content
stringlengths
0
894k
type
stringclasses
2 values
import os from .login import * from .action import * from .box import * os.environ['OAUTHLIB_INSECURE_TRANSPORT'] = '1'
python
"""Created by Alysha Kester-Terry 3/12/2021 for GoodRx This file is to set up the driver for a specific site. We want to make this scalable in case there could be multiple environments or web UI URLs we may want to hit. """ import logging def get_app_url(App, environment='test'): """To define the search engine URL by type given""" #TODO define your different environments and how you'd want them to switch if 'test' in environment: env = 'test' else: env = 'prod' switcher = { #TODO you can add the environment into the URLs as vars here if needed App.google: 'https://google.com', App.bing: 'https://bing.com', App.yandex: 'http://yandex.com' } app_type = switcher.get(App, 'Invalid environment option, or not yet implemented') env_url = app_type logging.debug(msg='The environment url is: {}'.format(env_url)) return env_url def navigate_to_search_engine(driver, app, environment='test'): """To navigate to the appropriate URL :param app: Web app to hit :param driver: The webdriver :param environment: Test, UAT, Dev etc. Comes from run args """ url = get_app_url(app, environment) driver.get(url) link = driver.current_url logging.debug(msg='The current url is: {}'.format(link))
python
# Copyright 2019 Contributors to Hyperledger Sawtooth # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ from uuid import uuid4 import hashlib from sanic import Blueprint from sanic.response import json from rbac.common import rbac from rbac.common.crypto.keys import Key from rbac.common.crypto.secrets import encrypt_private_key from rbac.server.api.errors import ApiNotImplemented from rbac.server.api.auth import authorized from rbac.server.api import utils from rbac.server.api.proposals import compile_proposal_resource from rbac.server.db import auth_query from rbac.server.db import proposals_query from rbac.server.db import roles_query from rbac.server.db import users_query from rbac.common.logs import get_logger from rbac.common.crypto.secrets import generate_api_key from rbac.server.db import db_utils LOGGER = get_logger(__name__) USERS_BP = Blueprint("users") @USERS_BP.get("api/users") @authorized() async def fetch_all_users(request): conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) head_block = await utils.get_request_block(request) LOGGER.info(head_block) start, limit = utils.get_request_paging_info(request) user_resources = await users_query.fetch_all_user_resources( conn, head_block.get("num"), start, limit ) conn.close() return await utils.create_response( conn, request.url, user_resources, head_block, start=start, limit=limit ) @USERS_BP.post("api/users") async def create_new_user(request): required_fields = ["name", "username", "password", "email"] utils.validate_fields(required_fields, request.json) # Generate keys txn_key = Key() txn_user_id = rbac.user.unique_id() encrypted_private_key = encrypt_private_key( request.app.config.AES_KEY, txn_key.public_key, txn_key.private_key_bytes ) # Build create user transaction batch_list = rbac.user.batch_list( signer_keypair=txn_key, signer_user_id=txn_user_id, user_id=txn_user_id, name=request.json.get("name"), username=request.json.get("username"), email=request.json.get("email"), metadata=request.json.get("metadata"), manager=request.json.get("manager"), key=txn_key.public_key, ) # Submit transaction and wait for complete await utils.send( request.app.config.VAL_CONN, batch_list, request.app.config.TIMEOUT ) # Save new user in auth table hashed_password = hashlib.sha256( request.json.get("password").encode("utf-8") ).hexdigest() auth_entry = { "user_id": txn_user_id, "hashed_password": hashed_password, "encrypted_private_key": encrypted_private_key, "username": request.json.get("username"), "email": request.json.get("email"), } conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) await auth_query.create_auth_entry(conn, auth_entry) conn.close() # Send back success response return create_user_response(request, txn_user_id) @USERS_BP.get("api/users/<user_id>") @authorized() async def get_user(request, user_id): conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) head_block = await utils.get_request_block(request) # this takes 4 seconds user_resource = await users_query.fetch_user_resource( conn, user_id, head_block.get("num") ) conn.close() return await utils.create_response(conn, request.url, user_resource, head_block) @USERS_BP.get("api/user/<user_id>/summary") @authorized() async def get_user_summary(request, user_id): """This endpoint is for returning summary data for a user, just it's user_id,name, email.""" head_block = await utils.get_request_block(request) conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) user_resource = await users_query.fetch_user_resource_summary( conn, user_id, head_block.get("num") ) conn.close() return await utils.create_response(conn, request.url, user_resource, head_block) @USERS_BP.get("api/users/<user_id>/summary") @authorized() async def get_users_summary(request, user_id): """This endpoint is for returning summary data for a user, just it's user_id,name, email.""" head_block = await utils.get_request_block(request) conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) user_resource = await users_query.fetch_user_resource_summary( conn, user_id, head_block.get("num") ) conn.close() return await utils.create_response(conn, request.url, user_resource, head_block) @USERS_BP.get("api/users/<user_id>/relationships") @authorized() async def get_user_relationships(request, user_id): conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) head_block = await utils.get_request_block(request) user_resource = await users_query.fetch_user_relationships( conn, user_id, head_block.get("num") ) conn.close() return await utils.create_response(conn, request.url, user_resource, head_block) @USERS_BP.patch("api/users/<user_id>") @authorized() async def update_user(request, user_id): raise ApiNotImplemented() @USERS_BP.put("api/users/<user_id>/manager") @authorized() async def update_manager(request, user_id): required_fields = ["id"] utils.validate_fields(required_fields, request.json) txn_key, txn_user_id = await utils.get_transactor_key(request) proposal_id = str(uuid4()) batch_list = rbac.user.manager.propose.batch_list( signer_keypair=txn_key, signer_user_id=txn_user_id, proposal_id=proposal_id, user_id=user_id, new_manager_id=request.json.get("id"), reason=request.json.get("reason"), metadata=request.json.get("metadata"), ) conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) await utils.send(conn, batch_list, request.app.config.TIMEOUT) conn.close() return json({"proposal_id": proposal_id}) @USERS_BP.get("api/users/<user_id>/proposals/open") @authorized() async def fetch_open_proposals(request, user_id): conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) head_block = await utils.get_request_block(request) start, limit = utils.get_request_paging_info(request) proposals = await proposals_query.fetch_all_proposal_resources( conn, head_block.get("num"), start, limit ) proposal_resources = [] for proposal in proposals: proposal_resource = await compile_proposal_resource( conn, proposal, head_block.get("num") ) proposal_resources.append(proposal_resource) open_proposals = [] for proposal_resource in proposal_resources: if ( proposal_resource["status"] == "OPEN" and user_id in proposal_resource["approvers"] ): open_proposals.append(proposal_resource) conn.close() return await utils.create_response( conn, request.url, open_proposals, head_block, start=start, limit=limit ) @USERS_BP.get("api/users/<user_id>/proposals/confirmed") @authorized() async def fetch_confirmed_proposals(request, user_id): conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) head_block = await utils.get_request_block(request) start, limit = utils.get_request_paging_info(request) proposals = await proposals_query.fetch_all_proposal_resources( conn, head_block.get("num"), start, limit ) proposal_resources = [] for proposal in proposals: proposal_resource = await compile_proposal_resource( conn, proposal, head_block.get("num") ) proposal_resources.append(proposal_resource) confirmed_proposals = [] for proposal_resource in proposal_resources: if ( proposal_resource["status"] == "CONFIRMED" and user_id in proposal_resource["approvers"] ): confirmed_proposals.append(proposal_resource) conn.close() return await utils.create_response( conn, request.url, confirmed_proposals, head_block, start=start, limit=limit ) @USERS_BP.get("api/users/<user_id>/proposals/rejected") @authorized() async def fetch_rejected_proposals(request, user_id): conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) head_block = await utils.get_request_block(request) start, limit = utils.get_request_paging_info(request) proposals = await proposals_query.fetch_all_proposal_resources( conn, head_block.get("num"), start, limit ) proposal_resources = [] for proposal in proposals: proposal_resource = await compile_proposal_resource( conn, proposal, head_block.get("num") ) proposal_resources.append(proposal_resource) rejected_proposals = [] for proposal_resource in proposal_resources: if ( proposal_resource["status"] == "REJECTED" and user_id in proposal_resource["approvers"] ): rejected_proposals.append(proposal_resource) conn.close() return await utils.create_response( conn, request.url, rejected_proposals, head_block, start=start, limit=limit ) @USERS_BP.patch("api/users/<user_id>/roles/expired") @authorized() async def update_expired_roles(request, user_id): """Manually expire user role membership""" head_block = await utils.get_request_block(request) required_fields = ["id"] utils.validate_fields(required_fields, request.json) conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) await roles_query.expire_role_member( conn, request.json.get("id"), user_id, head_block.get("num") ) conn.close() return json({"role_id": request.json.get("id")}) @USERS_BP.get("api/users/<user_id>/roles/recommended") @authorized() async def fetch_recommended_roles(request, user_id): conn = await db_utils.create_connection( request.app.config.DB_HOST, request.app.config.DB_PORT, request.app.config.DB_NAME, ) head_block = await utils.get_request_block(request) start, limit = utils.get_request_paging_info(request) recommended_resources = await roles_query.fetch_all_role_resources( conn, head_block.get("num"), 0, 10 ) conn.close() return await utils.create_response( conn, request.url, recommended_resources, head_block, start=start, limit=limit ) def create_user_response(request, user_id): token = generate_api_key(request.app.config.SECRET_KEY, user_id) user_resource = { "id": user_id, "name": request.json.get("name"), "username": request.json.get("username"), "email": request.json.get("email"), "ownerOf": [], "administratorOf": [], "memberOf": [], "proposals": [], } if request.json.get("manager"): user_resource["manager"] = request.json.get("manager") if request.json.get("metadata"): user_resource["metadata"] = request.json.get("metadata") return utils.create_authorization_response( token, {"message": "Authorization successful", "user": user_resource} )
python
############################################## # sudo apt-get install -y python3-picamera # sudo -H pip3 install imutils --upgrade ############################################## import multiprocessing as mp import sys from time import sleep import argparse import cv2 import numpy as np import time try: from armv7l.openvino.inference_engine import IENetwork, IEPlugin except: from openvino.inference_engine import IENetwork, IEPlugin import heapq import threading try: from imutils.video.pivideostream import PiVideoStream from imutils.video.filevideostream import FileVideoStream import imutils except: pass lastresults = None threads = [] processes = [] frameBuffer = None results = None fps = "" detectfps = "" framecount = 0 detectframecount = 0 time1 = 0 time2 = 0 cam = None vs = None window_name = "" elapsedtime = 0.0 g_plugin = None g_inferred_request = None g_heap_request = None g_inferred_cnt = 0 g_number_of_allocated_ncs = 0 LABELS = ["neutral", "happy", "sad", "surprise", "anger"] COLORS = np.random.uniform(0, 255, size=(len(LABELS), 3)) def camThread(LABELS, resultsEm, frameBuffer, camera_width, camera_height, vidfps, number_of_camera, mode_of_camera): global fps global detectfps global lastresults global framecount global detectframecount global time1 global time2 global cam global vs global window_name if mode_of_camera == 0: cam = cv2.VideoCapture(number_of_camera) if cam.isOpened() != True: print("USB Camera Open Error!!!") sys.exit(0) cam.set(cv2.CAP_PROP_FPS, vidfps) cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width) cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height) window_name = "USB Camera" else: vs = PiVideoStream((camera_width, camera_height), vidfps).start() sleep(3) window_name = "PiCamera" cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE) while True: t1 = time.perf_counter() # USB Camera Stream or PiCamera Stream Read color_image = None if mode_of_camera == 0: s, color_image = cam.read() if not s: continue else: color_image = vs.read() if frameBuffer.full(): frameBuffer.get() frames = color_image height = color_image.shape[0] width = color_image.shape[1] frameBuffer.put(color_image.copy()) res = None if not resultsEm.empty(): res = resultsEm.get(False) # print("[LOG] ".format(type(res))) # print(res) detectframecount += 1 imdraw = overlay_on_image(frames, res) lastresults = res else: imdraw = overlay_on_image(frames, lastresults) cv2.imshow(window_name, cv2.resize(imdraw, (width, height))) if cv2.waitKey(1) & 0xFF == ord('q'): sys.exit(0) ## Print FPS framecount += 1 if framecount >= 25: fps = "(Playback) {:.1f} FPS".format(time1 / 25) detectfps = "(Detection) {:.1f} FPS".format(detectframecount / time2) framecount = 0 detectframecount = 0 time1 = 0 time2 = 0 t2 = time.perf_counter() elapsedTime = t2 - t1 time1 += 1 / elapsedTime time2 += elapsedTime # l = Search list # x = Search target value def searchlist(l, x, notfoundvalue=-1): if x in l: return l.index(x) else: return notfoundvalue def async_infer(ncsworkerFd, ncsworkerEm): while True: ncsworkerFd.predict_async() ncsworkerEm.predict_async() class BaseNcsWorker(): def __init__(self, devid, model_path, number_of_ncs): global g_plugin global g_inferred_request global g_heap_request global g_inferred_cnt global g_number_of_allocated_ncs self.devid = devid if number_of_ncs == 0: self.num_requests = 4 elif number_of_ncs == 1: self.num_requests = 4 elif number_of_ncs == 2: self.num_requests = 2 elif number_of_ncs >= 3: self.num_requests = 1 print("g_number_of_allocated_ncs =", g_number_of_allocated_ncs, "number_of_ncs =", number_of_ncs) if g_number_of_allocated_ncs < 1: self.plugin = IEPlugin(device="MYRIAD") self.inferred_request = [0] * self.num_requests self.heap_request = [] self.inferred_cnt = 0 g_plugin = self.plugin g_inferred_request = self.inferred_request g_heap_request = self.heap_request g_inferred_cnt = self.inferred_cnt g_number_of_allocated_ncs += 1 else: self.plugin = g_plugin self.inferred_request = g_inferred_request self.heap_request = g_heap_request self.inferred_cnt = g_inferred_cnt self.model_xml = model_path + ".xml" self.model_bin = model_path + ".bin" self.net = IENetwork(model=self.model_xml, weights=self.model_bin) self.input_blob = next(iter(self.net.inputs)) self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests) class NcsWorkerFd(BaseNcsWorker): def __init__(self, devid, frameBuffer, resultsFd, model_path, number_of_ncs): super().__init__(devid, model_path, number_of_ncs) self.frameBuffer = frameBuffer self.resultsFd = resultsFd def image_preprocessing(self, color_image): prepimg = cv2.resize(color_image, (300, 300)) prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW return prepimg def predict_async(self): try: if self.frameBuffer.empty(): return color_image = self.frameBuffer.get() prepimg = self.image_preprocessing(color_image) reqnum = searchlist(self.inferred_request, 0) if reqnum > -1: self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg}) self.inferred_request[reqnum] = 1 self.inferred_cnt += 1 if self.inferred_cnt == sys.maxsize: self.inferred_request = [0] * self.num_requests self.heap_request = [] self.inferred_cnt = 0 self.exec_net.requests[reqnum].wait(-1) out = self.exec_net.requests[reqnum].outputs["detection_out"].flatten() detection_list = [] face_image_list = [] for detection in out.reshape(-1, 7): confidence = float(detection[2]) if confidence > 0.3: detection[3] = int(detection[3] * color_image.shape[1]) detection[4] = int(detection[4] * color_image.shape[0]) detection[5] = int(detection[5] * color_image.shape[1]) detection[6] = int(detection[6] * color_image.shape[0]) if (detection[6] - detection[4]) > 0 and (detection[5] - detection[3]) > 0: detection_list.extend(detection) face_image_list.extend([color_image[int(detection[4]):int(detection[6]), int(detection[3]):int(detection[5]), :]]) if len(detection_list) > 0: self.resultsFd.put([detection_list, face_image_list]) self.inferred_request[reqnum] = 0 except: import traceback traceback.print_exc() class NcsWorkerEm(BaseNcsWorker): def __init__(self, devid, resultsFd, resultsEm, model_path, number_of_ncs): super().