, _('Einstellungen wurden erfolgreich übernommen!')) else: messages.error(self.request, _('Die Einstellung konnte nicht übernommen werden!')) content = { "form": form } return render(self.request, self.template_settings, content) def forward_if_authenticated(request): """ If the user is logged in successfully he will be forwarded to the page he tried to access. If no page exists he will be forwarded to dashboard :param request: Contains metadata about the request :return: redirect to the corresponding page """ if "next" in request.POST: return HttpResponseRedirect(request.POST.get('next')) elif "next" in request.GET: return HttpResponseRedirect(request.GET.get('next')) else: return HttpResponseRedirect(reverse('dashboard'))
python
#!/usr/bin/env python3 """ Lightmon Data Read Command This script reads the data from the light sensor. """ import lm import argparse import time import numpy if __name__ == "__main__": parser = argparse.ArgumentParser(description='Verify the calibration table') parser.add_argument('-p', dest='port', help='Serial port device where sensor is connected, example: /dev/ttyACM0', required=True) parser.add_argument('-o', dest='write_dir', help='directory to store the data from the sensor', required=True) serial_number = input("Enter the serial number of the sensor: 00") args = parser.parse_args() sensor = lm.LightMon(args.port) uid = sensor.get_uid() fd = open(f"{args.write_dir.strip()}/Sensor_00{serial_number}_{uid.strip()}.csv","w") fd.write(sensor.get_data()) fd.close() sensor.close_port()
python
from . import transformer from . import bert
python
#! /usr/bin/jython # -*- coding: utf-8 -*- # # sqlite3_read.py # Jan/12/2011 # # ---------------------------------------------------------------- # import sys import string from java.lang import System # import java from java.sql import DriverManager # # ---------------------------------------------------------------- sys.path.append ('/var/www/data_base/common/jython_common') from jython_rdb_manipulate import display_proc # ---------------------------------------------------------------- System.out.println ("*** start ***") print ("*** 開始 ***") java.lang.Class.forName("org.sqlite.JDBC") # sqlite3_file = "/var/tmp/sqlite3/cities.db" url="jdbc:sqlite:" + sqlite3_file user = "" password = "" conn = DriverManager.getConnection (url,user, password) display_proc (conn) # conn.close() print ("*** 終了 ***") # # ----------------------------------------------------------------
python
import contextlib import logging import os from django import test from django.test import Client from djangae.environment import get_application_root from google.appengine.api import apiproxy_stub_map, appinfo from google.appengine.datastore import datastore_stub_util from google.appengine.tools.devappserver2.application_configuration import ModuleConfiguration from google.appengine.tools.devappserver2.module import _ScriptHandler @contextlib.contextmanager def inconsistent_db(probability=0, connection='default'): """ A context manager that allows you to make the datastore inconsistent during testing. This is vital for writing applications that deal with the Datastore's eventual consistency """ from django.db import connections conn = connections[connection] if not hasattr(conn.creation, "testbed") or "datastore_v3" not in conn.creation.testbed._enabled_stubs: raise RuntimeError("Tried to use the inconsistent_db stub when not testing") stub = apiproxy_stub_map.apiproxy.GetStub('datastore_v3') # Set the probability of the datastore stub original_policy = stub._consistency_policy stub.SetConsistencyPolicy(datastore_stub_util.PseudoRandomHRConsistencyPolicy(probability=probability)) try: yield finally: # Restore to consistent mode stub.SetConsistencyPolicy(original_policy) def _get_queued_tasks(stub, queue_name=None, flush=True): tasks = [] queues = stub.GetQueues() if queue_name is not None: queues = filter(lambda q: queue_name == q['name'], queues) for queue in queues: for task in stub.GetTasks(queue['name']): tasks.append(task) if flush: stub.FlushQueue(queue["name"]) return tasks def _flush_tasks(stub, queue_name=None): if