__init__(devid, model_path, number_of_ncs) self.resultsFd = resultsFd self.resultsEm = resultsEm def image_preprocessing(self, color_image): try: prepimg = cv2.resize(color_image, (64, 64)) except: prepimg = np.full((64, 64, 3), 128) prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW return prepimg def predict_async(self): try: if self.resultsFd.empty(): return resultFd = self.resultsFd.get() detection_list = resultFd[0] face_image_list = resultFd[1] emotion_list = [] max_face_image_list_cnt = len(face_image_list) image_idx = 0 end_cnt_processing = 0 heapflg = False cnt = 0 dev = 0 if max_face_image_list_cnt <= 0: detection_list.extend([""]) self.resultsEm.put([detection_list]) return while True: reqnum = searchlist(self.inferred_request, 0) if reqnum > -1 and image_idx <= (max_face_image_list_cnt - 1) and len(face_image_list[image_idx]) > 0: if len(face_image_list[image_idx]) == []: image_idx += 1 continue else: prepimg = self.image_preprocessing(face_image_list[image_idx]) image_idx += 1 self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg}) self.inferred_request[reqnum] = 1 self.inferred_cnt += 1 if self.inferred_cnt == sys.maxsize: self.inferred_request = [0] * self.num_requests self.heap_request = [] self.inferred_cnt = 0 heapq.heappush(self.heap_request, (self.inferred_cnt, reqnum)) heapflg = True if heapflg: cnt, dev = heapq.heappop(self.heap_request) heapflg = False if self.exec_net.requests[dev].wait(0) == 0: self.exec_net.requests[dev].wait(-1) out = self.exec_net.requests[dev].outputs["prob_emotion"].flatten() emotion = LABELS[int(np.argmax(out))] detection_list.extend([emotion]) self.resultsEm.put([detection_list]) self.inferred_request[dev] = 0 end_cnt_processing += 1 if end_cnt_processing >= max_face_image_list_cnt: break else: heapq.heappush(self.heap_request, (cnt, dev)) heapflg = True except: import traceback traceback.print_exc() def inferencer(resultsFd, resultsEm, frameBuffer, number_of_ncs, fd_model_path, em_model_path): # Init infer threads threads = [] for devid in range(number_of_ncs): # Face Detection, Emotion Recognition start thworker = threading.Thread(target=async_infer, args=(NcsWorkerFd(devid, frameBuffer, resultsFd, fd_model_path, number_of_ncs), NcsWorkerEm(devid, resultsFd, resultsEm, em_model_path, 0),)) thworker.start() threads.append(thworker) print("Thread-" + str(devid)) for th in threads: th.join() def overlay_on_image(frames, object_infos): try: color_image = frames if isinstance(object_infos, type(None)): return color_image # Show images height = color_image.shape[0] width = color_image.shape[1] img_cp = color_image.copy() for object_info in object_infos: if object_info[2] == 0.0: break if (not np.isfinite(object_info[0]) or not np.isfinite(object_info[1]) or not np.isfinite(object_info[2]) or not np.isfinite(object_info[3]) or not np.isfinite(object_info[4]) or not np.isfinite(object_info[5]) or not np.isfinite(object_info[6])): continue min_score_percent = 60 percentage = int(object_info[2] * 100) if (percentage <= min_score_percent): continue box_left = int(object_info[3]) box_top = int(object_info[4]) box_bottom = int(object_info[6]) emotion = str(object_info[7]) label_text = emotion + " (" + str(percentage) + "%)" label_text_color = (255, 255, 255) # info fps cv2.putText(img_cp, fps, (width - 170, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38, 0, 255), 1, cv2.LINE_AA) cv2.putText(img_cp, detectfps, (width - 170, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38, 0, 255), 1, cv2.LINE_AA) # background of expression list overlay = img_cp.copy() opacity = 0.4 cv2.rectangle(img_cp, (box_left + box_bottom + 10 - 250, box_top - 25), (box_left + box_bottom - 50, box_top + 25), (64, 64, 64), cv2.FILLED) cv2.addWeighted(overlay, opacity, img_cp, 1 - opacity, 0, img_cp) # connect face and expressions cv2.line(img_cp, (int((box_left + box_left + box_bottom - 250) / 2), box_top + 15), (box_left + box_bottom - 250, box_top - 20), (255, 255, 255), 1) cv2.line(img_cp, (box_left + box_bottom - 250, box_top - 20), (box_left + box_bottom + 10 - 250, box_top - 20), (255, 255, 255), 1) cv2.putText(img_cp, label_text, (int(box_left + box_bottom + 15 - 250), int(box_top - 12 + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1) return img_cp except: import traceback traceback.print_exc() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-cm', '--modeofcamera', dest='mode_of_camera', type=int, default=0, help='Camera Mode. 0:=USB Camera, 1:=PiCamera (Default=0)') parser.add_argument('-cn', '--numberofcamera', dest='number_of_camera', type=int, default=0, help='USB camera number. (Default=0)') parser.add_argument('-wd', '--width', dest='camera_width', type=int, default=640, help='Width of the frames in the video stream. (Default=640)') parser.add_argument('-ht', '--height', dest='camera_height', type=int, default=480, help='Height of the frames in the video stream. (Default=480)') parser.add_argument('-numncs', '--numberofncs', dest='number_of_ncs', type=int, default=1, help='Number of NCS. (Default=1)') parser.add_argument('-vidfps', '--fpsofvideo', dest='fps_of_video', type=int, default=30, help='FPS of Video. (Default=30)') parser.add_argument('-fdmp', '--facedetectionmodelpath', dest='fd_model_path', default='./model/face-detection-retail-0004', help='Face Detection model path. (xml and bin. Except extension.)') parser.add_argument('-emmp', '--emotionrecognitionmodelpath', dest='em_model_path', default='./model/emotions-recognition-retail-0003', help='Emotion Recognition model path. (xml and bin. Except extension.)') args = parser.parse_args() mode_of_camera = args.mode_of_camera number_of_camera = args.number_of_camera camera_width = args.camera_width camera_height = args.camera_height number_of_ncs = args.number_of_ncs vidfps = args.fps_of_video fd_model_path = args.fd_model_path em_model_path = args.em_model_path try: mp.set_start_method('forkserver') frameBuffer = mp.Queue(10) resultsFd = mp.Queue() # Face Detection Queue resultsEm = mp.Queue() # Emotion Recognition Queue # Start streaming p = mp.Process(target=camThread, args=(LABELS, resultsEm, frameBuffer, camera_width, camera_height, vidfps, number_of_camera, mode_of_camera), daemon=True) p.start() processes.append(p) # Start detection MultiStick # Activation of inferencer p = mp.Process(target=inferencer, args=(resultsFd, resultsEm, frameBuffer, number_of_ncs, fd_model_path, em_model_path), daemon=True) p.start() processes.append(p) while True: sleep(1) except: import traceback traceback.print_exc() finally: for p in range(len(processes)): processes[p].terminate() print("\n\nFinished\n\n")
python
from argparse import ArgumentParser from os import rename, walk from os.path import join, splitext PLACEHOLDER_VARIABLE = 'base-angular-app' PLACEHOLDER_TITLE = 'Base Angular App' PLACEHOLDER_OWNER = 'BaseAngularAppAuthors' EXCLUDED_DIRECTORIES = ['.git', '.idea', 'node_modules'] EXCLUDED_FILES = ['replacer.py'] EXCLUDED_EXTENSIONS = ['.pyc'] def replace(file_path, site_variable, site_title, owner): modified = False with open(file_path, 'rb') as file_handle: contents = file_handle.read() if bytearray(PLACEHOLDER_VARIABLE, 'utf-8') in contents: contents = contents.replace(bytearray(PLACEHOLDER_VARIABLE, 'utf-8'), bytearray(site_variable, 'utf-8')) modified = True if bytearray(PLACEHOLDER_OWNER, 'utf-8') in contents: contents = contents.replace(bytearray(PLACEHOLDER_OWNER, 'utf-8'), bytearray(owner, 'utf-8')) modified = True if bytearray(PLACEHOLDER_TITLE, 'utf-8') in contents: contents = contents.replace(bytearray(PLACEHOLDER_TITLE, 'utf-8'), bytearray(site_title, 'utf-8')) modified = True if modified: with open(file_path, 'wb') as file_handle: file_handle.write(contents) print('Updated {0}'.format(file_path)) else: print('No changes to {0}'.format(file_path)) def replace_in_files(site_variable, site_title, owner): for root, dirs, files in walk('.'): # First, make sure we don't touch anything in excluded directories for excluded in EXCLUDED_DIRECTORIES: if excluded in dirs: dirs.remove(excluded) print('Skipping {0}'.format(join(root, excluded))) for name in files: # Make sure we don't want to skip this file because of its name or extension if name in EXCLUDED_FILES: print('Skipping {0}'.format(join(root, name))) continue if splitext(name)[1] in EXCLUDED_EXTENSIONS: print('Skipping {0}'.format(join(root, name))) continue full_path = join(root, name) # Find and replace anything in the contents of the file replace(full_path, site_variable, site_title, owner) if __name__ == "__main__": print('Enter the name of the site in a form suitable for a variable. This should consist of only lowercase characters and dashes (e.g., my-angular-app)') site_variable = input('Site Variable: ') print('\nEnter the name of the site in your preferred human-readable form. This can contain mixed case, spaces, symbols, etc. (e.g., My Angular App)') site_title = input('Site Title: ') print('\nEnter the name of the owner of this site. This name will appear in the copyright information for this site') owner = input('Owner: ') replace_in_files(site_variable, site_title, owner)
python
import os import datetime import json from officy import JsonFile, Dir, File, Stime from rumpy import RumClient father_dir = os.path.dirname(os.path.dirname(__file__)) seedsfile = os.path.join(father_dir, "data", "seeds.json") infofile = os.path.join(father_dir, "data", "groupsinfo.json") FLAG_JOINGROUPS = True PORT = 58356 if FLAG_JOINGROUPS: bot = RumClient(port=PORT) def search_groups(blocks_num=50, last_update_days=-30): groupsinfo = JsonFile(infofile).read() last_update = f"{Stime.days_later(datetime.date.today(),last_update_days)}" gids = [] for group_id in groupsinfo: if groupsinfo[group_id]["highest_height"] >= blocks_num: if groupsinfo[group_id]["last_update"] >= last_update: gids.append(group_id) return gids def _check_name(name): names = ["测试", "test", "mytest", "去中心"] for i in names: if i in name: return False return True def init_mdfile(gids): seeds = JsonFile(seedsfile).read() groupsinfo = JsonFile(infofile).read() lines = [] for gid in gids: seed = seeds.get(gid) if not seed: continue name = seed["group_name"] if not _check_name(name): continue if groupsinfo[gid]["abandoned"]: continue # join the groups if FLAG_JOINGROUPS: bot.group.join(seed) lines.extend( [ f'### {seed["group_name"]}\n\n', f'{seed["app_key"]} | 区块高度: {groupsinfo[gid]["highest_height"]}\n\n', f'{Stime.ts2datetime(seed["genesis_block"]["TimeStamp"]).date()} 创建 | {groupsinfo[gid]["last_update"][:10]} 更新\n\n', "```seed\n", json.dumps(seed, ensure_ascii=False), "\n```\n\n", ] ) File("seeds_toshare.md").writelines(lines) otherfile = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(__file__))), "rum-docs", "docs", "rum-app", "README.md", ) print(otherfile) data = File(otherfile).read() flag = "\n## 更多种子\n" lines = [data.split(flag)[0], flag, "\n"] + lines File(otherfile).writelines(lines) if __name__ == "__main__": groupseeds = search_groups(blocks_num=20, last_update_days=-30) init_mdfile(groupseeds)
python
from gquant.dataframe_flow import Node from gquant.dataframe_flow._port_type_node import _PortTypesMixin from gquant.dataframe_flow.portsSpecSchema import ConfSchema class DropNode(Node, _PortTypesMixin): def init(self): _PortTypesMixin.init(self) cols_required = {} self.required = { self.INPUT_PORT_NAME: cols_required } def columns_setup(self): if 'columns' in self.conf: dropped = {} for k in self.conf['columns']: dropped[k] = None return _PortTypesMixin.deletion_columns_setup(self, dropped) else: return _PortTypesMixin.columns_setup(self) def ports_setup(self): return _PortTypesMixin.ports_setup(self) def conf_schema(self): json = { "title": "Drop Column configure", "type": "object", "description": """Drop a few columns from the dataframe""", "properties": { "columns": { "type": "array", "items": { "type": "string" }, "description": """array of columns to be droped""" } }, "required": ["columns"], } ui = { "columns": { "items": { "ui:widget": "text" } }, } input_columns = self.get_input_columns() if self.INPUT_PORT_NAME in input_columns: col_from_inport = input_columns[self.INPUT_PORT_NAME] enums = [col for col in col_from_inport.keys()] json['properties']['columns']['items']['enum'] = enums ui = {} return ConfSchema(json=json, ui=ui) else: ui = { "column": {"ui:widget": "text"} } return ConfSchema(json=json, ui=ui) def process(self, inputs): """ Drop a few columns from the dataframe that are defined in the `columns` in the nodes' conf Arguments ------- inputs: list list of input dataframes. Returns ------- dataframe """ input_df = inputs[self.INPUT_PORT_NAME] column_names = self.conf['columns'] return {self.OUTPUT_PORT_NAME: input_df.drop(column_names, axis=1)}
python
# todo: strict version class Accessor: def split_key(self, k, *, sep="/"): return [normalize_json_pointer(x) for x in k.lstrip(sep).split(sep)] def split_key_pair(self, k, *, sep="@"): if sep not in k: return self.split_key(k), [] else: access_keys, build_keys = k.split(sep, 1) return self.split_key(access_keys), self.split_key(build_keys) def access(self, access_keys, d, default=None): for i, k in enumerate(access_keys): if k == "*": if len(access_keys) - 1 == i: continue # on last, no effect else: next_key = access_keys[i + 1] rest_keys = access_keys[i + 1 :] if next_key.endswith("[]"): next_key = next_key.rstrip("[]") for gk, v in d.items(): if hasattr(v, "__contains__") and next_key in v: return self.access(rest_keys, d[gk]) return default elif k == "*[]": if len(access_keys) - 1 == i: continue # on last, no effect else: next_key = access_keys[i + 1] rest_keys = access_keys[i + 1 :] candidates = [] for gk, v in d.items(): if hasattr(v, "__contains__") and next_key in v: candidates.append(v) if candidates: return [self.access(rest_keys, v) for v in candidates] return default elif k.endswith("[]"): k = k.rstrip("[]") rest_keys = access_keys[i + 1 :] return [self.access(rest_keys, e) for e in d[k]] elif k.isdecimal(): try: d = d[int(k)] except IndexError: return default else: try: d = d[k] except KeyError: return default return d def normalize_json_pointer(ref): if "~" not in ref: return ref return ref.replace("~1", "/").replace("~0", "~")
python
#!/usr/bin/env python3 from os import listdir from os.path import isdir, isfile, join def get_focus(day): day = int(day.split(" ")[1].split(":")[0]) if day == 1: return "Chest" elif day == 2: return "Quads" elif day == 3: return "Back" elif day == 4: return "Glute & Ham" elif day == 5: return "Shoulders & Arms" else: return "Nothing..." def parse_workout(workout_file): workouts = [] with open(workout_file, "r") as file: workout = [] day = None for line in file.readlines(): if line.startswith("Week") or line.startswith("Exercise"): continue if line.startswith("Day"): if day: workouts.append(workout) workout = [] day = line.rstrip() continue l = line.rstrip().split("\t") l.append(day) workout.append(l) workouts.append(workout) ex = [] for workout in workouts: exercises = [] for exercise in workout: name = exercise[0] _set = exercise[1] kg = exercise[2] reps = exercise[3] day = exercise[4] focus = get_focus(day) e = '{"name":"%s", "kg":"%s", "sets":"%s"}' % (name, kg, _set) exercises.append(e) title = '{"focus":"%s", "exercises":[%s], "reps":"%s"}' % (focus, ",".join(exercises), reps) ex.append(title) x = '{"workouts": [' x += ",".join(ex) x += ']}' return x def write_to_file(file_name, content): f = open(file_name, "w") f.write(content) f.close() def main(): cycles = [d for d in listdir(".") if isdir(join(".", d)) and d.startswith("cycle")] for cycle in cycles: print("parsing %s" % cycle) workouts = ["%s/%s" % (cycle, f) for f in listdir(cycle) if isfile(join(cycle, f))] for workout in workouts: print(" workout : %s" % workout) parsed_workout = parse_workout(workout) file_name = "%s/json/%s" % (cycle, workout.split("/")[1].replace(".txt", ".json")) write_to_file(file_name, parsed_workout) print("done") if __name__ == "__main__": main()
python
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from scipy import interpolate import torch import tqdm from neural_clbf.controllers import NeuralObsBFController, ObsMPCController from neural_clbf.experiments import ( RolloutSuccessRateExperiment, ExperimentSuite, ObsBFVerificationExperiment, ) import neural_clbf.evaluation.turtle2d.scenes as scene_utils @torch.no_grad() def eval_and_plot_turtlebot_room(): # Load the checkpoint file. This should include the experiment suite used during # training. log_dir = "saved_models/perception/turtlebot2d/commit_26f34ff/" neural_controller = NeuralObsBFController.load_from_checkpoint(log_dir + "v0.ckpt") # Get the experiments contour_experiment = neural_controller.experiment_suite.experiments[0] rollout_experiment = neural_controller.experiment_suite.experiments[1] # Modify contour parameters contour_experiment.n_grid = 30 contour_experiment.domain = [(-4.0, 0.0), (-2.0, 2.0)] # Modify rollout parameters rollout_experiment.t_sim = 10 rollout_experiment.start_x = torch.tensor( [ # Start from same room as goal (OK, 10s) [-2.5, -2.5, np.pi / 2], [-4.0, 0.0, 0.0], # # Start from table room (OK, 20s) # [-13.5, 1.0, 0.0], # [-11.83, -4.8, 0.0], # # Start from chair room (OK, 80) # [-13.5, -13.5, 0.0], # [-7.0, -8.0, 0.0], # Start from chair room (testing) # [-1.0, -13.5, 0.0], # (OK, 80) # [-3.0, -12, 0.0], # (OK, 200) # [-3.8, -11, 0.0], # (OK, 100) ] ) neural_controller.lookahead_grid_n = 8 neural_controller.controller_period = 0.1 neural_controller.dynamics_model.dt = 0.01 neural_controller.lookahead_dual_penalty = 1e3 # neural_controller.debug_mode_exploratory = True # neural_controller.debug_mode_goal_seeking = True # Modify scene scene = scene_utils.room_4() neural_controller.dynamics_model.scene = scene # Run the experiments and plot rollout_experiment.run_and_plot(neural_controller, display_plots=True) # contour_experiment.run_and_plot(neural_controller, display_plots=True) def eval_and_plot_turtlebot_bugtrap(): # Load the checkpoint file. This should include the experiment suite used during # training. log_dir = "saved_models/perception/turtlebot2d/commit_04c9147/" neural_controller = NeuralObsBFController.load_from_checkpoint(log_dir + "v0.ckpt") # Get the experiments cbf_contour_experiment = neural_controller.experiment_suite.experiments[0] clf_contour_experiment = neural_controller.experiment_suite.experiments[1] rollout_experiment = neural_controller.experiment_suite.experiments[2] # Modify contour parameters cbf_contour_experiment.n_grid = 30 cbf_contour_experiment.domain = [(-4.0, 0.0), (-2.0, 2.0)] clf_contour_experiment.n_grid = 30 clf_contour_experiment.domain = [(-4.0, 0.0), (-2.0, 2.0)] # Modify rollout parameters rollout_experiment.t_sim = 4 rollout_experiment.start_x = torch.tensor( [ [-3.0, -0.1, 0.0], ] ) neural_controller.lookahead_grid_n = 8 neural_controller.controller_period = 0.1 neural_controller.dynamics_model.dt = 0.01 neural_controller.lookahead_dual_penalty = 1e3 # neural_controller.debug_mode_exploratory = True # neural_controller.debug_mode_goal_seeking = True # Modify scene scene = scene_utils.bugtrap() neural_controller.dynamics_model.scene = scene # Run the experiments and plot rollout_experiment.run_and_plot(neural_controller, display_plots=True) # cbf_contour_experiment.run_and_plot(neural_controller, display_plots=True) def eval_and_plot_turtlebot_training(): # Load the checkpoint file. This should include the experiment suite used during # training. log_dir = "saved_models/perception/turtlebot2d/commit_8439378/" neural_controller = NeuralObsBFController.load_from_checkpoint( log_dir + "v0_ep72.ckpt" ) # Get the experiment rollout_experiment = neural_controller.experiment_suite.experiments[-1] # Modify rollout parameters rollout_experiment.t_sim = 4 neural_controller.lookahead_grid_n = 8 neural_controller.controller_period = 0.1 neural_controller.dynamics_model.dt = 0.01 neural_controller.lookahead_dual_penalty = 1e3 # neural_controller.debug_mode_exploratory = True # neural_controller.debug_mode_goal_seeking = True # Run the experiments and plot rollout_experiment.run_and_plot(neural_controller, display_plots=True) # Also run with an MPC controller mpc_controller = ObsMPCController( neural_controller.dynamics_model, neural_controller.controller_period, neural_controller.experiment_suite, neural_controller.validation_dynamics_model, ) rollout_experiment.run_and_plot(mpc_controller, display_plots=True) def eval_turtlebot_neural_cbf_mpc_success_rates(): # Load the checkpoint file. This should include the experiment suite used during # training. log_dir = "saved_models/perception/turtlebot2d/commit_8439378/" neural_controller = NeuralObsBFController.load_from_checkpoint( log_dir + "v0_ep72.ckpt" ) # Make the experiment rollout_experiment = RolloutSuccessRateExperiment( "success_rate", "Neural oCBF/oCLF (ours)", n_sims=500, t_sim=10.0, ) experiment_suite = ExperimentSuite([rollout_experiment]) # # Run the experiments and save the results # experiment_suite.run_all_and_save_to_csv( # neural_controller, log_dir + "experiments_neural_ocbf" # ) # Also run with an MPC controller mpc_controller = ObsMPCController( neural_controller.dynamics_model, neural_controller.controller_period, neural_controller.experiment_suite, neural_controller.validation_dynamics_model, ) rollout_experiment.algorithm_name = "MPC" experiment_suite.run_all_and_save_to_csv( mpc_controller, log_dir + "experiments_mpc_contingent" ) # # Also run with a state-based controller # log_dir = "saved_models/perception/turtlebot2d_state/commit_f63b307/" # neural_state_controller = NeuralObsBFController.load_from_checkpoint( # log_dir + "v0.ckpt" # ) # experiment_suite.run_all_and_save_to_csv( # neural_state_controller, log_dir + "experiments_neural_scbf" # ) def eval_and_plot_turtlebot_select_scene(): # Load the checkpoint file. This should include the experiment suite used during # training. log_dir = "saved_models/perception/turtlebot2d/commit_8439378/" neural_controller = NeuralObsBFController.load_from_checkpoint( log_dir + "v0_ep72.ckpt" ) # Get the experiment rollout_experiment = neural_controller.experiment_suite.experiments[-1] # Modify rollout parameters rollout_experiment.t_sim = 10 rollout_experiment.start_x = torch.tensor( [ [-4.0, 4.0, 0.0], ] ) # experiment_suite = ExperimentSuite([rollout_experiment]) # Load the selected scene neural_controller.dynamics_model.scene = scene_utils.saved_random_scene() # Run the experiments and plot rollout_experiment.run_and_plot(neural_controller, display_plots=True) # experiment_suite.run_all_and_save_to_csv( # neural_controller, log_dir + "experiments_neural_ocbf" # ) # Also run with an MPC controller mpc_controller = ObsMPCController( neural_controller.dynamics_model, neural_controller.controller_period, neural_controller.experiment_suite, neural_controller.validation_dynamics_model, ) rollout_experiment.run_and_plot(mpc_controller, display_plots=True) # experiment_suite.run_all_and_save_to_csv( # mpc_controller, log_dir + "experiments_mpc_contingent" # ) # # Also run with a state-based controller # log_dir = "saved_models/perception/turtlebot2d_state/commit_f63b307/" # neural_state_controller = NeuralObsBFController.load_from_checkpoint( # log_dir + "v0.ckpt" # ) # neural_state_controller.dynamics_model.scene = scene_utils.saved_random_scene() # experiment_suite.run_all_and_save_to_csv( # neural_state_controller, log_dir + "experiments_neural_scbf" # ) def plot_select_scene(): # Load data log_dir = "saved_models/perception/turtlebot2d/commit_8439378/" state_log_dir = "saved_models/perception/turtlebot2d_state/commit_f63b307/" ocbf_df = pd.read_csv( log_dir + "experiments_neural_ocbf/2021-09-01_17_57_56/Rollout.csv" ) scbf_df = pd.read_csv( state_log_dir + "experiments_neural_scbf/2021-09-01_17_58_44/Rollout.csv" ) mpc_df = pd.read_csv( log_dir + "experiments_mpc_contingent/2021-11-12_14_46_18/Rollout.csv" ) ppo_df = pd.read_csv(log_dir + "experiments_ppo/2021-09-01_21_32_00/trace.csv") # Add the start point and smooth the ppo trace start = pd.DataFrame([{"$x$": -4.0, "$y$": 4.0, "$t$": 0.0}]) ppo_df = pd.concat([start, ppo_df]) # Set the color scheme sns.set_theme(context="talk", style="white") sns.set_style({"font.family": "serif"}) # Create the axes fig, ax = plt.subplots() # Plot the environment scene_utils.saved_random_scene().plot(ax) ax.plot( [], [], color=sns.color_palette()[0], label="Observation-based CBF/CLF (ours)" ) ax.plot([], [], color=sns.color_palette()[1], label="State-based CBF/CLF") ax.plot([], [], color=sns.color_palette()[2], label="MPC") ax.plot([], [], color=sns.color_palette()[3], label="PPO") # Plot oCBF ax.plot( ocbf_df["$x$"].to_numpy(), ocbf_df["$y$"].to_numpy(), linestyle="-", linewidth=5, color=sns.color_palette()[0], ) # Plot sCBF ax.plot( scbf_df["$x$"].to_numpy(), scbf_df["$y$"].to_numpy(), linestyle="-", color=sns.color_palette()[1], ) # Plot MPC ax.plot( mpc_df["$x$"].to_numpy(), mpc_df["$y$"].to_numpy(), linestyle="-", color=sns.color_palette()[2], ) # Plot PPO smoothed ppo_t = ppo_df["$t$"].to_numpy() mpc_t = mpc_df["t"].to_numpy() ppo_x = ppo_df["$x$"].to_numpy() ppo_y = ppo_df["$y$"].to_numpy() x_smooth = interpolate.interp1d(ppo_t, ppo_x, kind="cubic") y_smooth = interpolate.interp1d(ppo_t, ppo_y, kind="cubic") ax.plot( x_smooth(mpc_t), y_smooth(mpc_t), linestyle=":", color=sns.color_palette()[3], ) ax.legend(loc="lower left") ax.set_ylim([-2, 5.5]) ax.set_xlim([-5.5, 3]) ax.set_aspect("equal") plt.tight_layout() plt.show() def validate_neural_cbf(): # Load the checkpoint file. This should include the experiment suite used during # training. log_dir = "saved_models/perception/turtlebot2d/commit_8439378/" neural_controller = NeuralObsBFController.load_from_checkpoint( log_dir + "v0_ep72.ckpt" ) # Make the verification experiment verification_experiment = ObsBFVerificationExperiment("verification", 1000) # Increase the dual penalty so any violations of the CBF condition are clear neural_controller.lookahead_dual_penalty = 1e8 # Run the experiments and save the results. Gotta do this multiple times # to accomodate memory num_infeasible = 0 prog_bar_range = tqdm.trange(100, desc="Validating BF", leave=True) for i in prog_bar_range: df = verification_experiment.run(neural_controller) num_infeasible += df["# infeasible"][0] print(f"Total samples {100 * 1000}, # infeasible: {num_infeasible}") if __name__ == "__main__": # eval_and_plot_turtlebot_room() # eval_and_plot_turtlebot_bugtrap() # eval_and_plot_turtlebot_training() # eval_turtlebot_neural_cbf_mpc_success_rates() # eval_and_plot_turtlebot_select_scene() plot_select_scene() # validate_neural_cbf()
python
import pandas as pd from pdia.extendedInfoParser.parseExtendedInfo import errorCode def parseCalculatorEvents(eInfo): """Parse a calculator event string, return parsed object or None """ assert (isinstance(eInfo, pd.Series)) try: res = eInfo.apply(lambda x: {"Calculator": x}) except: # print "\nWarning: parseCalculatorEvents(): some rows of ExtendedInfo is not a string" # return parseDefault(eInfo) res = eInfo.apply(lambda x: errorCode) return res def parseCalculatorBuffer(eInfo): """Parse a calculator buffer string, return parsed object or None """ assert (isinstance(eInfo, pd.Series)) try: res = eInfo.apply(lambda x: {"CalculatorBuffer": x}) except: # print "\nWarning: parseCalculatorBuffer(): some rows of ExtendedInfo is not a string" # return parseDefault(eInfo) res = eInfo.apply(lambda x: errorCode) return res
python
import csv import datetime as dt import hashlib import io import re from decimal import Decimal from django.utils.dateparse import parse_date from django.utils.encoding import force_str from django.utils.text import slugify def parse_zkb_csv(data): f = io.StringIO() f.write(force_str(data, encoding="utf-8", errors="ignore")) f.seek(0) dialect = csv.Sniffer().sniff(f.read(4096)) f.seek(0) reader = csv.reader(f, dialect) next(reader) # Skip first line entries = [] while True: try: row = next(reader) except StopIteration: break if not row: continue try: day = dt.datetime.strptime(row[8], "%d.%m.%Y").date() amount = row[7] and Decimal(row[7]) reference = row[4] except (AttributeError, IndexError, ValueError): continue if day and amount: details = next(reader) entries.append( { "reference_number": reference, "value_date": day, "total": amount, "payment_notice": "; ".join( filter(None, (details[1], details[10], row[4])) ), } ) return entries def postfinance_preprocess_notice(payment_notice): """Remove spaces from potential invoice numbers""" return re.sub( r"\b([0-9]{4}\s*-\s*[0-9]{4}\s*-\s*[0-9]{4})\b", lambda match: re.sub(r"\s+", "", match.group(0)), payment_notice, ) def postfinance_reference_number(payment_notice, day): """Either pull out the bank reference or create a hash from the notice""" match = re.search(r"\b([0-9]{6}[A-Z]{2}[0-9A-Z]{6,10})$", payment_notice) return "pf-{}".format( match.group(1) if match else hashlib.md5( slugify(payment_notice + day.isoformat()).encode("utf-8") ).hexdigest() ) def parse_postfinance_csv(data): f = io.StringIO() f.write(force_str(data, encoding="latin-1", errors="ignore")) f.seek(0) dialect = csv.Sniffer().sniff(f.read(4096)) f.seek(0) reader = csv.reader(f, dialect) next(reader) # Skip first line entries = [] for row in reader: if not row: continue try: day = parse_date(row[4]) except (IndexError, ValueError): continue if day is None or not row[2]: # Only credit continue payment_notice = postfinance_preprocess_notice(row[1]) entries.append( { "reference_number": postfinance_reference_number(payment_notice, day), "value_date": day, "total": Decimal(row[2]), "payment_notice": payment_notice, } ) return entries
python
import time import pygame from pygame.locals import K_ESCAPE, K_SPACE, QUIT, USEREVENT COUNTDOWN_DELAY = 4 def timerFunc(countdown, background): print("Timer CallBack", time.time()) print(countdown) print("--") # Display some text font = pygame.font.Font(None, 36) text = font.render(str(countdown), 1, (10, 10, 10)) textpos = text.get_rect() textpos.centerx = background.get_rect().centerx textpos.centery = background.get_rect().centery background.blit(text, textpos) if countdown == 0: print("SHOOT") def top_text(background): # Display some text font = pygame.font.Font(None, 36) text = font.render("space to shoot / esc to quit", 1, (10, 10, 10)) textpos = text.get_rect() textpos.centerx = background.get_rect().centerx background.blit(text, textpos) def main(): pygame.init() countdown = COUNTDOWN_DELAY stop_photobooth = False screen = pygame.display.set_mode((400, 300)) pygame.display.set_caption('Photobooth') # Fill background background = pygame.Surface(screen.get_size()) background = background.convert() background.fill((30, 250, 120)) top_text(background) # Blit everything to the screen screen.blit(background, (0, 0)) pygame.display.flip() while not stop_photobooth: background.fill((30, 250, 120)) top_text(background) for event in pygame.event.get(): # any other key event input if event.type == QUIT: stop_photobooth = True if event.type == USEREVENT+1: if countdown == -1: pygame.time.set_timer(USEREVENT+1, 0) countdown = COUNTDOWN_DELAY else: timerFunc(countdown, background) #calling the function wheever we get timer event. countdown -= 1 # get key current state keys = pygame.key.get_pressed() if keys[K_SPACE]: pygame.time.set_timer(USEREVENT+1, 1000) elif keys[K_ESCAPE]: print("quit") stop_photobooth = True screen.blit(background, (0, 0)) pygame.display.flip() if __name__ == "__main__": main()
python
#!/usr/bin/env python # coding=utf-8 import re import time import string from urlparse import urlparse from comm.request import Req from conf.settings import DICT_PATH from core.data import result from core.data import fuzz_urls from Queue import Empty class FuzzFileScan(Req): def __init__(self, site, timeout, delay, threads): super(FuzzFileScan, self).__init__(site, timeout, delay, threads) self.fuzzed_urls = [] self.test_urls = [] def load_suffix_dict(self): with open(DICT_PATH+'/fuzz.txt', 'r') as f: return f.readlines() def filter_links(self, url): """ 静态文件类型不测试 """ pattern = re.compile(r'/.*\.(?!html|htm|js|css|jpg|png|jpeg|gif|svg|pdf|avi|mp4|mp3)') ret = re.match(pattern, url) return ret def gen_dict(self, url): o = urlparse(url) ret = [] if self.filter_links(o[2]): for stuffix in self.load_suffix_dict(): to_fuzz_url = o[0] + '://' + o[1] + o[2] + string.strip(stuffix) ret.append(to_fuzz_url) return ret return [] def fuzz(self, urls): for url in urls: if self.get_is_vul(url): self.fuzzed_urls.append(url) def start(self): print '[%s] Start Fuzz File Scan ...' % time.strftime('%H:%M:%S') while True: try: url = fuzz_urls.get(True, 1) to_fuzz_url_list = self.gen_dict(url) except Empty, e: if self.pool.undone_tasks(): continue else: break self.pool.spawn(self.fuzz, to_fuzz_url_list) print '[%s] Stop Fuzz File Scan!' % time.strftime('%H:%M:%S') print '[%s] %s Founded' % (time.strftime('%H:%M:%S'), len(self.fuzzed_urls)) result.fuzz = self.fuzzed_urls
python
from gql.schema import make_schema_from_path from pathlib import Path def test_make_schema_from_path(): schema = make_schema_from_path(str(Path(__file__).parent / 'schema')) assert set(schema.query_type.fields.keys()) == {'me', 'addresses'} assert set(schema.mutation_type.fields.keys()) == {'createAddress'}
python
# -*- coding: utf8 -*- import requests, json, time, os requests.packages.urllib3.disable_warnings() cookie = os.environ.get("cookie_smzdm") def main(*arg): try: msg = "" SCKEY = os.environ.get('SCKEY') s = requests.Session() s.headers.update({'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36'}) t = round(int(time.time() * 1000)) url = f'https://zhiyou.smzdm.com/user/checkin/jsonp_checkin?_={t}' headers = { "cookie" : cookie, 'Referer': 'https://www.smzdm.com/' } r = s.get(url, headers=headers, verify=False) print(r.text.encode('latin-1').decode('unicode_escape')) if r.json()["error_code"] != 0 and SCKEY: scurl = f"https://sc.ftqq.com/{SCKEY}.send" data = { "text" : "smzdm Cookie过期", "desp" : r.text } requests.post(scurl, data=data) print("smzdm cookie失效") msg += "smzdm cookie失效" else: msg += "smzdm签到成功" except Exception as e: print('repr(e):', repr(e)) msg += '运行出错,repr(e):'+repr(e) return msg + "\n" def smzdm_pc(*arg): msg = "" global cookie clist = cookie.split("\n") i = 0 while i < len(clist): msg += f"第 {i+1} 个账号开始执行任务\n" cookie = clist[i] msg += main(cookie) i += 1 return msg if __name__ == "__main__": if cookie: print("----------什么值得买开始尝试签到----------") smzdm_pc() print("----------什么值得买签到执行完毕----------")
python
from setuptools import setup with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setup( name="streambook", author="Alexander Rush", author_email="[email protected]", version="0.1.2", packages=["streambook"], long_description=long_description, long_description_content_type="text/markdown", package_data={"streambook": []}, setup_requires=["pytest-runner"], install_requires=["streamlit", "jupytext", "watchdog", "in_place", "mistune", "typer"], tests_require=["pytest"], python_requires=">=3.6", entry_points={ "console_scripts": [ "streambook = streambook.cli:app", ], }, )
python
class WebserialError(Exception): pass class EqualChapterError(WebserialError): pass class NoChaptersFoundError(WebserialError): pass class LocalAheadOfRemoteError(WebserialError): pass
python
""" Lambdas AS known as expression lambda or lambdas. Function anonymous # FUnction Python def sum(a, b): return a + b def function(x): return 3 * x + 1 print(function(4)) # 13 print(function(7)) # 22 # Expression lambda lambda x: 3 * x + 1 # How can I use expression lambda? calculation = lambda x: 3 * x + 1 print(calculation(4)) # 13 print(calculation(7)) # 22 # We can use expression lambda with multiply inputs90 complete_name = lambda name, surname: name.strip().title() + ' ' + surname.strip().title() print(complete_name( 'angelina', 'JOLIE')) # Angelina Jolie print(complete_name( ' YUMI ', ' OUCHI ')) # Yumi Ouchi love = lambda: 'How not love python' one = lambda x: 3*x+1 two = lambda x, y: (x * y) ** 0.5 three = lambda x, y, z: x + y + z print(love()) # print(love()) print(one(1)) # 4 print(two(2, 3)) # 2.449489742783178 print(three(2, 3, 4)) # 9 # Type error with more parameters people = ['Lais Balbe', 'Danilo Crazy', 'Anielle Matos', 'Rafael Duda', 'Yumi Ouchi', 'Ada Victoria'] print(people) # ['Lais Balbe', 'Danilo Crazy', 'Anielle Matos', 'Rafael Duda', 'Yumi Ouchi', 'Ada Victoria'] people.sort(key=lambda surname: surname.split(' ')[-1].lower()) print(people) # ['Lais Balbe', 'Danilo Crazy', 'Rafael Duda', 'Anielle Matos', 'Yumi Ouchi', 'Ada Victoria'] """ # Quad function def quad_function(a, b, c): """ Return a * x ** 2 + b * x + c""" return lambda x: a * x ** 2 + b * x + c quadrad = quad_function(2, 3, -5) print(quadrad(0)) # -5 print(quadrad(1)) # 0 print(quadrad(2)) # 9 print(quad_function(1, 2, 3)(2)) # 11
python
from userbot.utils import admin_cmd from telethon.tl.functions.users import GetFullUserRequest import asyncio @borg.on(admin_cmd(pattern="pmto ?(.*)")) async def pmto(event): if event.reply_to_msg_id: reply_message = await event.get_reply_message() chat_id=await event.client(GetFullUserRequest(reply_message.from_id)) msg = event.pattern_match.group(1) try: await borg.send_message(chat_id, msg) await event.edit("Message sent!") await asyncio.sleep(3) await event.delete() except BaseException: await event.edit("Something went wrong.") else: a = event.pattern_match.group(1) b = a.split(" ") chat_id = b[0] try: chat_id = int(chat_id) except BaseException: pass msg = "" for i in b[1:]: msg += i + " " if msg == "": return try: await borg.send_message(chat_id, msg) await event.edit("Message sent!") await asyncio.sleep(3) await event.delete() except BaseException: await event.edit("Something went wrong.")