queue_name: stub.FlushQueue(queue_name) else: for queue in stub.GetQueues(): stub.FlushQueue(queue["name"]) def process_task_queues(queue_name=None): """ Processes any queued tasks inline without a server. This is useful for end-to-end testing background tasks. """ stub = apiproxy_stub_map.apiproxy.GetStub("taskqueue") tasks = _get_queued_tasks(stub, queue_name) client = Client() # Instantiate a test client for processing the tasks while tasks: task = tasks.pop(0) # Get the first task decoded_body = task['body'].decode('base64') post_data = decoded_body headers = { "HTTP_{}".format(x.replace("-", "_").upper()): y for x, y in task['headers'] } #FIXME: set headers like the queue name etc. method = task['method'] if method.upper() == "POST": #Fixme: post data? response = client.post(task['url'], data=post_data, content_type=headers['HTTP_CONTENT_TYPE'], **headers) else: response = client.get(task['url'], **headers) if response.status_code != 200: logging.info("Unexpected status (%r) while simulating task with url: %r", response.status_code, task['url']) if not tasks: #The map reduce may have added more tasks, so refresh the list tasks = _get_queued_tasks(stub, queue_name) class TestCaseMixin(object): def setUp(self): super(TestCaseMixin, self).setUp() self.taskqueue_stub = apiproxy_stub_map.apiproxy.GetStub("taskqueue") if self.taskqueue_stub: _flush_tasks(self.taskqueue_stub) # Make sure we clear the queue before every test def assertNumTasksEquals(self, num, queue_name='default'): self.assertEqual(num, len(_get_queued_tasks(self.taskqueue_stub, queue_name, flush=False))) def process_task_queues(self, queue_name=None): process_task_queues(queue_name) class HandlerAssertionsMixin(object): """ Custom assert methods which verifies a range of handler configuration setting specified in app.yaml. """ msg_prefix = 'Handler configuration for {url} is not protected by {perm}.' def assert_login_admin(self, url): """ Test that the handler defined in app.yaml which matches the url provided has `login: admin` in the configuration. """ handler = self._match_handler(url) self.assertEqual( handler.url_map.login, appinfo.LOGIN_ADMIN, self.msg_prefix.format( url=url, perm='`login: admin`' ) ) def assert_login_required(self, url): """ Test that the handler defined in app.yaml which matches the url provided has `login: required` or `login: admin` in the configruation. """ handler = self._match_handler(url) login_admin = handler.url_map.login == appinfo.LOGIN_ADMIN login_required = handler.url_map.login == appinfo.LOGIN_REQUIRED or login_admin self.assertTrue(login_required, self.msg_prefix.format( url=url, perm='`login: admin` or `login: required`' ) ) def _match_handler(self, url): """ Load script handler configurations from app.yaml and try to match the provided url path to a url_maps regex. """ app_yaml_path = os.path.join(get_application_root(), "app.yaml") config = ModuleConfiguration(app_yaml_path) url_maps = config.handlers script_handlers = [ _ScriptHandler(maps) for maps in url_maps if maps.GetHandlerType() == appinfo.HANDLER_SCRIPT ] for handler in script_handlers: if handler.match(url): return handler raise AssertionError('No handler found for {url}'.format(url=url)) class TestCase(HandlerAssertionsMixin, TestCaseMixin, test.TestCase): pass class TransactionTestCase(HandlerAssertionsMixin, TestCaseMixin, test.TransactionTestCase): pass
python
import uuid from yggdrasil.tests import assert_raises, assert_equal import yggdrasil.drivers.tests.test_ConnectionDriver as parent from yggdrasil import runner, tools class TestServerParam(parent.TestConnectionParam): r"""Test parameters for ServerDriver class.""" def __init__(self, *args, **kwargs): super(TestServerParam, self).