python
import asyncio import sys import os project_root = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '../..')) sys.path.insert(0, project_root) from ahk import AHK, AsyncAHK from unittest import TestCase, IsolatedAsyncioTestCase from PIL import Image from itertools import product import time class TestScreen(IsolatedAsyncioTestCase): def setUp(self): """ Record all open windows :return: """ self.ahk = AsyncAHK() self.before_windows = asyncio.run(self.ahk.windows()) im = Image.new('RGB', (20, 20)) for coord in product(range(20), range(20)): im.putpixel(coord, (255, 0, 0)) self.im = im im.show() time.sleep(2) async def asyncTearDown(self): for win in await self.ahk.windows(): if win not in self.before_windows: await win.close() break async def test_pixel_search(self): result = await self.ahk.pixel_search(0xFF0000) self.assertIsNotNone(result) async def test_image_search(self): self.im.save('testimage.png') position = await self.ahk.image_search('testimage.png') self.assertIsNotNone(position) async def test_pixel_get_color(self): x, y = await self.ahk.pixel_search(0xFF0000) result = await self.ahk.pixel_get_color(x, y) self.assertIsNotNone(result) self.assertEqual(int(result, 16), 0xFF0000)
python
from django.contrib import admin from certificates.models import ProductionSiteCertificate from certificates.models import DoubleCountingRegistration, DoubleCountingRegistrationInputOutput class ProductionSiteCertificateAdmin(admin.ModelAdmin): list_display = ('production_site', 'get_certificate_type', 'certificate') search_fields = ('production_site__name', ) def get_certificate_type(self, obj): return obj.certificate.certificate_type get_certificate_type.short_description = 'Type' admin.site.register(ProductionSiteCertificate, ProductionSiteCertificateAdmin) @admin.register(DoubleCountingRegistration) class DoubleCountingRegistrationAdmin(admin.ModelAdmin): list_display = ('certificate_id', 'certificate_holder', 'valid_from', 'valid_until') search_fields = ('certificate_id', 'certificate_holder',) @admin.register(DoubleCountingRegistrationInputOutput) class DoubleCountingRegistrationAdmin(admin.ModelAdmin): list_display = ('get_certid', 'get_holder', 'biofuel', 'feedstock') search_fields = ('certificate__certificate_id', 'certificate__certificate_holder', ) def get_certid(self, obj): return obj.certificate.certificate_id get_certid.short_description = 'ID' def get_holder(self, obj): return obj.certificate.certificate_holder get_holder.short_description = 'Holder'
python
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generated by the protocol buffer compiler. DO NOT EDIT! # source: heartbeat.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='heartbeat.proto', package='', syntax='proto2', serialized_options=_b('Z#clusterfuzz/protos/untrusted_runner'), serialized_pb=_b('\n\x0fheartbeat.proto\"\x12\n\x10HeartbeatRequest\"\x13\n\x11HeartbeatResponse2:\n\tHeartbeat\x12-\n\x04\x42\x65\x61t\x12\x11.HeartbeatRequest\x1a\x12.HeartbeatResponseB%Z#clusterfuzz/protos/untrusted_runner') ) _HEARTBEATREQUEST = _descriptor.Descriptor( name='HeartbeatRequest', full_name='HeartbeatRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=19, serialized_end=37, ) _HEARTBEATRESPONSE = _descriptor.Descriptor( name='HeartbeatResponse', full_name='HeartbeatResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=39, serialized_end=58, ) DESCRIPTOR.message_types_by_name['HeartbeatRequest'] = _HEARTBEATREQUEST DESCRIPTOR.message_types_by_name['HeartbeatResponse'] = _HEARTBEATRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) HeartbeatRequest = _reflection.GeneratedProtocolMessageType('HeartbeatRequest', (_message.Message,), dict( DESCRIPTOR = _HEARTBEATREQUEST, __module__ = 'heartbeat_pb2' # @@protoc_insertion_point(class_scope:HeartbeatRequest) )) _sym_db.RegisterMessage(HeartbeatRequest) HeartbeatResponse = _reflection.GeneratedProtocolMessageType('HeartbeatResponse', (_message.Message,), dict( DESCRIPTOR = _HEARTBEATRESPONSE, __module__ = 'heartbeat_pb2' # @@protoc_insertion_point(class_scope:HeartbeatResponse) )) _sym_db.RegisterMessage(HeartbeatResponse) DESCRIPTOR._options = None _HEARTBEAT = _descriptor.ServiceDescriptor( name='Heartbeat', full_name='Heartbeat', file=DESCRIPTOR, index=0, serialized_options=None, serialized_start=60, serialized_end=118, methods=[ _descriptor.MethodDescriptor( name='Beat', full_name='Heartbeat.Beat', index=0, containing_service=None, input_type=_HEARTBEATREQUEST, output_type=_HEARTBEATRESPONSE, serialized_options=None, ), ]) _sym_db.RegisterServiceDescriptor(_HEARTBEAT) DESCRIPTOR.services_by_name['Heartbeat'] = _HEARTBEAT # @@protoc_insertion_point(module_scope)
python
"""tipo torneo Revision ID: 016 Revises: 015 Create Date: 2014-05-27 22:50:52.173711 """ # revision identifiers, used by Alembic. revision = '017' down_revision = '016' from alembic import op import sqlalchemy as sa def upgrade(): op.create_table('tipo_torneo', sa.Column('id', sa.Integer, primary_key=True), sa.Column('nombre', sa.String(256), nullable=False), sa.Column('tipo', sa.String(256), nullable=False), sa.Column('es_escuela', sa.Boolean, nullable=False), sa.Column('numero_de_rondas', sa.Integer, nullable=False), sa.Column('numero_de_series', sa.Integer, nullable=False), sa.Column('numero_de_flechas_por_serie', sa.Integer, nullable=False), sa.Column('distancia_ronda_1', sa.Integer, nullable=False), sa.Column('series_de_practica_ronda_1', sa.Integer, nullable=False), sa.Column('distancia_ronda_2', sa.Integer, nullable=False), sa.Column('series_de_practica_ronda_2', sa.Integer, nullable=False), # partir de la 3 ronda, si puede llegar a ser null porque dependiendo # del tipo de torneo tenemos que no puede haber una tercer ronda sa.Column('distancia_ronda_3', sa.Integer), sa.Column('series_de_practica_ronda_3', sa.Integer), sa.Column('distancia_ronda_4', sa.Integer), sa.Column('series_de_practica_ronda_4', sa.Integer), ) data = [ ('18m - 80', 'Indoor', True, 2, 10, 3, 18, 2, 18, 0, None, None, None, None), ('18m - 60', 'Indoor', True, 2, 10, 3, 18, 2, 18, 0, None, None, None, None), ('18m - 40', 'Indoor', True, 2, 10, 3, 18, 2, 18, 0, None, None, None, None), ('18m - Triple Spot', 'Indoor', False, 2, 10, 3, 18, 2, 18, 0, None, None, None, None), ('20-20', 'Outdoor 70-70', True, 2, 6, 6, 20, 2, 20, 0, None, None, None, None), ('30-30', 'Outdoor 70-70', True, 2, 6, 6, 30, 2, 30, 0, None, None, None, None), ('50-50', 'Outdoor 70-70', True, 2, 6, 6, 50, 2, 50, 0, None, None, None, None), ('60-60', 'Outdoor 70-70', False, 2, 6, 6, 60, 2, 60, 0, None, None, None, None), ('70-70', 'Outdoor 70-70', False, 2, 6, 6, 70, 2, 70, 0, None, None, None, None), ('20-20-20-20', 'Outdoor 1440', True, 4, 6, 6, 20, 2, 20, 2, 20, 2, 20, 2), ('30-30-20-20', 'Outdoor 1440', True, 4, 6, 6, 30, 2, 30, 2, 20, 2, 20, 2), ('50-50-30-30', 'Outdoor 1440', True, 4, 6, 6, 50, 2, 50, 2, 30, 2, 30, 2), ('60-50-40-30', 'Outdoor 1440', True, 4, 6, 6, 60, 2, 50, 2, 30, 2, 30, 2), ('70-60-50-30', 'Outdoor 1440', True, 4, 6, 6, 70, 2, 60, 2, 50, 2, 30, 2), ('70-60-50-30 (Cadete Varones)', 'Outdoor 1440', False, 4, 6, 6, 70, 2, 60, 2, 50, 2, 30, 2), ('60-50-40-30 (Cadete Mujeres)', 'Outdoor 1440', False, 4, 6, 6, 60, 2, 50, 2, 40, 2, 30, 2), ('70-60-50-30 (Juvenil Mujeres)', 'Outdoor 1440', False, 4, 6, 6, 70, 2, 60, 2, 50, 2, 30, 2), ('90-70-50-30 (Juvenil Varones)', 'Outdoor 1440', False, 4, 6, 6, 90, 2, 70, 2, 50, 2, 30, 2), ('70-60-50-30 (Senior Mujeres)', 'Outdoor 1440', False, 4, 6, 6, 70, 2, 60, 2, 50, 2, 30, 2), ('90-70-50-30 (Senior Varones)', 'Outdoor 1440', False, 4, 6, 6, 90, 2, 70, 2, 50, 2, 30, 2), ('70-60-50-30 (Master Varones)', 'Outdoor 1440', False, 4, 6, 6, 70, 2, 60, 2, 50, 2, 30, 2), ('60-50-40-30 (Master Mujeres)', 'Outdoor 1440', False, 4, 6, 6, 60, 2, 50, 2, 40, 2, 30, 2), ] for index, valores in enumerate(data): sql = 'INSERT INTO tipo_torneo (id, '\ 'nombre, '\ 'tipo, '\ 'es_escuela, '\ 'numero_de_rondas, '\ 'numero_de_series, '\ 'numero_de_flechas_por_serie, '\ 'distancia_ronda_1, '\ 'series_de_practica_ronda_1, '\ 'distancia_ronda_2, '\ 'series_de_practica_ronda_2 ' if valores[-1]: # entonces tiene la informacion de la 3 y 4 ronda sql += ', '\ 'distancia_ronda_3, '\ 'series_de_practica_ronda_3, '\ 'distancia_ronda_4, '\ 'series_de_practica_ronda_4' sql += ') VALUES ('\ "%s, "\ "'%s', "\ "'%s', "\ "%s, "\ "%s, "\ "%s, "\ "%s, "\ "%s, "\ "%s, "\ "%s, "\ "%s " if valores[-1]: sql += ', '\ '%s, '\ '%s, '\ '%s, '\ '%s' sql += ')' if not valores[-1]: valores = valores[:-4] sql_values = (index + 1, ) + valores insert_sql = sql % sql_values op.execute(insert_sql) def downgrade(): op.drop_table('tipo_torneo')
python
class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def detectCycle(self, head: ListNode) -> ListNode: if head is None or head.next is None: return None slow = head fast = head while fast.next and fast.next.next: fast = fast.next.next slow = slow.next if fast == slow: break if fast.next is None or fast.next.next is None: return None slow = head while slow != fast: slow = slow.next fast = fast.next return slow
python
import logging import subprocess LOG = logging.getLogger(__name__) def run(*cmd, **kwargs): """Log and run a command. Optional kwargs: cwd: current working directory (string) capture: capture stdout and return it (bool) capture_stderr: redirect stderr to stdout and return it (bool) env: environment variables (dict) """ cwd = kwargs.get('cwd') capture = kwargs.get('capture') capture_stderr = kwargs.get('capture_stderr') env = kwargs.get('env') LOG.info('%s', ' '.join(cmd)) if capture or capture_stderr: stderr = subprocess.STDOUT if capture_stderr else None return subprocess.check_output(cmd, stderr=stderr, cwd=cwd) subprocess.check_call(cmd, cwd=cwd, env=env)
python
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mask_selection2.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets import config import numpy as np class Ui_MaskWindow(object): def setupUi(self, MaskWindow): MaskWindow.setObjectName("MaskWindow") MaskWindow.resize(331, 225) self.centralwidget = QtWidgets.QWidget(MaskWindow) self.centralwidget.setObjectName("centralwidget") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(20, 80, 161, 16)) self.label_3.setObjectName("label_3") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(20, 120, 301, 16)) self.label.setObjectName("label") self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(20, 140, 181, 16)) self.label_4.setObjectName("label_4") self.label_6 = QtWidgets.QLabel(self.centralwidget) self.label_6.setGeometry(QtCore.QRect(20, 180, 141, 16)) self.label_6.setObjectName("label_6") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(120, 10, 91, 31)) self.pushButton.setObjectName("pushButton") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(20, 100, 271, 16)) self.label_2.setObjectName("label_2") self.label_5 = QtWidgets.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(20, 160, 241, 16)) self.label_5.setObjectName("label_5") self.textEdit = QtWidgets.QTextEdit(self.centralwidget) self.textEdit.setGeometry(QtCore.QRect(20, 50, 291, 21)) self.textEdit.setObjectName("textEdit") MaskWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MaskWindow) self.statusbar.setObjectName("statusbar") MaskWindow.setStatusBar(self.statusbar) self.pushButton.clicked.connect(self.change_mask_function) self.retranslateUi(MaskWindow) QtCore.QMetaObject.connectSlotsByName(MaskWindow) def change_mask_function(self): config.x=self.textEdit.toPlainText() config.y=True #internal parameter to set whether or the mask function is a function or a txt print('Function defined') def retranslateUi(self, MaskWindow): _translate = QtCore.QCoreApplication.translate MaskWindow.setWindowTitle(_translate("MaskWindow", "Define phase mask")) self.label_3.setText(_translate("MaskWindow", "Available parameters:")) self.label.setText(_translate("MaskWindow", "phi (azimutal coordinate, from 0 to 2pi)")) self.label_4.setText(_translate("MaskWindow", "w0 (gaussian beam radius, mm)")) self.label_6.setText(_translate("MaskWindow", "k (wavenumber, 1/mm)")) self.pushButton.setText(_translate("MaskWindow", "Define mask")) self.label_2.setText(_translate("MaskWindow", " rho (radial coordinate, from 0 to phase mask radius)")) self.label_5.setText(_translate("MaskWindow", "f (focal distance of objective lens, mm)")) self.textEdit.setHtml(_translate("MaskWindow", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:8.25pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\">np.exp(1j*phi)</p></body></html>")) try: self.textEdit.setText(config.x)#if a phase mask has already been given except: pass if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MaskWindow = QtWidgets.QMainWindow() ui = Ui_MaskWindow() ui.setupUi(MaskWindow) MaskWindow.show() sys.exit(app.exec_())
python
import argparse, os import torch from sampling_free.config import cfg from sampling_free.data import make_data_loader from sampling_free.engine import do_inference from sampling_free.modeling import build_model from sampling_free.utils import Checkpointer, setup_logger, mkdir def eval_checkpoint(cfg, model, output_dir, num_gpus): iou_types = ("bbox",) if cfg.MODEL.MASK_ON: iou_types = iou_types + ("segm",) output_folders = [None] * len(cfg.DATASETS.TEST) dataset_names = cfg.DATASETS.TEST for idx, dataset_name in enumerate(dataset_names): output_folder = os.path.join(output_dir, dataset_name) mkdir(output_folder) output_folders[idx] = output_folder data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=num_gpus>1) for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val): model.eval() results = do_inference( model, data_loader_val, iou_types=iou_types, output_folder=output_folder, ) def main(): parser = argparse.ArgumentParser(description="sampling-free") parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() args.num_gpus = int(os.environ["WORLD_SIZE"]) args.device_id = int(os.environ["LOCAL_RANK"]) torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = True if args.num_gpus > 1: torch.cuda.set_device(args.device_id) torch.distributed.init_process_group(backend="nccl") cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = args.config_file.replace("config.yaml", "inference") if output_dir: mkdir(output_dir) logger = setup_logger("sampling-free", output_dir, args.device_id) logger.info("Using {} GPUs".format(args.num_gpus)) logger.info(args) logger.info("Collecting env info (might take some time)") from torch.utils.collect_env import get_pretty_env_info logger.info("\n" + get_pretty_env_info()) logger.info("Loaded configuration file {}".format(args.config_file)) with open(args.config_file, "r") as cf: config_str = "\n" + cf.read() logger.info(config_str) logger.info("Running with config:\n{}".format(cfg)) model = build_model(cfg).cuda(args.device_id) if args.num_gpus > 1: logger.info("Use PyTorch DDP inference") model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.device_id] ) _ = Checkpointer(cfg, model) eval_checkpoint(cfg, model, output_dir, args.num_gpus) if __name__ == "__main__": main()
python
# -*- coding: utf-8 -*- """ Created on Sun Feb 24 19:08:39 2019 @author: Tim Hohmann et al. - "Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a gH2AX foci assay", PLOS One, 2020 """ # main file for training machine learning models using previously labeled data ############################################################################### # Parameters and file path that have to be set manually: # Parameters: # min area of nucleus min_area = 4000 # color channel of nucleus. 0 = red, 1 = grenn, 2 = blue. for grayscale images # this value is ignored. nuc_chan = 2 # color channel of foci. 0 = red, 1 = grenn, 2 = blue. for grayscale images # this value is ignored. foci_chan = 1 # color channel of marked image. 0 = red, 1 = grenn, 2 = blue. corresponds to # the color of the markings in the manually labeled foci images mark_chan = 0 # adjust image size - might be usefull to save calculation time. needs to be # identical for foci and nucleus images # image rescale factor: rescale_factor = 1.0 # take only those PCA components cumulatively explaining var_max of the variance # 0<var_max<=1. var_max = 0.95 # randomly sample a proportion of the training data from each image (0<sampling<=1). # speeds up training process if smaller than 1 sampling = 1 # used filter sizes filt_range = [2,3,4,5,8,10,15,20,25,30,35] # scaling range for frangi filter sc_range = list(range(2,11)) #frequency range for gabor filter freq = [0.08,0.10,0.13,0.16,0.2] # Name used for saving the trained model and related images: model_name = "MLP" # directory containing the foci images: im_path_foci = "D:\\Sample Images\\foci" # directory containing the manually labeled foci images: im_path_foci_marked = "D:\\Sample Images\\foci_marked" # directory containing the nucleus images: im_path_dapi = "D:\\Sample Images\\dapi" ############################################################################### ############################################################################### ############################################################################### # turn of warnings, this is especially annoying with sklearn stuff def warn(*args, **kwargs): pass import warnings warnings.warn = warn # Get packages: # For directory, file handling etc. import os import sys # import pandas: import pandas as pd # import numpy import numpy as np # For image analysis: from skimage.io import imread, imshow from skimage.io import imsave from skimage.transform import rescale # import packages related to (pre-) processing of data and model results: from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV # import model packages: from sklearn.naive_bayes import ComplementNB from sklearn.neural_network import MLPClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, BaggingClassifier, VotingClassifier from sklearn.svm import LinearSVC from sklearn.metrics import precision_score, recall_score sys.path.append(os.getcwd()) main_file_path = os.getcwd() # self written functions: from FociDetectImgAnalysis import get_nuclei, GoToFiles from GetFociData import get_labeled_data from GetBestParams import image_pipeline ############################################################################### # Start analysis of dapi images # go to nucleus folder: os.chdir(im_path_dapi) print("Analyzing nucleus images ...") # go to the directory containing the foci images: #im_path = os.getcwd()+"\Sample Images\foci" #os.chdir(im_path) # start reading in image files: stats = [] # get file names save_path = "Single Nuclei" files = GoToFiles(im_path_dapi,save_path) for file_num in range(len(files)): file_name, extension = os.path.splitext(files[file_num]) # print(file_name + " " + extension) if extension in [".png",".tif",".jpg",".bmp"]: # read image: image = imread(files[file_num]) image = rescale(image, rescale_factor, order=1,preserve_range = True) image = np.uint8(image) #imshow(image) # get region props of the blue channel: if(len(image.shape)<3): stats.append(get_nuclei(image[:,:],file_name)) else: stats.append(get_nuclei(image[:,:,nuc_chan],file_name)) # Get x and y data for model training and the coordinate for each image: # y_data is boolean with True were pixel was marked as foci and false otherwise x_data, y_data, coords = get_labeled_data(im_path_foci,stats,im_path_foci_marked,filt_range,freq,sc_range,rescale_factor,foci_chan, mark_chan) # When done with everything go back to the main folder: os.chdir(main_file_path) ############################################################################### # This part is for model training assuming "get_labeled_data" was ran successfully # get trainingsdata: x_train_transformed, y_train, idx, s1, s2, p, mnmx = image_pipeline(x_data,y_data,removed_im = [],var_max = var_max, sampling = sampling) # Chose the model to train: # neural network: model = MLPClassifier(alpha=0.1, batch_size = 2000, learning_rate = "adaptive", learning_rate_init = 0.1, max_iter = 300, tol = 10**-4, early_stopping = True) parameters = {'batch_size':[100,500,1000,2000,3000,4000,5000],'alpha':[10**-4,10**-3,10**-2,10**-1,1]} # random