__init__(*args, **kwargs) self.driver = 'ServerDriver' self.args = None self.attr_list += ['comm', 'response_drivers', 'nclients', 'request_name'] # Increased to allow forwarding between IPC comms on MacOS self.timeout = 5.0 self.route_timeout = 2 * self.timeout # if tools.get_default_comm() == "IPCComm": # self.route_timeout = 120.0 # self.debug_flag = True # self.sleeptime = 0.5 # self.timeout = 10.0 self.comm_name = tools.get_default_comm() self.client_comm = tools.get_default_comm() self.icomm_name = self.client_comm self.ocomm_name = self.comm_name @property def send_comm_kwargs(self): r"""dict: Keyword arguments for send comm.""" out = self.cli_drv.icomm.opp_comm_kwargs() out['comm'] = 'ClientComm' return out @property def recv_comm_kwargs(self): r"""dict: Keyword arguments for recv comm.""" out = self.instance.ocomm.opp_comm_kwargs() out['comm'] = 'ServerComm' return out @property def inst_kwargs(self): r"""dict: Keyword arguments for tested class.""" out = super(TestServerParam, self).inst_kwargs # out['request_name'] = self.cli_drv.request_name out['comm'] = self.cli_drv.comm out['comm_address'] = self.cli_drv.ocomm.opp_address out['ocomm_kws']['comm'] = self.comm_name return out def setup(self, *args, **kwargs): r"""Recover new server message on start-up.""" kwargs.setdefault('nprev_comm', self.comm_count) self.cli_drv = self.create_client() if not self.skip_start: self.cli_drv.start() super(TestServerParam, self).setup(*args, **kwargs) def teardown(self): r"""Recover end server message on teardown.""" if hasattr(self, 'cli_drv'): self.remove_instance(self.cli_drv) delattr(self, 'cli_drv') super(TestServerParam, self).teardown() def create_client(self, comm_address=None): r"""Create a new ClientDriver instance.""" inst = runner.create_driver( 'ClientDriver', 'test_model_request.' + str(uuid.uuid4()), comm=self.client_comm, comm_address=comm_address, namespace=self.namespace, working_dir=self.working_dir, timeout=self.timeout) return inst class TestServerDriverNoStart(TestServerParam, parent.TestConnectionDriverNoStart): r"""Test class for ServerDriver class without start.""" def test_error_attributes(self): r"""Test error raised when trying to access attributes set on recv.""" err_attr = ['request_id', 'response_address'] for k in err_attr: assert_raises(AttributeError, getattr, self.instance, k) class TestServerDriverNoInit(TestServerParam, parent.TestConnectionDriverNoInit): r"""Test class for ServerDriver class without init.""" pass class TestServerDriver(TestServerParam, parent.TestConnectionDriver): r"""Test class for ServerDriver class.""" def setup(self, *args, **kwargs): r"""Wait for drivers to start.""" super(TestServerDriver, self).setup(*args, **kwargs) T = self.instance.start_timeout() while ((not T.is_out) and ((not self.instance.is_valid) or (not self.cli_drv.is_valid))): self.instance.sleep() # pragma: debug self.instance.stop_timeout() # # Disabled so that test message is not read by mistake # def test_purge(self): # r"""Test purge of queue.""" # pass def test_client_count(self): r"""Test to ensure client count is correct.""" T = self.instance.start_timeout() while ((not T.is_out) and (self.instance.nclients != 1)): # pragma: debug self.instance.sleep() self.instance.stop_timeout() assert_equal(self.instance.nclients, 1) # Create new client cli_drv2 = self.create_client(comm_address=self.cli_drv.comm_address) cli_drv2.start() T = self.instance.start_timeout() while ((not T.is_out) and (self.instance.nclients != 2)): self.instance.sleep() self.instance.stop_timeout() assert_equal(self.instance.nclients, 2) # Send sign off cli_drv2.icomm.close() T = self.instance.start_timeout() while ((not T.is_out) and (self.instance.nclients != 1)): self.instance.sleep() self.instance.stop_timeout() assert_equal(self.instance.nclients, 1) # Close client and wait for sign off self.cli_drv.icomm.close() T = self.instance.start_timeout() while ((not T.is_out) and (self.instance.nclients != 0)): self.instance.sleep() self.instance.stop_timeout() assert_equal(self.instance.nclients, 0) # Clean up cli_drv2.terminate() def test_send_recv(self, msg_send=None): r"""Test routing of a short message between client and server.""" if msg_send is None: msg_send = self.test_msg T = self.instance.start_timeout() while ((not T.is_out) and ((not self.instance.is_valid) or (not self.cli_drv.is_valid))): self.instance.sleep() # pragma: debug self.instance.stop_timeout() # Send a message to local output flag = self.send_comm.send(msg_send) assert(flag) # Receive on server side, then send back flag, srv_msg = self.recv_comm.recv(timeout=self.route_timeout) assert(flag) assert_equal(srv_msg, msg_send) flag = self.recv_comm.send(srv_msg) assert(flag) # Receive response on server side flag, cli_msg = self.send_comm.recv(timeout=self.route_timeout) assert(flag) assert_equal(cli_msg, msg_send) def test_send_recv_nolimit(self): r"""Test routing of a large message between client and server.""" self.test_send_recv(msg_send=self.msg_long)
python
from performance.ConfusionMatrix import ConfusionMatrix from performance.ConfusionMatrixToConfusionTable import ConfusionMatrixToConfusionTable import numpy as np class ModelPerformance: BETA = 1 def __init__(self, model, test_set): self.confusion_matrix = ConfusionMatrix(model, test_set) self.matrix_to_table_parser = ConfusionMatrixToConfusionTable(self.confusion_matrix) def f1_measure(self): f1s = [] for klass in self.__matrix_classes(): f1s.append(self.__confusion_table_for(klass).f_score()) return np.mean(f1s) def __confusion_table_for(self, klass): return self.matrix_to_table_parser.confusion_table_for(klass) def __matrix_classes(self): return self.confusion_matrix.possible_classes()
python
"""Support for Nest devices.""" from datetime import datetime, timedelta import logging import threading from nest import Nest from nest.nest import APIError, AuthorizationError import voluptuous as vol from homeassistant import config_entries from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( CONF_CLIENT_ID, CONF_CLIENT_SECRET, CONF_FILENAME, CONF_STRUCTURE, EVENT_HOMEASSISTANT_START, EVENT_HOMEASSISTANT_STOP, ) from homeassistant.core import HomeAssistant, callback from homeassistant.helpers import config_validation as cv from homeassistant.helpers.dispatcher import async_dispatcher_connect, dispatcher_send from homeassistant.helpers.entity import Entity from . import local_auth from .const import DATA_NEST, DATA_NEST_CONFIG, DOMAIN, SIGNAL_NEST_UPDATE _CONFIGURING = {} _LOGGER = logging.getLogger(__name__) PLATFORMS = ["climate", "camera", "sensor", "binary_sensor"] # Configuration for the legacy nest API SERVICE_CANCEL_ETA = "cancel_eta" SERVICE_SET_ETA = "set_eta" NEST_CONFIG_FILE = "nest.conf" ATTR_ETA = "eta" ATTR_ETA_WINDOW = "eta_window" ATTR_STRUCTURE = "structure" ATTR_TRIP_ID = "trip_id" AWAY_MODE_AWAY = "away" AWAY_MODE_HOME = "home" ATTR_AWAY_MODE = "away_mode" SERVICE_SET_AWAY_MODE = "set_away_mode" # Services for the legacy API SET_AWAY_MODE_SCHEMA = vol.Schema( { vol.Required(ATTR_AWAY_MODE): vol.In([AWAY_MODE_AWAY, AWAY_MODE_HOME]), vol.Optional(ATTR_STRUCTURE): vol.All(cv.ensure_list, [cv.string]), } ) SET_ETA_SCHEMA = vol.Schema( { vol.Required(ATTR_ETA): cv.time_period, vol.Optional(ATTR_TRIP_ID): cv.string, vol.Optional(ATTR_ETA_WINDOW): cv.time_period, vol.Optional(ATTR_STRUCTURE): vol.All(cv.ensure_list, [cv.string]), } ) CANCEL_ETA_SCHEMA = vol.Schema( { vol.Required(ATTR_TRIP_ID): cv.string, vol.Optional(ATTR_STRUCTURE): vol.All(cv.ensure_list, [cv.string]), } ) def nest_update_event_broker(hass, nest): """ Dispatch SIGNAL_NEST_UPDATE to devices when nest stream API received data. Used for the legacy nest API. Runs in its own thread. """ _LOGGER.debug("Listening for nest.update_event") while hass.is_running: nest.update_event.wait() if not hass.is_running: break nest.update_event.clear() _LOGGER.debug("Dispatching nest data update") dispatcher_send(hass, SIGNAL_NEST_UPDATE) _LOGGER.debug("Stop listening for nest.update_event") async def async_setup_legacy(hass: HomeAssistant, config: dict) -> bool: """Set up Nest components using the legacy nest API.""" if DOMAIN not in config: return True conf = config[DOMAIN] local_auth.initialize(hass, conf[CONF_CLIENT_ID], conf[CONF_CLIENT_SECRET]) filename = config.get(CONF_FILENAME, NEST_CONFIG_FILE) access_token_cache_file = hass.config.path(filename) hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT}, data={"nest_conf_path": access_token_cache_file}, ) ) # Store config to be used during entry setup hass.data[DATA_NEST_CONFIG] = conf return True async def async_setup_legacy_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up