forest: # clf = RandomForestClassifier(criterion = "entropy",min_weight_fraction_leaf = 0.005, n_estimators = 15,max_depth = 50, min_samples_leaf = 10,min_samples_split = 100, n_jobs = -1) # model = AdaBoostClassifier(base_estimator = clf, n_estimators=5) # parameters = {'base_estimator__min_weight_fraction_leaf':[0.0001,0.001,0.005],'base_estimator__n_estimators':[5,10,15,20],'base_estimator__min_samples_leaf':[10,20,100]} # complement naive bayes: # clf = ComplementNB(alpha = 0.0, norm = True) # model = AdaBoostClassifier(base_estimator = clf, n_estimators=15) # parameters = {'base_estimator__alpha': [0,0.01,0.02,0.03,0.04,0.05,0.06], 'base_estimator__norm': [True, False]} # support vector machine: # linear svm # clf = LinearSVC(penalty = "l2", loss = "hinge", C = 2, class_weight = "balanced", max_iter = 5000) # model = AdaBoostClassifier(base_estimator = clf, n_estimators=5,algorithm='SAMME') # parameters = {"base_estimator__C": [0.1,0.3,0.6,1,2,3]} print("Performing grid search ...") # get best model parameters: clf = GridSearchCV(model, parameters, cv = 3) clf.fit(x_train_transformed, y_train) ############################################################################### # train models based on on all but one of the images and test on the remaining # one. Do this for all combinations of images. # Save images and some resulting statistics. # save path: save_path = im_path_foci + "\Results Model Validation" # set model: # neural network: # model = MLPClassifier(alpha=0.1, batch_size = 2000, learning_rate = "adaptive", learning_rate_init = 0.1, max_iter = 300, tol = 10**-4, early_stopping = True) model = clf.best_estimator_ im_stats = [] # create data sets leaving out one image: print("Training model (leave one out) ...") for im in range(len(x_data)): print("Current Image:" + str(im+1)) removed_im = [im] x_train_transformed, y_train, idx, s1, s2, p, mnmx = image_pipeline(x_data,y_data,removed_im,var_max = 0.95, sampling = 1) # use some defined model and train it with the x-featues: model.fit(x_train_transformed, y_train) # create variables for test image: x_vals_im = pd.DataFrame(x_data[removed_im[0]]) y_vals_im = pd.DataFrame(y_data[removed_im[0]]) # rescale data x_image_transformed = s1.transform(x_vals_im) # do PCA to reduce parameter number: x_image_transformed = p.transform(x_image_transformed) # cumulated sum of variance explained. take only data explaining 95% of # variance x_image_transformed = x_image_transformed[:,idx] x_image_transformed = s2.transform(x_image_transformed) x_image_transformed = mnmx.transform(x_image_transformed) #predict labels: y_test_pred = model.predict(x_image_transformed) # prediction and confusion matrix conf_mat = confusion_matrix(y_vals_im, y_test_pred) v1 = model.score(x_image_transformed, y_vals_im) v2 = precision_score(y_vals_im, y_test_pred) # sensitivity v3 = recall_score(y_vals_im, y_test_pred) im_stats.extend(["Image_"+str(removed_im[0]),conf_mat,v1,v2,v3]) # apply model to test data: files = GoToFiles(im_path_foci,"\Results Model Validation") image = imread(files[removed_im[0]]) temp_var = image.copy() for i in range(len(y_test_pred)): if y_test_pred[i] == True: temp_var[coords[removed_im[0]][i][0],coords[removed_im[0]][i][1]] = 255 files = GoToFiles(save_path) save_name = "Im_"+ str(removed_im[0]+1) + "_" + model_name + ".png" imsave(save_name,temp_var) # write the statistics data for each analyzed image: import csv files = GoToFiles(save_path) with open("image_statistics.txt", 'w') as output: wr = csv.writer(output,lineterminator='\n') for val in im_stats: wr.writerow([val]) ############################################################################### # train specific model on whole dataset and save fitted model. # save path: print("Training model (all images) ...") save_path = im_path_foci + "\Trained Models" + "\\" + model_name # set model: # neural network: # model = MLPClassifier(alpha=0.1, batch_size = 2000, learning_rate = "adaptive", learning_rate_init = 0.1, max_iter = 300, tol = 10**-4, early_stopping = True) model = clf.best_estimator_ removed_im = [] x_train_transformed, y_train, idx, s1, s2, p, mnmx = image_pipeline(x_data,y_data,removed_im,var_max = 0.95, sampling = 1) files = GoToFiles(im_path_foci,"\Trained Models" + "\\" + model_name) GoToFiles(save_path) # save scalings: save_name = "PCA.p" import pickle with open(save_name, "wb") as fp: #Pickling pickle.dump(p, fp) save_name ="STD_Scaler1.p" with open(save_name, "wb") as fp: #Pickling pickle.dump(s1, fp) save_name = "STD_Scaler2.p" with open(save_name, "wb") as fp: #Pickling pickle.dump(s2, fp) save_name = "MinMax_Scaler.p" with open(save_name, "wb") as fp: #Pickling pickle.dump(mnmx, fp) save_name = "idx.p" with open(save_name, "wb") as fp: #Pickling pickle.dump(idx, fp) # use some defined model and train it with the x-featues: model.fit(x_train_transformed, y_train) files = GoToFiles(save_path) # save trained model: save_name = model_name +"_Trained"+ ".p" with open(save_name, "wb") as fp: #Pickling pickle.dump(model, fp)
python
import textwrap import uuid from moviepy.editor import * import os from moviepy.video.tools.drawing import * os.chdir('../') cwd = os.getcwd() os.chdir('src') TITLE_FONT_SIZE = 40 FONT_SIZE = 35 TITLE_FONT_COLOR = 'white' BGM_PATH = rf'{cwd}\assets\bgm.mp3' STATIC_PATH = rf'{cwd}\assets\static2.mp4' SIZE = (1080, 1920) BG_COLOR = (16,16,16) VIDEO_PATH = rf'{cwd}\data\video' FONT = 'Open-Sans-Semibold' FONT_AUTHOR = 'Open-Sans-Bold' BACKGROUND_IMAGE = rf'{cwd}\assets\background_image.jpg' ARROW_IMAGE = rf'{cwd}\assets\Arrows.png' def generate_title(text, audio_path): background_clip = ImageClip(BACKGROUND_IMAGE) audio_clip = AudioFileClip(audio_path) font_size = TITLE_FONT_SIZE wrapped_text = textwrap.fill(text, width=40) txt_clip = TextClip(wrapped_text,fontsize=font_size, font=FONT_AUTHOR, color=TITLE_FONT_COLOR, align="west") txt_clip = txt_clip.set_position((165, 213+680-txt_clip.size[1]/2)) clip = CompositeVideoClip([background_clip, txt_clip]) clip.audio = audio_clip clip.duration = audio_clip.duration static_clip = VideoFileClip(STATIC_PATH) clip = concatenate_videoclips([clip, static_clip]) return clip def generate_clip(post, comment): text = comment.body audio_path = comment.body_audio background_clip = ImageClip(BACKGROUND_IMAGE) audio_clip = AudioFileClip(audio_path) font_size = FONT_SIZE author_font_size = 32 wrapped_text = textwrap.fill(text, width=47) txt_clip = TextClip(wrapped_text,fontsize=font_size, font=FONT, color=TITLE_FONT_COLOR, align="west", interline=2) # txt_clip = txt_clip.set_position("center") txt_clip_pos = (165, 213+680-txt_clip.size[1]/2) txt_clip = txt_clip.set_position(txt_clip_pos) author_clip = TextClip(f"{comment.author}", fontsize=author_font_size, font=FONT_AUTHOR, color="white") author_pos = (txt_clip_pos[0], txt_clip_pos[1] - author_font_size - 42) author_clip = author_clip.set_position(author_pos) score_clip = TextClip(f"{comment.score} points", fontsize=author_font_size, font=FONT, color='#818384') score_pos = (author_pos[0] + author_clip.size[0] + 30, author_pos[1]) score_clip = score_clip.set_position(score_pos) arrow_clip = ImageClip(ARROW_IMAGE) arrow_pos = (author_pos[0]-arrow_clip.size[0], author_pos[1]-10) arrow_clip = arrow_clip.set_position(arrow_pos) clip = CompositeVideoClip([background_clip, txt_clip, author_clip, score_clip, arrow_clip]) clip.audio = audio_clip clip.duration = audio_clip.duration static_clip = VideoFileClip(STATIC_PATH) clip = concatenate_videoclips([clip, static_clip]) return clip def generate_video(context): post = context["post"] clips = [] clips.append(generate_title(post.title, post.title_audio)) for comment in post.comments: comment_clip = generate_clip(post, comment) # overlay reply if comment.reply: # TODO this pass clips.append(comment_clip) video = concatenate_videoclips(clips) background_audio_clip = AudioFileClip(BGM_PATH) background_audio_clip = afx.audio_loop(background_audio_clip, duration=video.duration) background_audio_clip = background_audio_clip.fx(afx.volumex, 0.1) video.audio = CompositeAudioClip([video.audio, background_audio_clip]) video_id = uuid.uuid4() path = fr"{VIDEO_PATH}\{video_id}.mp4" context["video_path"] = path context["video_id"] = video_id video.write_videofile(path, fps=24, codec='libx264',bitrate='6291456', threads=4)
python
from __future__ import absolute_import from flask import request, abort from flask.views import MethodView from huskar_sdk_v2.consts import OVERALL from more_itertools import first from huskar_api import settings from huskar_api.models import huskar_client from huskar_api.models.auth import Authority from huskar_api.models.const import ROUTE_DEFAULT_INTENT from huskar_api.models.exceptions import OutOfSyncError, EmptyClusterError from huskar_api.models.route import RouteManagement from huskar_api.models.utils import retry from huskar_api.service.admin.application_auth import ( check_application_auth, check_application) from huskar_api.service.admin.exc import NoAuthError from huskar_api.service.utils import check_cluster_name from .utils import login_required, api_response, audit_log class ServiceRouteView(MethodView): @login_required def get(self, application_name, cluster_name): """Gets the outgoing route of specific cluster. Example of response:: { "status": "SUCCESS", "message": "", "data": { "route": [ {"application_name": "base.foo", "intent": "direct", "cluster_name": "alta1-channel-stable-1"}, {"application_name": "base.bar", "intent": "direct", "cluster_name": "alta1-channel-stable-1"}, {"application_name": "base.baz", "intent": "direct", "cluster_name": null}, ] } } :param application_name: The name of source application. :param cluster_name: The name of source cluster. :<header Authorization: Huskar Token (See :ref:`token`) :status 200: The result is in the response. """ check_application(application_name) check_cluster_name(cluster_name, application_name) facade = RouteManagement(huskar_client, application_name, cluster_name) route = sorted({ 'application_name': route[0], 'intent': route[1], 'cluster_name': route[2], } for route in facade.list_route()) return api_response({'route': route}) @login_required def put(self, application_name, cluster_name, destination): """Changes the outgoing route of specific cluster. :param application_name: The name of source application. :param cluster_name: The name of source cluster. :param destination: The name of destination application. :form intent: The intent of route. (``direct``) :form cluster_name: The name of destination cluster. :<header Authorization: Huskar Token (See :ref:`token`) :status 200: Operation success. """ # forbidden request when cluster_name in FORCE_ROUTING_CLUSTERS if cluster_name in settings.FORCE_ROUTING_CLUSTERS: abort(403, 'Can not modify {}\'s value'.format(cluster_name)) self._check_auth(application_name, destination) check_cluster_name(cluster_name, application_name) self._put(application_name, cluster_name, destination) return api_response() @login_required def delete(self, application_name, cluster_name, destination): """Discards the outgoing route of specific cluster. :param application_name: The name of source application. :param cluster_name: The name of source cluster. :param destination: The name of destination application. :form intent: The intent of route. (``direct``) :<header Authorization: Huskar Token (See :ref:`token`) :status 200: Operation success. """ self._check_auth(application_name, destination) check_cluster_name(cluster_name, application_name) self._delete(application_name, cluster_name, destination) return api_response() def _get_intent(self): intent = request.form.get('intent', ROUTE_DEFAULT_INTENT) if intent not in settings.ROUTE_INTENT_LIST: intent_list = u', '.join(settings.ROUTE_INTENT_LIST) abort(400, u'intent must be one of %s' % intent_list) return intent def _check_auth(self, application_name, dest_application_name): try: check_application_auth(dest_application_name, Authority.WRITE) except NoAuthError: check_application_auth(application_name, Authority.WRITE) @retry(OutOfSyncError, interval=1, max_retry=3) def _put(self, application_name, cluster_name, dest_application_name): dest_cluster_name = request.form['cluster_name'].strip() check_cluster_name(dest_cluster_name, dest_application_name) intent = self._get_intent() facade = RouteManagement(huskar_client, application_name, cluster_name) try: facade.set_route(dest_application_name, dest_cluster_name, intent) except EmptyClusterError as e: abort(400, unicode(e)) audit_log.emit( audit_log.types.UPDATE_ROUTE, application_name=application_name, cluster_name=cluster_name, intent=intent, dest_application_name=dest_application_name, dest_cluster_name=dest_cluster_name) @retry(OutOfSyncError, interval=1, max_retry=3) def _delete(self, application_name, cluster_name, dest_application_name): intent = self._get_intent() facade = RouteManagement(huskar_client, application_name, cluster_name) dest_cluster_name = facade.discard_route(dest_application_name, intent) audit_log.emit( audit_log.types.DELETE_ROUTE, application_name=application_name, cluster_name=cluster_name, intent=intent, dest_application_name=dest_application_name, dest_cluster_name=dest_cluster_name) class ServiceDefaultRouteView(MethodView): @login_required def get(self, application_name): """Gets the default route policy of specific application. Example of response:: { "status": "SUCCESS", "message": "", "data": { "default_route": { "overall": { "direct": "channel-stable-2" }, "altb1": { "direct": "channel-stable-1" } }, "global_default_route": { "direct": "channel-stable-2" } } } :param application_name: The name of specific application. :<header Authorization: Huskar Token (See :ref:`token`) :status 200: The result is in the response. """ check_application(application_name) facade = RouteManagement(huskar_client, application_name, None) default_route = facade.get_default_route() return api_response({ 'default_route': default_route, 'global_default_route': settings.ROUTE_DEFAULT_POLICY}) @login_required @retry(OutOfSyncError, interval=1, max_retry=3) def put(self, application_name): """Creates or updates a default route policy of specific application. :param application_name: The name of specific application. :form ezone: Optional. The ezone of default route. Default: ``overall`` :form intent: Optional. The intent of default route. Default: ``direct`` :form cluster_name: The name of destination cluster. The cluster name must not be ezone prefixed. :<header Authorization: Huskar Token (See :ref:`token`) :status 200: Operation success. """ check_application_auth(application_name, Authority.WRITE) ezone = request.form.get('ezone') or OVERALL intent = request.form.get('intent') or ROUTE_DEFAULT_INTENT cluster_name = request.form['cluster_name'] check_cluster_name(cluster_name, application_name) facade = RouteManagement(huskar_client, application_name, None) try: default_route = facade.set_default_route( ezone, intent, cluster_name) except ValueError as e: # TODO: Use a better validator instead return api_response( status='InvalidArgument', message=first(e.args, '')), 400 audit_log.emit( audit_log.types.UPDATE_DEFAULT_ROUTE, application_name=application_name, ezone=ezone, intent=intent, cluster_name=cluster_name) return api_response({ 'default_route': default_route, 'global_default_route': settings.ROUTE_DEFAULT_POLICY}) @login_required def delete(self, application_name): """Discards a default route policy of specific application. :param application_name: The name of specific application. :form ezone: Optional. The ezone of default route. Default: ``overall`` :form intent: Optional. The intent of default route. Default: ``direct`` :<header Authorization: Huskar Token (See :ref:`token`) :status 200: Operation success. """ check_application_auth(application_name, Authority.WRITE) ezone = request.form.get('ezone') or OVERALL intent = request.form.get('intent') or ROUTE_DEFAULT_INTENT facade = RouteManagement(huskar_client, application_name, None) try: default_route = facade.discard_default_route(ezone, intent) except ValueError as e: # TODO: Use a better validator instead return api_response( status='InvalidArgument', message=first(e.args, '')), 400 audit_log.emit( audit_log.types.DELETE_DEFAULT_ROUTE, application_name=application_name, ezone=ezone, intent=intent) return api_response({ 'default_route': default_route, 'global_default_route': settings.ROUTE_DEFAULT_POLICY})
python
import os import numpy as np import glob import fire import pandas as pd from PIL import Image import platform # fix for windows if platform.system() == 'Windows': print('INFO: Path to openslide ddl is manually added to the path.') openslide_path = r'C:\Users\ls19k424\Documents\openslide-win64-20171122\bin' os.environ['PATH'] = openslide_path + ";" + os.environ['PATH'] import openslide from wsi_to_png import PngExtractor class TMAPngExtractor(PngExtractor): """ This Object extracts (patches of) an mrxs file to a png format. :param file_path: string path to the mrxs file with the TMA spots :param output_path: string path to the output folder. The output format is the same name as the mrxs file, with an appendix if multiple patches are extracted. :param coord_csv: string Path to the csv file. Expects this set of headers: "Centroid X (pixels)", "Centroid Y (pixels)", "Radius (pixels)" (in pixel values) :param level: int (optional) Level of the mrxs file that should be used for the conversion (default is 0). :param overwrite: overides exisiting output :param adjust_coord: default True. Adjusts the QuPath coordinates for the missing white border. (not necessary for ASAP extracted coordinates) """ def __init__(self, file_path: str, output_path: str, coord_csv: str, level: int = 0, overwrite: bool = False, adjust_coord: bool = True): # initiate properties from parent class super().__init__(file_path=file_path, output_path=output_path, level=level, overwrite=overwrite) # instantiate class parameters self.adjust_coord = adjust_coord self.coord_csv = coord_csv # overwrite @property def coord_files(self): if self.coord_csv: return glob.glob(os.path.join(self.coord_csv, f'*{self.staining}.xml')) if os.path.isdir( self.coord_csv) else [self.coord_csv] else: return None # overwrite @property def files_to_process(self): # we only have one file to process if len(self.wsi_files) == 1: filename = os.path.splitext(os.path.basename(self.file_path))[0] output_file_name = os.path.join(self.output_path, f'{filename}-level{self.level}-TMAid') # skip existing files, if overwrite = False if not self.overwrite and os.path.isfile(f'{output_file_name}.png'): print(f'File {output_file_name} already exists. Output saving is skipped. To overwrite add --overwrite.') else: return output_file_name, self.file_path, self.coord_csv def _crop_wsi(self, wsi): # This function crops the white space around the WSI away, so that it fits together with the # coordinates extracted from QuPath. This is not necessary if the coordinates come from ASAP #incorrect_WSI = wsi.read_region((0, 0), self.level, wsi.level_dimensions[self.level]) x, y = wsi.properties[openslide.PROPERTY_NAME_BOUNDS_X], wsi.properties[openslide.PROPERTY_NAME_BOUNDS_Y] dim = (int(int(x)), int(int(y))) w, h = wsi.properties[openslide.PROPERTY_NAME_BOUNDS_WIDTH], wsi.properties[ openslide.PROPERTY_NAME_BOUNDS_HEIGHT] wh = (int(int(w) / 2 ** self.level), int(int(h) / 2 ** self.level)) return wsi.read_region(location=dim, level=self.level, size=wh) # overwrite def process_files(self): # process the files with coordinates if os.path.isfile(self.file_path) and os.path.isfile(self.coord_csv): output_file_path_prefix, mrxs_path, coord_path = self.files_to_process assert os.path.isfile(mrxs_path) wsi_img = openslide.open_slide(mrxs_path) if self.adjust_coord: x, y = wsi_img.properties[openslide.PROPERTY_NAME_BOUNDS_X], wsi_img.properties[openslide.PROPERTY_NAME_BOUNDS_Y] coords = self.parse_csv(coord_path, adjust_x=int(x), adjust_y=int(y)) else: coords = self.parse_csv(coord_path) # iterate over the patch-coordinates(s) for tma_id, coord in coords: output_file_path = f'{output_file_path_prefix}{tma_id}.png' # skip existing files, if overwrite = False if not self.overwrite and os.path.isfile(output_file_path): print(f'File {output_file_path} already exists. Output saving is skipped. To overwrite add --overwrite.') else: # extract the patch # coord = [[12578.9619, 43432.1758], [15987.166, 43432.1758], [15987.166, 46571.3086], [12578.9619, 46571.3086]] png = self.extract_crop(wsi_img, coord) # save the image print(f'Saving image {output_file_path}') Image.fromarray(png[:, :, :3]).save(output_file_path) else: # Something went wrong print('mrxs and/or csv file paths are invalid.') def parse_csv(self, coord_csv, adjust_x=0, adjust_y=0): # reads the csv file and retrieves the coordinates and the TMA spot index # coordinates have to be returned as [tl, tr, br, bl] ((0,0) is top-left) csv = pd.read_csv(coord_csv, sep=';') inds_coords = [self._get_inds_coords(row, adjust_x, adjust_y) for index, row in csv.iterrows()] return [i for i in inds_coords if i] # remove None entries def _get_inds_coords(self, csv_row, adjust_x=0, adjust_y=0): # coordinates have to be returned as [[top-left], [top-right], [bottom-right], [bottom-left]] ((0,0) is top-left) # only get coordinates if there is an id if not np.isnan(csv_row['Core Unique ID']): c_x, c_y = csv_row['Centroid X (pixels)'], csv_row['Centroid Y (pixels)'] # adjust coordinates, if we work with QuPath-extracted coordinates radius = csv_row['Radius (pixels)'] coords = [[c_x - radius + adjust_x, c_y - radius + adjust_y], [c_x + radius + adjust_x, c_y - radius + adjust_y], [c_x + radius + adjust_x, c_y + radius + adjust_y], [c_x - radius + adjust_x, c_y + radius + adjust_y]] id = int(csv_row['Core Unique ID']) return id, coords def extract_tma(file_path: str, coord_csv: str, output_path: str, level: int = 0, overwrite: bool = False, adjust_coord: bool = True): png_extractor = TMAPngExtractor(file_path=file_path, coord_csv=coord_csv, output_path=output_path, level=level, overwrite=overwrite, adjust_coord=adjust_coord) # process the files png_extractor.process_files() if __name__ == '__main__': fire.Fire(extract_tma)