Nest from legacy config entry.""" nest = Nest(access_token=entry.data["tokens"]["access_token"]) _LOGGER.debug("proceeding with setup") conf = hass.data.get(DATA_NEST_CONFIG, {}) hass.data[DATA_NEST] = NestLegacyDevice(hass, conf, nest) if not await hass.async_add_executor_job(hass.data[DATA_NEST].initialize): return False for platform in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, platform) ) def validate_structures(target_structures): all_structures = [structure.name for structure in nest.structures] for target in target_structures: if target not in all_structures: _LOGGER.info("Invalid structure: %s", target) def set_away_mode(service): """Set the away mode for a Nest structure.""" if ATTR_STRUCTURE in service.data: target_structures = service.data[ATTR_STRUCTURE] validate_structures(target_structures) else: target_structures = hass.data[DATA_NEST].local_structure for structure in nest.structures: if structure.name in target_structures: _LOGGER.info( "Setting away mode for: %s to: %s", structure.name, service.data[ATTR_AWAY_MODE], ) structure.away = service.data[ATTR_AWAY_MODE] def set_eta(service): """Set away mode to away and include ETA for a Nest structure.""" if ATTR_STRUCTURE in service.data: target_structures = service.data[ATTR_STRUCTURE] validate_structures(target_structures) else: target_structures = hass.data[DATA_NEST].local_structure for structure in nest.structures: if structure.name in target_structures: if structure.thermostats: _LOGGER.info( "Setting away mode for: %s to: %s", structure.name, AWAY_MODE_AWAY, ) structure.away = AWAY_MODE_AWAY now = datetime.utcnow() trip_id = service.data.get( ATTR_TRIP_ID, f"trip_{int(now.timestamp())}" ) eta_begin = now + service.data[ATTR_ETA] eta_window = service.data.get(ATTR_ETA_WINDOW, timedelta(minutes=1)) eta_end = eta_begin + eta_window _LOGGER.info( "Setting ETA for trip: %s, " "ETA window starts at: %s and ends at: %s", trip_id, eta_begin, eta_end, ) structure.set_eta(trip_id, eta_begin, eta_end) else: _LOGGER.info( "No thermostats found in structure: %s, unable to set ETA", structure.name, ) def cancel_eta(service): """Cancel ETA for a Nest structure.""" if ATTR_STRUCTURE in service.data: target_structures = service.data[ATTR_STRUCTURE] validate_structures(target_structures) else: target_structures = hass.data[DATA_NEST].local_structure for structure in nest.structures: if structure.name in target_structures: if structure.thermostats: trip_id = service.data[ATTR_TRIP_ID] _LOGGER.info("Cancelling ETA for trip: %s", trip_id) structure.cancel_eta(trip_id) else: _LOGGER.info( "No thermostats found in structure: %s, " "unable to cancel ETA", structure.name, ) hass.services.async_register( DOMAIN, SERVICE_SET_AWAY_MODE, set_away_mode, schema=SET_AWAY_MODE_SCHEMA ) hass.services.async_register( DOMAIN, SERVICE_SET_ETA, set_eta, schema=SET_ETA_SCHEMA ) hass.services.async_register( DOMAIN, SERVICE_CANCEL_ETA, cancel_eta, schema=CANCEL_ETA_SCHEMA ) @callback def start_up(event): """Start Nest update event listener.""" threading.Thread( name="Nest update listener", target=nest_update_event_broker, args=(hass, nest), ).start() hass.bus.async_listen_once(EVENT_HOMEASSISTANT_START, start_up) @callback def shut_down(event): """Stop Nest update event listener.""" nest.update_event.set() entry.async_on_unload( hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, shut_down) ) _LOGGER.debug("async_setup_nest is done") return True class NestLegacyDevice: """Structure Nest functions for hass for legacy API.""" def __init__(self, hass, conf, nest): """Init Nest Devices.""" self.hass = hass self.nest = nest self.local_structure = conf.get(CONF_STRUCTURE) def initialize(self): """Initialize Nest.""" try: # Do not optimize next statement, it is here for initialize # persistence Nest API connection. structure_names = [s.name for s in self.nest.structures] if self.local_structure is None: self.local_structure = structure_names except (AuthorizationError, APIError, OSError) as err: _LOGGER.error("Connection error while access Nest web service: %s", err) return False return True def