python
#client.py #!/usr/bin/python # This is client.py file import socket # Import socket module s = socket.socket() # Create a socket object host = socket.gethostname() # Get local machine name port = 3333 # Reserve a port for your service. msg = '' s.connect((host, port)) while msg != 'SAIR': print('Digite Mensagem:') msg = input() print('Mensagem enviada.') s.send(msg.encode()) #Preciso transformar a string em array de bytes print('Esperando resposta.') resposta = s.recv(1024) print('Resposta Recebida:',resposta.decode()) print('Desconectando') s.close()
python
""" Calculations that deal with seismic moment tensors. Notes from Lay and Wallace Chapter 8: * Decomposition 1: Mij = isotropic + deviatoric * Decomposition 2: Mij = isotropic + 3 vector dipoles * Decomposition 3: Mij = isotropic + 3 double couples * Decomposition 4: Mij = isotropic + 3 CLVDs * Decomposition 5: Mij = isotropic + major DC + minor DC * Decomposition 6: Mij = isotropic + DC + CLVD The most useful in practice are Decomposition 1 and Decomposition 6. """ import numpy as np def get_MT(mrr, mtt, mpp, mrt, mrp, mtp): """Build a matrix from the six components of the moment tensor""" MT = np.array([[mrr, mrt, mrp], [mrt, mtt, mtp], [mrp, mtp, mpp]]); return MT; def diagonalize_MT(MT): """Return a diagonal matrix whose elements are the ordered eigenvalues.""" eigvals, eigvecs = np.linalg.eig(MT); eigvals = sorted(eigvals)[::-1]; return np.diag(eigvals); def get_deviatoric_MT(MT): """Get deviatoric MT (returns a matrix)""" iso_MT = get_iso_MT(MT); M_dev = np.subtract(MT, iso_MT); return M_dev; def get_iso_MT(MT): """Return the isotropic moment tensor (returns a matrix)""" x = (1 / 3) * np.trace(MT); iso_MT = np.multiply(np.eye(3), x); return iso_MT def get_clvd_dc_from_deviatoric_MT(MT): """ Return the dc and clvd components of a deviatoric MT, from Shearer Equation 9.14. Returns two matricies. """ eigenvalues = np.diag(MT); assert(eigenvalues[0] > eigenvalues[1] > eigenvalues[2]), ValueError("Deviatoric eigenvalues out of order.") dc_component = (1/2)*(eigenvalues[0]-eigenvalues[2]); clvd_component = eigenvalues[1]*(1/2); M_dc = np.diag([dc_component, 0, -dc_component]); M_clvd = np.diag([-clvd_component, 2*clvd_component, -clvd_component]); return M_clvd, M_dc; def decompose_iso_dc_clvd(MT): """ A useful function to decompose a full moment tensor into an isotropic part, a double-couple, and a CLVD component. Returns three matrices. """ diag_MT = diagonalize_MT(MT); # equivalent to a coordinate transformation M_iso = get_iso_MT(diag_MT); # get the trace M_dev = get_deviatoric_MT(diag_MT); M_dev = diagonalize_MT(M_dev); # diagonalized in the proper order M_clvd, M_dc = get_clvd_dc_from_deviatoric_MT(M_dev); return M_iso, M_clvd, M_dc; # def get_separate_scalar_moments(MT): # """return isotropic, clvd, and double couple moments. Not frequently used.""" # M_iso, M_clvd, M_dc = decompose_iso_dc_clvd(MT); # iso_moment = abs(M_iso[0][0]); # clvd_moment = abs(M_clvd[0][0]); # dc_moment = abs(M_dc[0][0]); # return iso_moment, clvd_moment, dc_moment; def get_total_scalar_moment(MT): """Shearer Equation 9.8: quadratic sum of element of moment tensor components, in newton-meters""" MT = np.divide(MT, 1e16); # done to prevent computer buffer overflow total = 0; for i in range(3): for j in range(3): total = total + MT[i][j]*MT[i][j]; Mo = (1/np.sqrt(2)) * np.sqrt(total); Mo = np.multiply(Mo, 1e16); return Mo; def get_percent_double_couple(MT): """Get the percent double couple and percent clvd moment from a deviatoric moment tensor. When isotropic term is involved, this can get more complicated and there are several approaches. See Shearer equation 9.17 for epsilon. See Vavrycuk, 2001 for other approaches when isotropic component is involved. """ m_dev = diagonalize_MT(get_deviatoric_MT(MT)); epsilon = np.diag(m_dev)[1] / np.max([np.abs(np.diag(m_dev)[0]), np.abs(np.diag(m_dev)[2])]); fraction = epsilon * 2; perc_clvd = 100 * (abs(fraction)); perc_dc = 100 - perc_clvd; return perc_dc, perc_clvd;
python
#!/usr/bin/python import sys,os FUNC_NAME_LEN_MAX = 48 def ext_time_sec(l): l = l.strip() tks = l.split(" ") try: return float(tks[-1][:-1]) except: print 'Invalid line to extract time duration: ' + l; return None def print_array_info(arr,detail=False): arr.sort(reverse=True) n = len(arr) s = sum(arr) avg = float(s)/float(n) print 'sum: %-*f Len: %-*d Avg: %f' % (12,s,6,n,avg) if detail: tenths = [arr[i] for i in range(0,n,n/10)] ratios = [sum([arr[j] for j in range(i,min(i+n/10,n))])/s for i in range(0,n,n/10)] head = [arr[i] for i in range(min(10,n))] tail = [arr[i] for i in range(max(-10,0-n),0)] print 'Tenths: ' + str(tenths) print 'Ratios: ' + str(ratios) print ' Head: ' + str(head) print ' Tail: ' + str(tail) return [n,s,avg] #This simulates the bottom-up summary based program analysis and estimates and amount of time we can save, compared to top-down approach. #NOTE that the time saving is just a upper bound, as even we use function summary, at each callsite we still need to apply that summary, #which also costs some time. (i.e. in this function we assume no extra costs for summary application). stk = [] visited_funcs = {} def calc_bottom_up_time(name,lvl,t): global stk,visited_funcs n = {'name':name,'level':lvl,'time':t,'reduction':0.0} i = len(stk) - 1 s = 0.0 while i >= 0 and stk[i]['level'] > lvl: s += stk[i]['reduction'] i -= 1 #If we have already visited current func, we have its summary and save the time to analyze it again. if visited_funcs.has_key(name): s = t else: visited_funcs[name] = 1 n['reduction'] = s #push to stack and do reduction. stk = stk[:i+1] stk.append(n) def time_analysis(tl): global stk t_inst = { 'visitLoadInst' : [], 'visitStoreInst' : [], 'visitGetElementPtrInst' : [], } ft = {} with open(tl,'r') as f: for l in f: if not l.startswith('[TIMING]'): continue if l.find('All main anlysis done') >= 0: break if l.find('End func') >= 0: #Statistics about the function analysis time. #E.g. #[TIMING] End func(5) svm_has_high_real_mode_segbase in: 121127 #Get the func name and its call depth tks = l.split(' ') ls = l[l.find('(')+1 : l.find(')')] if not ls.isdigit() or len(tks) < 6: print 'Invalid line to time a function execution: ' + l continue level = int(ls) nm = tks[3] t = ext_time_sec(l) ft.setdefault(level,{}).setdefault(nm,[]) ft[level][nm] += [t] calc_bottom_up_time(nm,level,t) else: #Statistics about the inst analysis time. for ki in t_inst: if l.find(ki) >= 0: t = ext_time_sec(l) if t: t_inst[ki] += [t] #Ok, it's the time to show the statistics. #For insts: print '=============INSTS=============' for ki in t_inst: print '===== %-*s:' % (20,ki), print_array_info(t_inst[ki],True) #For funcs: f_cnt = {} print '=============FUNCS=============' for lvl in sorted(ft.keys()): print '======== LEVEL: ' + str(lvl) names = sorted(ft[lvl].keys(),key=lambda x:sum(ft[lvl][x]),reverse=True) for nm in names: print '%-*s' % (FUNC_NAME_LEN_MAX,nm), [n,s,avg] = print_array_info(ft[lvl][nm]) [on,oavg] = f_cnt.setdefault(nm,[0,0.0]) f_cnt[nm] = [n+on,(float(n)*avg+float(on)*oavg)/float(n+on)] print '=============DUPLICATED FUNCS=============' dcnt = 0 for nm in sorted(f_cnt.keys(),key = lambda x : f_cnt[x][0]*f_cnt[x][1]): [n,avg] = f_cnt[nm] if n > 1: dcnt += 1 print '%-*s cnt: %-*d avg: %-*f total: %-*f' % (FUNC_NAME_LEN_MAX,nm,5,n,12,avg,12,n*avg) print 'Ratio: %d/%d' % (dcnt,len(f_cnt)) print stk orig = 0.0 save = 0.0 for n in stk: orig += n['time'] save += n['reduction'] print 'Total: %f, Bottom-Up Saving: %f, After Saving: %f' % (orig,save,orig-save) if __name__ == '__main__': if len(sys.argv) < 2: print 'Usage: ./time_analyzer.py log' else: time_analysis(sys.argv[1])
python
from stockfish import Stockfish class StockfishPlayer: def __init__(self, stockfishpath): conf = { "Write Debug Log": "false", "Contempt": 0, "Min Split Depth": 0, "Threads": 1, "Ponder": "false", "Hash": 16, "MultiPV": 1, "Skill Level": 20, "Move Overhead": 30, "Minimum Thinking Time": 20, "Slow Mover": 80, "UCI_Chess960": "false", } self.stockfish = Stockfish(stockfishpath, parameters=conf) def get_best_move(self, fen): self.stockfish.set_fen_position(fen) return self.stockfish.get_best_move()
python
#!/usr/bin/env python # MIT License # # Copyright (c) 2017 Dan Persons ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from os import popen import threading from argparse import ArgumentParser __version__ = '0.1' def parseargs(): """set config options""" parser = ArgumentParser() parser.add_argument('--version', action='version', version='%(prog)s ' + str(__version__)) parser.add_argument('-n', action='store', default='100', dest='tries', help=('set the number of passwords to check')) parser.add_argument('--file', action='store', default='rand-wordlist.txt', help=('set the wordlist file')) parser.add_argument('--hydra-args', action='store', default='', dest='hargs', help=('pass additional arguments to hydra')) parser.add_argument('--generate', action='store_true', help=('generate a random wordlist to use')) parser.add_argument('--user', action='store', default='root', help=('set the username to use (default: root)')) parser.add_argument('--service', action='store', default='ssh', help=('set the service to target (default: ssh)')) parser.add_argument('hosts', nargs='*', metavar='HOST', help=('set the target host')) args = parser.parse_args() return args def wordlistgen(outfile): """Generate a 10 word random wordlist""" # Use completely random characters to minimize chance of a success popen('pwgen -sy1 10 10 > ' + outfile) def wordlistsim(wordlist, host, user, service, runs, hargs): """Simulate a brute force attack by repeating a 10 word list""" for n in range(int(runs)): print('Starting run ' + str(n + 1) + '/' + str(runs) + \ ' on host ' + host + '.') o = popen('hydra -t 4 -l ' + user + ' ' + hargs + ' -P ' + \ wordlist + ' ' + host + ' ' + service).read() def wordlistsimstart(wordlist, hosts, username, servicename, tries, hargs): """Start brute force attack simulations (one thread per host)""" # Set the number of runs with open(wordlist, 'r') as f: lines = f.readlines() nruns = int(tries) // len(lines) del(lines) print('Target hosts: ' + str(hosts) + '\n' + \ 'User: ' + username + '\n' + \ 'Service: ' + servicename + '\n' + \ 'Max # of tries: ' + tries + '\n' + \ 'Additional hydra args: ' + hargs) # Start one thread per host and work in parallel for host in hosts: thread = threading.Thread(name=host, target=wordlistsim, args=(wordlist, host, username, servicename, nruns, hargs)) thread.start() def runsim(): """Run wordlist simulator program""" args = parseargs() if args.generate: wordlistgen(args.file) else: wordlistsimstart(args.file, args.hosts, args.user, args.service, args.tries, args.hargs) def main(): runsim() if __name__ == "__main__": runsim()
python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Dict from ax.core.base import Base if TYPE_CHECKING: # pragma: no cover # import as module to make sphinx-autodoc-typehints happy from ax import core # noqa F401 class Runner(Base, ABC): """Abstract base class for custom runner classes""" @abstractmethod def run(self, trial: "core.base_trial.BaseTrial") -> Dict[str, Any]: """Deploys a trial based on custom runner subclass implementation. Args: trial: The trial to deploy. Returns: Dict of run metadata from the deployment process. """ pass # pragma: no cover def stop(self, trial: "core.base_trial.BaseTrial") -> None: """Stop a trial based on custom runner subclass implementation. Optional to implement Args: trial: The trial to deploy. """ pass @property def staging_required(self) -> bool: """Whether the trial goes to staged or running state once deployed.""" return False
python
""" AUTHOR - Atharva Deshpande GITHUB - https://github.com/AtharvaD11 QUESTION LINK - https://www.codechef.com/LRNDSA01/problems/FCTRL """ """ ALGRITHM - Factorials of all n>= 5 contains trailing zeroes. So, we keep on dividing n till n becomes < 5 and simultaneously keep on summing the quotient. The total sum of all the quotients is our number of zeroes. """ ***************************************** t = int(input()) for _ in range(t): n = int(input()) zeroes = 0 quo = n while True: quo = quo//5 zeroes += quo if quo < 5: break print(zeroes) *******************************************
python
from mlflow.pyfunc import PyFuncModel from mlserver.types import InferenceRequest from mlserver_mlflow import MLflowRuntime from mlserver_mlflow.encoding import DefaultOutputName def test_load(runtime: MLflowRuntime): assert runtime.ready assert type(runtime._model) == PyFuncModel async def test_predict(runtime: MLflowRuntime, inference_request: InferenceRequest): response = await runtime.predict(inference_request) outputs = response.outputs assert len(outputs) == 1 assert outputs[0].name == DefaultOutputName
python
#!/usr/bin/env python from __future__ import print_function import math def intercept(pt, dt, pb, n): return math.pow((pb * float(dt)**(n+1.0))/float(pt), 1.0/(n+1.0)) def main(): for i in range(0, 4): print(intercept(45, 30, 30, i)) if __name__ == '__main__': main()
python
from django.apps import AppConfig class EmailAppConfig(AppConfig): name = 'app.emails' label = 'email_app' verbose_name = 'Emails App' default_app_config = 'app.emails.EmailAppConfig'
python
from django import template # These are custom template filters. register = template.Library() @register.filter(name='author_url_converter') def author_url_converter(value): # We take in the value, in this case the url of our author, and then return the one that takes them to the front-facing profile page. return value.split('api/')[0] + value.split('api/')[-1]
python
import socket import re from threading import Thread from threading import Lock import os from mimetypes import MimeTypes import Queue class ClientHandler: def __init__(self, clientSocket, clientAddress): print "New thread." self.mSocket = clientSocket self.mSocket.settimeout(15) self.mAddress = clientAddress self.mRequestQueue = Queue.Queue() self.mStop = False self.mStopLock = Lock() self.mThread = Thread(target=self.doInBackground) self.mRequestRe = re.compile("^(.|\r\n)*?(GET (.)* HTTP\\/1\\.(1|0)\r\n(.|\r\n)+?\r\n\r\n)") self.mGetCounter = 0 self.mShouldStop = False def runLoop(self): self.mBuffer = '' try: while not self.mShouldStop: self.mSocket.settimeout(30) data = self.mSocket.recv(1024) if not data: break self.mBuffer = self.mBuffer + data #Check if the buffer contains requests self.parseReceive() #Send requested files if we have them self.sendFile() print "Thread handled: " + str(self.mGetCounter) + " gets." except socket.timeout: if len(self.mBuffer.strip()) != 0: self.sendBadRequest() else: self.sendTimeout() except socket.error: try: self.mSocket.close() #Dont know how to do a "NOP" in python except socket.error: x = 10 def parseReceive(self): while True: #Check if the regex matches matches = self.mRequestRe.match(self.mBuffer) if not matches: break #This one is the part of the string we need match = matches.groups()[1] if not match: break else: #Make a request based on string request = HttpRequest(match) if not request.mInvalid: self.mGetCounter = self.mGetCounter + 1 #Get path and make it safe path = str(request.mPath) if path.startswith("/"): path = "." + path #Respond with index if they enter a directory if path.endswith("/"): path = path + "index.html" request.mPath = path self.mRequestQueue.put(request) #Remove this match from buffer self.mBuffer = self.mBuffer[len(match):] def sendFile(self): #If we don't need to send files, return if self.mRequestQueue.empty(): return #Get some values request = self.mRequestQueue.get() filepath = request.getURL() connection = "close" if request.containsKey("Connection"): connection = request.getParam("Connection") #Check if file exists if not os.path.isfile(filepath): print filepath self.sendNotFound() if connection.lower() == "close": self.mShouldStop = True return try: #Open file file = open(filepath, "rb") size = os.path.getsize(filepath) #Get mime type mime = MimeTypes() mime_type = mime.guess_type(filepath) if file.closed: self.sendNotFound() if connection.lower() == "close": self.mShouldStop = True return #Send header self.mSocket.send("HTTP/1.1 200 OK\r\nContent-Length: " + str(size) + "\r\nContent-Type: " + str(mime_type[0]) + "\r\n" + "Connection: " + connection + "\r\n\r\n") #Init bufferData = file.read(5024) self.mSocket.send(bufferData) #Keep sending as long as we have data while bufferData: bufferData = file.read(5024) if not bufferData: break self.mSocket.send(bufferData) #Do a non blocking read to support more than one get request per socket self.mSocket.setblocking(0) try: data = self.mSocket.recv(1024) #If we have data, try to parse requests if data: self.mBuffer = self.mBuffer + data self.parseReceive() except: data = False #Enable blocking again self.mSocket.setblocking(1) file.close() if connection.lower() == "close": print "Shutting down connection because of connection: close" self.mSocket.close() self.mShouldStop = True except: self.sendBadRequest() print "Exception in send." #Work off the files recursive because we check for more requests in the send loop self.sendFile() def sendNotFound(self): self.mSocket.send("HTTP/1.1 404 Not Found\r\n\r\n<html><body>404 File not found.</body></html>") def sendBadRequest(self): try: self.mSocket.send("HTTP/1.1 400 Bad Request\r\n\r\n<html><body>400 Bad Request.</body></html>") self.mSocket.close() self.mShouldStop = True except: print "Exception occurred when sending 400 Bad request." def sendTimeout(self): try: self.mSocket.send("HTTP/1.1 408 Request Timeout\r\n\r\n<html><body>408 Request Timeout.</body></html>") self.mSocket.close() self.mShouldStop = True except: print "Exception occurred when sending 408 Request Timeout." def doInBackground(self): stop = self.runLoop() self.mSocket.close() def getStop(self): self.mStopLock.acquire() retVal = self.mStop self.mStopLock.release() return retVal def setStop(self, value): self.mStopLock.acquire() self.mStop = value self.mStopLock.release() def execute(self): self.mThread.start() def join(self): self.mThread.join() class HttpRequest: def __init__(self, text): self.mInvalid = True self.mParams = dict() self.mPath = False self.parse(text) def init(self, method, url, http1_1): self.mHeaders = dict() #If the url is empty, we need to add a / for root if not url[2]: self.setUrl("/") else: self.setUrl(url[2]) self.setHost(url[1]) self.setMethod(str(method).strip()) self.setHttp1_1(http1_1) def setHeader(self, headerName, headerValue): self.mHeaders[headerName] = headerValue def clearHeaders(self): self.mHeaders.clear() def setHost(self, host): self.setHeader("Host", host) def setUrl(self, url): self.mUrl = url def setMethod(self, method): self.mMethod = method def setHttp1_1(self, http1_1): if http1_1: self.mVersion = "1.1" else: self.mVersion = "1.0" def containsKey(self, key): return (key in self.mParams) def getParam(self, key): return self.mParams[key] def getHeaderQuery(self): toRet = "" for key, value in self.mHeaders.iteritems(): toRet = toRet + str(key) + ": " + str(value) + "\r\n" #self.printResponse(oRet return toRet def getIdentifierQuery(self): toRet = "" toRet = toRet + str(self.mMethod) + " " + self.mUrl + " HTTP/" + self.mVersion + "\r\n" #self.printResponse(oRet return toRet def getHttpRequest(self): toRet = self.getIdentifierQuery() toRet = toRet + self.getHeaderQuery() toRet = toRet + "\r\n\r\n" #self.printResponse(oRet return toRet def getURL(self): return self.mPath def parse(self, text): self.mInvalid = False #Split on \r\n splits = re.split("\r\n", text) httpFound = False for split in splits: #If we have not found the first line if not httpFound: #Check if the line matches the first line of an HTTP request if re.match("GET .* HTTP\\/1\\.(1|0)", split): httpFound = True url = split[4:].strip() versNo = url[len(url) - 9:] url = url[0: len(url) - len(versNo)].strip() versNo = versNo[6:].strip() self.mPath = url if versNo == "1.0": self.mHttpVersion = 10 elif versNo == "1.1": self.mHttpVersion = 11 elif versNo == "2.0": self.mHttpVersion = 20 else: continue #If we have found the first line else: #We should be able to split on ":" if re.match(".*:.*", split): headerSplit = re.split(":", split) left = headerSplit[0].strip() right = "" #There might be more than one ":", just concatenate for i in range(1, len(headerSplit)): if i == 1: right = headerSplit[i] else: right = right + ":" + headerSplit[i] right = right.strip() self.mParams[left] = right class HttpServer: def __init__(self): self.mInvalid = False self.mPort = 8080 def open(self): self.mSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.mSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.mSocket.bind(("localhost", self.mPort)) self.mSocket.listen(1) self.mStop = False def close(self): self.mSocket.close() def runServer(self): self.open() counter = 0 while True: clientSocket, clientAddress = self.mSocket.accept() #Make new handler clientHandler = ClientHandler(clientSocket, clientAddress) #Start it clientHandler.execute() counter = counter + 1 print "Sockets opened: " + str(counter) server = HttpServer() server.runServer()
python
# load the train and test # train algo # save the metrices, params import os import warnings import sys import pandas as pd import numpy as np from sklearn.metrics import precision_recall_fscore_support, accuracy_score from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from get_data import read_params import argparse import joblib import json warnings.filterwarnings("ignore") def eval_metrics(actual, pred): scores_array = np.sqrt(precision_recall_fscore_support(actual, pred)) Accuracy = accuracy_score(actual, pred) return scores_array[0], scores_array[1], Accuracy def train_and_evaluate(config_path): config = read_params(config_path) test_data_path = config["split_data"]["test_path"] train_data_path = config["split_data"]["train_path"] random_state = config["base"]["random_state"] model_dir = config["model_dir"] n_estimators_rd = config["estimators"]["RandomForestClassifier"]["params"]["n_estimators"] min_samples_split_rd = config["estimators"]["RandomForestClassifier"]["params"]["min_samples_split"] min_samples_leaf_rd = config["estimators"]["RandomForestClassifier"]["params"]["min_samples_leaf"] max_features_rd = config["estimators"]["RandomForestClassifier"]["params"]["max_features"] max_depth_rd = config["estimators"]["RandomForestClassifier"]["params"]["max_depth"] criterion_rd = config["estimators"]["RandomForestClassifier"]["params"]["criterion"] target = [config["base"]["target_col"]] train = pd.read_csv(train_data_path, sep=",") test = pd.read_csv(test_data_path, sep=",") train_y = train[target] test_y = test[target] selected_features = ["Contract", "OnlineSecurity", "TechSupport", "tenure", "MonthlyCharges", "SeniorCitizen", "Dependents"] train_x = train[selected_features] test_x = test[selected_features] classifier = RandomForestClassifier( n_estimators=n_estimators_rd, min_samples_split=min_samples_split_rd, min_samples_leaf=min_samples_leaf_rd, max_features=max_features_rd, max_depth=max_depth_rd, criterion=criterion_rd, random_state=random_state) classifier.fit(train_x, train_y) predicted_qualities = classifier.predict(test_x) (precision, recall, accuracy) = eval_metrics(test_y, predicted_qualities) print(" Precision: %s" % precision[0]) print(" Recall: %s" % recall[0]) print(" Model_Score: %s" % accuracy) ##################################################### scores_file = config["reports"]["scores"] params_file = config["reports"]["params"] with open(scores_file, "w") as f: scores = { "Precision": precision[0], "Recall": recall[0], "Model_Score": accuracy } json.dump(scores, f, indent=4) with open(params_file, "w") as f: params = { "n_estimators":n_estimators_rd, "min_samples_split":min_samples_split_rd, "min_samples_leaf":min_samples_leaf_rd, "max_features":max_features_rd, "max_depth":max_depth_rd, "criterion":criterion_rd } json.dump(params, f, indent=4) ##################################################### os.makedirs(model_dir, exist_ok=True) model_path = os.path.join(model_dir, "model.joblib") joblib.dump(classifier, model_path) if __name__=="__main__": args = argparse.ArgumentParser() args.add_argument("--config", default="params.yaml") parsed_args = args.parse_args() train_and_evaluate(config_path=parsed_args.config)
python
from matplotlib.colors import ListedColormap, LinearSegmentedColormap from matplotlib import cm import numpy as np # 6 October 2021 # https://matplotlib.org/3.1.0/tutorials/colors/colormap-manipulation.html # https://stackoverflow.com/questions/11647261/create-a-colormap-with-white-centered-around-zero # https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.TwoSlopeNorm.html#matplotlib.colors.TwoSlopeNorm epic_orbl = LinearSegmentedColormap.from_list(name='EpicOrangeBlue', # RGBA (red, green, blue, alpha) colors =[(1, 0.549019608, 0, 1), # darkorange (1, 1., 1, 1), (0.325490196, 0.2, 0.929411765, 1)], # royalblue N=255 ) tol_precip_colors = [ "#90C987", "#4EB256", "#7BAFDE", "#6195CF", "#F7CB45", "#EE8026", "#DC050C", "#A5170E", "#72190E", "#882E72", "#000000" ] precip_colormap = ListedColormap(tol_precip_colors) # own colormaps epic_cmaps = { 'epic_orbl' : epic_orbl, 'epic_precip' : precip_colormap }
python
from flask import Blueprint, jsonify from flask_user import current_user, login_required, roles_accepted from flask import Blueprint, redirect, render_template from app.models.pizza_models import Restaurant, PromoCode # When using a Flask app factory we must use a blueprint to avoid needing 'app' for '@app.route' restaurants_blueprint = Blueprint('restaurants', __name__, template_folder='templates') @restaurants_blueprint.route('/') @login_required def index(): restaurants = Restaurant.query.all() return render_template('pages/restaurants/index.html',restaurants=restaurants); @restaurants_blueprint.route('/<slug>') @login_required def view(slug): restaurant = Restaurant.query.filter_by(slug=slug).first_or_404() promo_count = PromoCode.query.filter_by(restaurant_id=restaurant.id).count() return render_template('pages/restaurants/view.html', restaurant=restaurant, promo_count=promo_count);
python
''' Created on 2015/11/08 @author: _ ''' from inspect import getargspec ORIGINAL_ARGSPEC_ATTRIBUTE = "__originArgSpec__" def getOriginalArgSpec(func): ''' Returns a ArgSpec of the function @param func: a target function @return: ArgSpec instance of the function ''' if not hasattr(func, ORIGINAL_ARGSPEC_ATTRIBUTE): return getargspec(func) else: return func.__originArgSpec__ def inheritOriginalArgSpec(func, originFunc): ''' Save a ArgSpec of the originalFunc to func @param func: a target function @param originalFunc: an original function @return: func which is save ArgSpec of the original function to attribute ORIGINAL_ARGSPEC_ATTRIBUTE ''' func.__originArgSpec__ = getOriginalArgSpec(originFunc) return func
python
from rift.data.handler import get_handler from rift import log LOG = log.get_logger() TENANT_COLLECTION = "tenants" class Tenant(object): def __init__(self, tenant_id, name=None): self.tenant_id = tenant_id self.name = name def as_dict(self): return { "tenant_id": self.tenant_id, "name": self.name, } @classmethod def build_tenant_from_dict(cls, tenant_dict): kwargs = { 'tenant_id': tenant_dict.get("tenant_id"), 'name': tenant_dict.get("name") } return Tenant(**kwargs) @classmethod def save_tenant(cls, tenant): db_handler = get_handler() db_handler.insert_document( object_name=TENANT_COLLECTION, document=tenant.as_dict() ) @classmethod def get_tenant(cls, tenant_id): db_handler = get_handler() tenant_dict = db_handler.get_document( object_name=TENANT_COLLECTION, query_filter={"tenant_id": tenant_id}) # Create Tenant if it doesn't exist if not tenant_dict: LOG.info('Tenant {0} not found. Creating...'.format(tenant_id)) tenant = cls(tenant_id) cls.save_tenant(tenant) else: tenant = Tenant.build_tenant_from_dict(tenant_dict) return tenant @classmethod def update_tenant(cls, tenant): db_handler = get_handler() db_handler.update_document( object_name=TENANT_COLLECTION, document=tenant.as_dict(), query_filter={"tenant_id": tenant.tenant_id} )
python
DB_NAME = "server.db" ANALYTICS_NAME_JSON = "analytics.json" ANALYTICS_NAME_PNG = "analytics.png"
python
from typing import List class RemoveCoveredIntervals: def get_intervals(self, intervals: List[List[int]]) -> int: intervals.sort(key=lambda x: (x[0], -x[1])) resultIntervals = [intervals[0]] for current_left, current_right in intervals[1:]: previous_left, previous_right = resultIntervals[-1] if previous_left <= current_left and previous_right >= current_right: continue resultIntervals.append([current_left, current_right]) return len(resultIntervals)
python
# coding: utf-8 ''' Created on Oct 20, 2014 @author: tmahrt To be used in conjunction with get_pitch_and_intensity.praat. For brevity, 'pitch_and_intensity' is referred to as 'PI' ''' import os from os.path import join import math import io from praatio import dataio from praatio import tgio from praatio.utilities import utils from praatio.utilities import myMath from praatio import praatio_scripts class OverwriteException(Exception): def __str__(self): return ("Performing this operation will result in the pitch files " "being overwritten. Please change the output directory " "to an alternative location or add a suffix to the output. ") def _extractPIPiecewise(inputFN, outputFN, praatEXE, minPitch, maxPitch, tgFN, tierName, tmpOutputPath, sampleStep=0.01, silenceThreshold=0.03, forceRegenerate=True, undefinedValue=None, medianFilterWindowSize=0, pitchQuadInterp=False): ''' Extracts pitch and int from each labeled interval in a textgrid This has the benefit of being faster than using _extractPIFile if only labeled regions need to have their pitch values sampled, particularly for longer files. Returns the result as a list. Will load the serialized result if this has already been called on the appropriate files before ''' outputPath = os.path.split(outputFN)[0] utils.makeDir(outputPath) windowSize = medianFilterWindowSize assert(os.path.exists(inputFN)) firstTime = not os.path.exists(outputFN) if firstTime or forceRegenerate is True: utils.makeDir(tmpOutputPath) splitAudioList = praatio_scripts.splitAudioOnTier(inputFN, tgFN, tierName, tmpOutputPath, False) allPIList = [] for start, _, fn in splitAudioList: tmpTrackName = os.path.splitext(fn)[0] + ".txt" piList = _extractPIFile(join(tmpOutputPath, fn), join(tmpOutputPath, tmpTrackName), praatEXE, minPitch, maxPitch, sampleStep, silenceThreshold, forceRegenerate=True, medianFilterWindowSize=windowSize, pitchQuadInterp=pitchQuadInterp) piList = [("%0.3f" % (float(time) + start), str(pV), str(iV)) for time, pV, iV in piList] allPIList.extend(piList) allPIList = [",".join(row) for row in allPIList] with open(outputFN, "w") as fd: fd.write("\n".join(allPIList) + "\n") piList = loadTimeSeriesData(outputFN, undefinedValue=undefinedValue) return piList def _extractPIFile(inputFN, outputFN, praatEXE, minPitch, maxPitch, sampleStep=0.01, silenceThreshold=0.03, forceRegenerate=True, tgFN=None, tierName=None, undefinedValue=None, medianFilterWindowSize=0, pitchQuadInterp=False): ''' Extracts pitch and intensity values from an audio file Returns the result as a list. Will load the serialized result if this has already been called on the appropriate files before ''' outputPath = os.path.split(outputFN)[0] utils.makeDir(outputPath) assert(os.path.exists(inputFN)) firstTime = not os.path.exists(outputFN) if firstTime or forceRegenerate is True: # The praat script uses append mode, so we need to clear any prior # result if os.path.exists(outputFN): os.remove(outputFN) if pitchQuadInterp is True: doInterpolation = 1 else: doInterpolation = 0 if tgFN is None or tierName is None: argList = [inputFN, outputFN, sampleStep, minPitch, maxPitch, silenceThreshold, -1, -1, medianFilterWindowSize, doInterpolation] scriptName = "get_pitch_and_intensity.praat" scriptFN = join(utils.scriptsPath, scriptName) utils.runPraatScript(praatEXE, scriptFN, argList) else: argList = [inputFN, outputFN, tgFN, tierName, sampleStep, minPitch, maxPitch, silenceThreshold, medianFilterWindowSize, doInterpolation] scriptName = "get_pitch_and_intensity.praat" scriptFN = join(utils.scriptsPath, scriptName) utils.runPraatScript(praatEXE, scriptFN, argList) piList = loadTimeSeriesData(outputFN, undefinedValue=undefinedValue) return piList def extractIntensity(inputFN, outputFN, praatEXE, minPitch, sampleStep=0.01, forceRegenerate=True, undefinedValue=None): outputPath = os.path.split(outputFN)[0] utils.makeDir(outputPath) assert(os.path.exists(inputFN)) firstTime = not os.path.exists(outputFN) if firstTime or forceRegenerate is True: # The praat script uses append mode, so we need to clear any prior # result if os.path.exists(outputFN): os.remove(outputFN) argList = [inputFN, outputFN, sampleStep, minPitch, -1, -1] scriptName = "get_intensity.praat" scriptFN = join(utils.scriptsPath, scriptName) utils.runPraatScript(praatEXE, scriptFN, argList) iList = loadTimeSeriesData(outputFN, undefinedValue=undefinedValue) return iList def extractPitchTier(wavFN, outputFN, praatEXE, minPitch, maxPitch, sampleStep=0.01, silenceThreshold=0.03, forceRegenerate=True, medianFilterWindowSize=0, pitchQuadInterp=False): ''' Extract pitch at regular intervals from the input wav file Data is output to a text file and then returned in a list in the form [(timeV1, pitchV1), (timeV2, pitchV2), ...] sampleStep - the frequency to sample pitch at silenceThreshold - segments with lower intensity won't be analyzed for pitch forceRegenerate - if running this function for the same file, if False just read in the existing pitch file pitchQuadInterp - if True, quadratically interpolate pitch ''' outputPath = os.path.split(outputFN)[0] utils.makeDir(outputPath) if pitchQuadInterp is True: doInterpolation = 1 else: doInterpolation = 0 assert(os.path.exists(wavFN)) firstTime = not os.path.exists(outputFN) if firstTime or forceRegenerate is True: if os.path.exists(outputFN): os.remove(outputFN) argList = [wavFN, outputFN, sampleStep, minPitch, maxPitch, silenceThreshold, medianFilterWindowSize, doInterpolation] scriptName = "get_pitchtier.praat" scriptFN = join(utils.scriptsPath, scriptName) utils.runPraatScript(praatEXE, scriptFN, argList) pitchTier = dataio.open2DPointObject(outputFN) return pitchTier def extractPitch(wavFN, outputFN, praatEXE, minPitch, maxPitch, sampleStep=0.01, silenceThreshold=0.03, forceRegenerate=True, undefinedValue=None, medianFilterWindowSize=0, pitchQuadInterp=False): ''' Extract pitch at regular intervals from the input wav file Data is output to a text file and then returned in a list in the form [(timeV1, pitchV1), (timeV2, pitchV2), ...] sampleStep - the frequency to sample pitch at silenceThreshold - segments with lower intensity won't be analyzed for pitch forceRegenerate - if running this function for the same file, if False just read in the existing pitch file undefinedValue - if None remove from the dataset, otherset set to undefinedValue pitchQuadInterp - if True, quadratically interpolate pitch ''' outputPath = os.path.split(outputFN)[0] utils.makeDir(outputPath) if pitchQuadInterp is True: doInterpolation = 1 else: doInterpolation = 0 assert(os.path.exists(wavFN)) firstTime = not os.path.exists(outputFN) if firstTime or forceRegenerate is True: if os.path.exists(outputFN): os.remove(outputFN) argList = [wavFN, outputFN, sampleStep, minPitch, maxPitch, silenceThreshold, -1, -1, medianFilterWindowSize, doInterpolation] scriptName = "get_pitch.praat" scriptFN = join(utils.scriptsPath, scriptName) utils.runPraatScript(praatEXE, scriptFN, argList) piList = loadTimeSeriesData(outputFN, undefinedValue=undefinedValue) return piList def extractPI(inputFN, outputFN, praatEXE, minPitch, maxPitch, sampleStep=0.01, silenceThreshold=0.03, forceRegenerate=True, tgFN=None, tierName=None, tmpOutputPath=None, undefinedValue=None, medianFilterWindowSize=0, pitchQuadInterp=False): ''' Extracts pitch and intensity from a file wholesale or piecewise If the parameters for a tg are passed in, this will only extract labeled segments in a tier of the tg. Otherwise, pitch will be extracted from the entire file. male: minPitch=50; maxPitch=350 female: minPitch=75; maxPitch=450 ''' outputPath = os.path.split(outputFN)[0] windowSize = medianFilterWindowSize if tgFN is None or tierName is None: piList = _extractPIFile(inputFN, outputFN, praatEXE, minPitch, maxPitch, sampleStep, silenceThreshold, forceRegenerate, undefinedValue=undefinedValue, medianFilterWindowSize=windowSize, pitchQuadInterp=pitchQuadInterp) else: if tmpOutputPath is None: tmpOutputPath = join(outputPath, "piecewise_output") piList = _extractPIPiecewise(inputFN, outputFN, praatEXE, minPitch, maxPitch, tgFN, tierName, tmpOutputPath, sampleStep, silenceThreshold, forceRegenerate, undefinedValue=undefinedValue, medianFilterWindowSize=windowSize, pitchQuadInterp=pitchQuadInterp) return piList def loadTimeSeriesData(fn, undefinedValue=None): ''' For reading the output of get_pitch_and_intensity or get_intensity Data should be of the form [(time1, value1a, value1b, ...), (time2, value2a, value2b, ...), ] ''' name = os.path.splitext(os.path.split(fn)[1])[0] try: with io.open(fn, "r", encoding='utf-8') as fd: data = fd.read() except IOError: print("No pitch track for: %s" % name) raise dataList = data.splitlines() dataList = [row.split(',') for row in dataList if row != ''] # The new praat script includes a header if dataList[0][0] == "time": dataList = dataList[1:] newDataList = [] for row in dataList: time = float(row.pop(0)) entry = [time, ] doSkip = False for value in row: if '--' in value: if undefinedValue is not None: value = undefinedValue else: doSkip = True break else: value = float(value) entry.append(value) if doSkip is True: continue newDataList.append(entry) dataList = newDataList return dataList def generatePIMeasures(dataList, tgFN, tierName, doPitch, medianFilterWindowSize=None): ''' Generates processed values for the labeled intervals in a textgrid nullLabelList - labels to ignore in the textgrid. Defaults to ["",] if 'doPitch'=true get pitch measures; if =false get rms intensity ''' tg = tgio.openTextgrid(tgFN) piData = tg.tierDict[tierName].getValuesInIntervals(dataList) outputList = [] for interval, entryList in piData: label = interval[0] if doPitch: tmpValList = [f0Val for _, f0Val, _ in entryList] f0Measures = getPitchMeasures(tmpValList, tgFN, label, medianFilterWindowSize, True) outputList.append(list(f0Measures)) else: tmpValList = [intensityVal for _, _, intensityVal in entryList] tmpValList = [intensityVal for intensityVal in tmpValList if intensityVal != 0.0] rmsIntensity = 0 if len(tmpValList) != 0: rmsIntensity = myMath.rms(tmpValList) outputList.append([rmsIntensity, ]) return outputList def getPitchMeasures(f0Values, name=None, label=None, medianFilterWindowSize=None, filterZeroFlag=False,): ''' Get various measures (min, max, etc) for the passed in list of pitch values name is the name of the file. Label is the label of the current interval. Both of these labels are only used debugging and can be ignored if desired. medianFilterWindowSize: None -> no median filtering filterZeroFlag:True -> zero values are removed ''' if name is None: name = "unspecified" if label is None: label = "unspecified" if medianFilterWindowSize is not None: f0Values = myMath.medianFilter(f0Values, medianFilterWindowSize, useEdgePadding=True) if filterZeroFlag: f0Values = [f0Val for f0Val in f0Values if int(f0Val) != 0] if len(f0Values) == 0: myStr = u"No pitch data for file: %s, label: %s" % (name, label) print(myStr.encode('ascii', 'replace')) counts = 0 meanF0 = 0 maxF0 = 0 minF0 = 0 rangeF0 = 0 variance = 0 std = 0 else: counts = float(len(f0Values)) meanF0 = sum(f0Values) / counts maxF0 = max(f0Values) minF0 = min(f0Values) rangeF0 = maxF0 - minF0 variance = sum([(val - meanF0) ** 2 for val in f0Values]) / counts std = math.sqrt(variance) return (meanF0, maxF0, minF0, rangeF0, variance, std) def detectPitchErrors(pitchList, maxJumpThreshold=0.70, tgToMark=None): ''' Detect pitch halving and doubling errors. If a textgrid is passed in, it adds the markings to the textgrid ''' assert(maxJumpThreshold >= 0.0 and maxJumpThreshold <= 1.0) errorList = [] for i in range(1, len(pitchList)): lastPitch = pitchList[i - 1][1] currentPitch = pitchList[i][1] ceilingCutoff = currentPitch / maxJumpThreshold floorCutoff = currentPitch * maxJumpThreshold if((lastPitch <= floorCutoff) or (lastPitch >= ceilingCutoff)): currentTime = pitchList[i][0] errorList.append([currentTime, currentPitch / lastPitch]) if tgToMark is not None: tierName = "pitch errors" assert(tierName not in tgToMark.tierNameList) pointTier = tgio.PointTier(tierName, errorList, tgToMark.minTimestamp, tgToMark.maxTimestamp) tgToMark.addTier(pointTier) return errorList, tgToMark
python