structures(self): """Generate a list of structures.""" try: for structure in self.nest.structures: if structure.name not in self.local_structure: _LOGGER.debug( "Ignoring structure %s, not in %s", structure.name, self.local_structure, ) continue yield structure except (AuthorizationError, APIError, OSError) as err: _LOGGER.error("Connection error while access Nest web service: %s", err) def thermostats(self): """Generate a list of thermostats.""" return self._devices("thermostats") def smoke_co_alarms(self): """Generate a list of smoke co alarms.""" return self._devices("smoke_co_alarms") def cameras(self): """Generate a list of cameras.""" return self._devices("cameras") def _devices(self, device_type): """Generate a list of Nest devices.""" try: for structure in self.nest.structures: if structure.name not in self.local_structure: _LOGGER.debug( "Ignoring structure %s, not in %s", structure.name, self.local_structure, ) continue for device in getattr(structure, device_type, []): try: # Do not optimize next statement, # it is here for verify Nest API permission. device.name_long except KeyError: _LOGGER.warning( "Cannot retrieve device name for [%s]" ", please check your Nest developer " "account permission settings", device.serial, ) continue yield (structure, device) except (AuthorizationError, APIError, OSError) as err: _LOGGER.error("Connection error while access Nest web service: %s", err) class NestSensorDevice(Entity): """Representation of a Nest sensor.""" def __init__(self, structure, device, variable): """Initialize the sensor.""" self.structure = structure self.variable = variable if device is not None: # device specific self.device = device self._name = f"{self.device.name_long} {self.variable.replace('_', ' ')}" else: # structure only self.device = structure self._name = f"{self.structure.name} {self.variable.replace('_', ' ')}" self._state = None self._unit = None @property def name(self): """Return the name of the nest, if any.""" return self._name @property def should_poll(self): """Do not need poll thanks using Nest streaming API.""" return False @property def unique_id(self): """Return unique id based on device serial and variable.""" return f"{self.device.serial}-{self.variable}" @property def device_info(self): """Return information about the device.""" if not hasattr(self.device, "name_long"): name = self.structure.name model = "Structure" else: name = self.device.name_long if self.device.is_thermostat: model = "Thermostat" elif self.device.is_camera: model = "Camera" elif self.device.is_smoke_co_alarm: model = "Nest Protect" else: model = None return { "identifiers": {(DOMAIN, self.device.serial)}, "name": name, "manufacturer": "Nest Labs", "model": model, } def update(self): """Do not use NestSensorDevice directly.""" raise NotImplementedError async def async_added_to_hass(self): """Register update signal handler.""" async def async_update_state(): """Update sensor state.""" await self.async_update_ha_state(True) self.async_on_remove( async_dispatcher_connect(self.hass, SIGNAL_NEST_UPDATE, async_update_state) )
python
>>> print(*map(''.join, zip('abc', 'ABC', '123')), sep='\n') aA1 bB2 cC3 >>>
python
from BS.utils import get_string_list_from_file, save_list_to_file def fix_adjusted_participles(): socket_group_28_01 = list(get_string_list_from_file( 'src_dict/БГ 28.01.21 изм.txt', encoding='cp1251')) socket_group_23_01 = list(get_string_list_from_file( 'src_dict/БГ 23.01.21.txt', encoding='cp1251')) adjusted_participles_list = [] for count, socket_string in enumerate(socket_group_28_01[:]): if socket_string.startswith('*'): for replace_string in socket_group_23_01[:]: if replace_string.startswith('*'): if replace_string.split()[0].endswith( socket_string.split()[1] ): print(replace_string) socket_group_28_01[count] = replace_string adjusted_participles_list.append(replace_string) save_list_to_file(sorted(adjusted_participles_list, key=lambda x: x.replace('*', '').lower()), 'out/Адъектированные причастия.txt' ) save_list_to_file(socket_group_28_01, 'out/БГ 28.01.21.txt', encoding='cp1251') if __name__ == '__main__': fix_adjusted_participles()
python