""" In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is empty. There is at least one empty seat, and at least one person sitting. Alex wants to sit in the seat such that the distance between him and the closest person to him is maximized. Return that maximum distance to closest person. Example 1: Input: [1,0,0,0,1,0,1] Output: 2 Explanation: If Alex sits in the second open seat (seats[2]), then the closest person has distance 2. If Alex sits in any other open seat, the closest person has distance 1. Thus, the maximum distance to the closest person is 2. Example 2: Input: [1,0,0,0] Output: 3 Explanation: If Alex sits in the last seat, the closest person is 3 seats away. This is the maximum distance possible, so the answer is 3. Constraints: 1. 2 <= seats.length <= 20000 2. seats contains only 0s or 1s, at least one 0, and at least one 1. """ class Solution: def maxDistToClosest(self, seats): res, prev = 0, None for i in range(len(seats)): if seats[i]: if prev is None: res = i else: res = max(res, (i - prev) // 2) prev = i return max(res, i - prev)
python
import re import string import shortuuid alphabet = string.ascii_lowercase + string.digits su = shortuuid.ShortUUID(alphabet=alphabet) def shortuuid_random(): return str(su.random(length=8)) def to_snake_case(words): regex_pattern = r'(?<!^)(?=[A-Z])' if isinstance(words, str): return re.sub(regex_pattern, '_', words.strip('_')).lower() elif isinstance(words, list): return [ re.sub(regex_pattern, '_', word).lower() for word in words ] else: print('Helper to_snake_case function received bad input. Expected String or List.') def get_fields_from_list_of_dicts(data: list): top_level_columns = [] for row in data: top_level_columns.extend(list(row.keys())) return get_unique_fields_from_list(top_level_columns) def get_unique_fields_from_list(fields: list): return sorted(list(set(fields))) def get_column_order_by_least_null(df) -> list: null_count = df.isnull().sum(axis=0).sort_values() return null_count.index.tolist()
python
from collections import MutableSet from . import helpers FORWARD = 1 # used to look at Node children BACKWARD = -1 # used to look at Node parents class NodeSet(MutableSet): """ A mutable set which automatically populates parent/child node sets. For example, if this NodeSet contains `children` nodes and a new node was added, that node's `parent` NodeSet will automatically be populated with the owner of this NodeSet. """ __slots__ = ('owner', 'items', 'direction') def __init__(self, owner, items, direction): """ :type owner: Node :type items: set[Node] :type direction: int """ self.owner = owner self.items = set() self.direction = direction self.update(items) def __iter__(self): return iter(self.items) def __len__(self): return len(self.items) def add(self, value): """ Adds the node to this NodeSet and populates the node's NodeSet with the owner of this NodeSet. :type value: Node """ if value not in self: value.direction(self.direction * -1).items.add(self.owner) return self.items.add(value) def discard(self, value): """ Removes the node from this NodeSet and removes this NodeSet's owner from the node's NodeSets. :type value: Node """ if value in self: value.direction(self.direction * -1).items.discard(self.owner) return self.items.discard(value) def update(self, nodes): for node in nodes: self.add(node) def discard_many(self, nodes): for node in nodes: self.discard(node) def one(self, raise_on_empty=False): """ Returns an item from this NodeSet if there is only one item. :type raise_on_empty: bool :rtype: Node | None :raises: ValueError """ if not self.items and raise_on_empty: raise ValueError('Called NodeSet.one on empty set') elif len(self.items) > 1: raise ValueError('Called NodeSet.one on set with multiple values') return next(iter(self.items), None) def __contains__(self, x): return self.items.__contains__(x) def __repr__(self): return 'NodeSet{}'.format(tuple(self.items)) class Node(object): __slots__ = ('parents', 'children', 'data') def __init__(self, data=None, parents=None, children=None): self.parents = NodeSet(self, [] if parents is None else parents, BACKWARD) self.children = NodeSet(self, [] if children is None else children, FORWARD) self.data = data def __repr__(self): return '<{} {}>'.format(type(self).__name__, self.data) @property def connections(self): """ Returns all parents and children associated with this Node. :rtype: set[Node] """ return set(list(self.parents) + list(self.children)) def direction(self, direction): """ Returns this node's parents if direction is BACKWARD, else, returns children nodes. :int direction: int :rtype: NodeSet """ return self.parents if direction == BACKWARD else self.children def depth_first_traversal(self, callback, direction, obj=None): """ Executes a depth-first traversal from this node in a given direction. Raising a StopIteration will terminate the traversal. :type callback: (Node, object) -> () :type direction: int :type obj: Any :return: Returns `obj` (or None if no `obj` is supplied). :rtype: Any """ return helpers.depth_first_traversal_for_node(node=self, callback=callback, direction=direction, obj=obj) def breadth_first_traversal(self, callback, direction, obj=None): """ Executes a breadth-first traversal from this node in a given direction. Raising a StopIteration will terminate the traversal. :type callback: (Node, object) -> () :type direction: int :type obj: Any :return: Returns `obj` (or None if no `obj` is supplied). :rtype: Any """ return helpers.breadth_first_traversal_for_node(node=self, callback=callback, direction=direction, obj=obj) def walk_links(self, callback, direction, obj=None): """ Walks the each link for this node. Raising a StopIteration will terminate the traversal. :type callback: (Node, Node, object) -> () :type direction: int :type obj: Any :return: Returns `obj` (or None if no `obj` is supplied). :rtype: Any """ return helpers.walk_links_for_node(node=self, callback=callback, direction=direction, obj=obj) def root(self): """ Returns the root node of this node if it only has one root node. :rtype: Node :raises: ValueError """ roots = self.roots() if len(roots) > 1: raise ValueError('Node.root is not applicable when the node has multiple roots') return next(iter(roots)) def gather_nodes(self, direction=None): """ Returns all nodes in the tree. Nodes can be restricted by specifying a direction. :type direction: int :rtype: set[Node] """ return helpers.gather_nodes(node=self, direction=direction) def flatten(self, direction=None): """ Returns a list of node lists representing a path on the tree. :type direction: int | None :rtype: list[list[treestruct.Node]] """ return helpers.flatten_from_node(node=self, direction=direction) def roots(self): """ Returns all roots (any parent nodes with no parents) of this node. :rtype: set[Node] """ return helpers.roots_for_node(node=self) def leaves(self): """ Returns all leaves (any child nodes with no children) of this node. :rtype: set[Node] """ return helpers.leaves_for_node(node=self) def delete(self, direction=None): """ Removes this node from the NodeSets of connected nodes. If direction is given, only remove the node from the connected nodes in the given direction. :type direction: int :rtype: Node """ return helpers.delete_node_relationships(node=self, direction=direction) def clone(self): """ Clones the node and all its child nodes and forms a new root. :rtype: Node """ return helpers.clone_subtree(node=self, cls=type(self)) def find_all(self, condition, direction=None): """ Returns all nodes which match the given condition. :type condition: (Node) -> bool :type direction: int :rtype: set[Node] """ return helpers.find_nodes(node=self, condition=condition, direction=direction) def find(self, condition, direction=None, raise_on_empty=False): """ Returns a single node which matches the given condition. :type condition: (Node) -> bool :type direction: int :type raise_on_empty: bool :rtype: Node | None :raises: ValueError """ return helpers.find_node(node=self, condition=condition, direction=direction, raise_on_empty=raise_on_empty) def to_dict(self, data_converter=None): """ Converts this node's complete structure into a dictionary. :type data_converter: (Any) -> (Any) | None :rtype: list[dict] """ return helpers.to_dict_from_node(node=self, data_converter=data_converter) @classmethod def from_dict(cls, tree_dict, data_converter=None): """ Converts a dict into a tree of Nodes, with the return value being the root node. :param tree_dict: dict :type data_converter: (Any) -> (Any) | None :rtype: Node """ return helpers.from_dict(tree_dict=tree_dict, data_converter=data_converter, cls=cls) @classmethod def from_nodes(cls, nodes): """ Creates a flat tree structure from a list of nodes. It is assumed that the first Node in the list is the root and each subsequent Node is a child. Any existing parents or children will be disregarded. :type nodes: collections.Sequence[Node] :rtype: Node """ return helpers.node_from_node_sequence(nodes=nodes, cls=cls)
python
# -*- coding: utf-8 -*- """ __title__ = '画出类、大组、小组的树状曲线' __author__ = xiongliff __mtime__ = '2019/7/16' """ import json import os from innojoy_calculate.common import const from innojoy_calculate.utils import read_xls_data class Node: def __init__(self, id, value,is_leaf, parent_id): self.id =id self.value = value self.is_leaf = is_leaf self.parent_id = parent_id def get_value(self): return self.value def get_parent_id(self): return self.parent_id def get_id(self): return self.id def get_is_leaf(self): return self.is_leaf def add_value(self): self.value += 1 def generate_tree_node_data(base_data_list): """ 读取base_data_list,并按部、大类、小类、大组、小组生成对应的树状结构 保存在dict中 node中有id,即分类号,value即出现的次数,parent_id即上层的所属关系 :param base_data_list: :return: """ #存放{id:node} id_node_dict = dict() for base_data in base_data_list: # 读取分类号所在列 class_number_value = base_data[const.CLASS_NBR] if isinstance(class_number_value, basestring) and class_number_value.strip() != "": class_number_string_list = class_number_value.split(";") if class_number_string_list: for class_nbr_string in class_number_string_list: #部分类号取第一位 part_class_nbr = class_nbr_string[0] #如果没有part_class_nbr则生成根节点,否则计数加1 if part_class_nbr not in id_node_dict.keys(): part_class_nbr_node = Node(part_class_nbr, 1, False, None) id_node_dict[part_class_nbr] = part_class_nbr_node else: id_node_dict[part_class_nbr].add_value() #大类分类号取第前3位 main_category_class_nbr = class_nbr_string[0:2] # 如果没有main_category_class_nbr则生成节点,否则计数加1 if main_category_class_nbr not in id_node_dict.keys(): main_category_class_nbr_node = Node(main_category_class_nbr, 1, False, part_class_nbr) id_node_dict[main_category_class_nbr] = main_category_class_nbr_node else: id_node_dict[main_category_class_nbr].add_value() #小类分类号取前4位 sub_category_class_nbr = class_nbr_string[0:3] # 如果没有sub_category_class_nbr则生成节点,否则计数加1 if sub_category_class_nbr not in id_node_dict.keys(): sub_category_class_nbr_node = Node(sub_category_class_nbr, 1, False, main_category_class_nbr) id_node_dict[sub_category_class_nbr] = sub_category_class_nbr_node else: id_node_dict[sub_category_class_nbr].add_value() #大组分类号取/号前的 main_group_class_nbr = class_nbr_string.split("/")[0] # 如果没有main_group_class_nbr则生成节点,否则计数加1 if main_group_class_nbr not in id_node_dict.keys(): main_group_class_nbr_node = Node(main_group_class_nbr, 1, False, sub_category_class_nbr) id_node_dict[main_group_class_nbr] = main_group_class_nbr_node else: id_node_dict[main_group_class_nbr].add_value() #小组分类号取(号前的 sub_group_class_nbr = class_nbr_string.split("(")[0] # 如果没有sub_group_class_nbr则生成节点,否则计数加1 if sub_group_class_nbr not in id_node_dict.keys(): sub_group_class_nbr_node = Node(sub_group_class_nbr, 1, True, main_group_class_nbr) id_node_dict[sub_group_class_nbr] = sub_group_class_nbr_node else: id_node_dict[sub_group_class_nbr].add_value() return id_node_dict def generate_tree_display(id_node_dict): """ 根据id_node_dict生成指定展示所需的数据结构: {name:123, value:22 childreen:[] } :param id_node_dict: :return: """ node_list = id_node_dict.values() root_node_list = list() #先找到根节点,即parent_id为None的节点 for node in node_list: if not node.get_parent_id(): root_node = dict() root_node['name'] = node.get_id() root_node['value'] = node.get_value() root_node['children'] = list() root_node_list.append(root_node) for root_node in root_node_list: add_children_node(root_node, node_list) #如果len(root_node_list)>1,则加一个统一的根节点,否则只有一个根节点 result_root_node = dict() if len(root_node_list) > 1: result_root_node['name'] = '' result_root_node['value'] = '' result_root_node['children'] = root_node_list else: result_root_node = root_node_list[0] return result_root_node def add_children_node(root_node, node_list): for node in node_list: if node.get_parent_id() == root_node['name']: son_node = dict() son_node['name'] = node.get_id() son_node['value'] = node.get_value() if not node.get_is_leaf(): son_node['children'] = list() add_children_node(son_node, node_list) root_node['children'].append(son_node) def save_tree_data(base_base_data_list): id_node_dict = generate_tree_node_data(base_base_data_list) tree_data = generate_tree_display(id_node_dict) try: os.remove(const.JSON_PATH) except WindowsError: pass file = open(const.JSON_PATH,'w') file.write('display_tree = ') json.dump(tree_data, file, ensure_ascii=False) file.close() if __name__ == '__main__': # root_node = dict() # root_node['name'] = 'B' # root_node['value'] = 12 # root_node['children']= list() # node1 = Node('B1',2,False,'B') # node2 = Node('B2',3,False,'B') # node3 = Node('B1C',5,True,'B1') # node_list =[node1,node2,node3] # add_children_node(root_node,node_list) # print root_node """ 该函数的使用方法:执行完save_tree_data后,对应树状结构的数据会以js文件的方式保存在const.JSON_PATH文件中, 要查看生成的树状图,请打开innojoy_calculate目录下的test.html(右键打开方式-》以浏览器打开) """ base_data_list = read_xls_data.read_data() save_tree_data(base_data_list)
python
# -*- coding: utf-8 -*- """Generate the Resilient customizations required for fn_task_utils""" from __future__ import print_function from resilient_circuits.util import * def codegen_reload_data(): """Parameters to codegen used to generate the fn_task_utils package""" reload_params = {"package": u"fn_task_utils", "incident_fields": [], "action_fields": [u"task_utils_task_name"], "function_params": [u"incident_id", u"task_id", u"task_name", u"task_utils_note_body", u"task_utils_note_type", u"task_utils_payload"], "datatables": [], "message_destinations": [u"fn_task_utils"], "functions": [u"task_utils_add_note", u"task_utils_close_task", u"task_utils_create", u"task_utils_update_task"], "phases": [], "automatic_tasks": [], "scripts": [], "workflows": [u"task_utils_add_note_to_task", u"task_utils_close_task", u"task_utils_create_custom_task", u"task_utils_mark_task_optional"], "actions": [u"Example: Task Utils - Add Note to Task", u"Example: Task Utils - Close Task", u"Example: Task Utils - Create Custom Task", u"Example: Task Utils - Make this Task Optional"], "incident_artifact_types": [] } return reload_params def customization_data(client=None): """Produce any customization definitions (types, fields, message destinations, etc) that should be installed by `resilient-circuits customize` """ # This import data contains: # Action fields: # task_utils_task_name # Function inputs: # incident_id # task_id # task_name # task_utils_note_body # task_utils_note_type # task_utils_payload # Message Destinations: # fn_task_utils # Functions: # task_utils_add_note # task_utils_close_task # task_utils_create # task_utils_update_task # Workflows: # task_utils_add_note_to_task # task_utils_close_task # task_utils_create_custom_task # task_utils_mark_task_optional # Rules: # Example: Task Utils - Add Note to Task # Example: Task Utils - Close Task # Example: Task Utils - Create Custom Task # Example: Task Utils - Make this Task Optional yield ImportDefinition(u""" eyJzZXJ2ZXJfdmVyc2lvbiI6IHsibWFqb3IiOiAzMSwgIm1pbm9yIjogMCwgImJ1aWxkX251bWJl ciI6IDQyMzUsICJ2ZXJzaW9uIjogIjMxLjAuNDIzNSJ9LCAiZXhwb3J0X2Zvcm1hdF92ZXJzaW9u IjogMiwgImlkIjogMTIsICJleHBvcnRfZGF0ZSI6IDE1NjAyNDE3NTY1NDUsICJmaWVsZHMiOiBb eyJpZCI6IDIyMywgIm5hbWUiOiAiaW5jX3RyYWluaW5nIiwgInRleHQiOiAiU2ltdWxhdGlvbiIs ICJwcmVmaXgiOiBudWxsLCAidHlwZV9pZCI6IDAsICJ0b29sdGlwIjogIldoZXRoZXIgdGhlIGlu Y2lkZW50IGlzIGEgc2ltdWxhdGlvbiBvciBhIHJlZ3VsYXIgaW5jaWRlbnQuICBUaGlzIGZpZWxk IGlzIHJlYWQtb25seS4iLCAiaW5wdXRfdHlwZSI6ICJib29sZWFuIiwgImhpZGVfbm90aWZpY2F0 aW9uIjogZmFsc2UsICJjaG9zZW4iOiBmYWxzZSwgImRlZmF1bHRfY2hvc2VuX2J5X3NlcnZlciI6 IGZhbHNlLCAiYmxhbmtfb3B0aW9uIjogZmFsc2UsICJpbnRlcm5hbCI6IGZhbHNlLCAidXVpZCI6 ICJjM2YwZTNlZC0yMWUxLTRkNTMtYWZmYi1mZTVjYTMzMDhjY2EiLCAib3BlcmF0aW9ucyI6IFtd LCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ2YWx1ZXMiOiBbXSwgInJlYWRfb25seSI6IHRydWUs ICJjaGFuZ2VhYmxlIjogdHJ1ZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAiZXhwb3J0X2tleSI6ICJp bmNpZGVudC9pbmNfdHJhaW5pbmciLCAidGVtcGxhdGVzIjogW10sICJkZXByZWNhdGVkIjogZmFs c2V9LCB7ImlkIjogMjk3LCAibmFtZSI6ICJ0YXNrX3V0aWxzX3Rhc2tfbmFtZSIsICJ0ZXh0Ijog IlRhc2sgVXRpbHMgVGFzayBOYW1lIiwgInByZWZpeCI6ICJwcm9wZXJ0aWVzIiwgInR5cGVfaWQi OiA2LCAidG9vbHRpcCI6ICIiLCAicGxhY2Vob2xkZXIiOiAiIiwgImlucHV0X3R5cGUiOiAidGV4 dCIsICJoaWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAiY2hvc2VuIjogZmFsc2UsICJkZWZhdWx0 X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgImJsYW5rX29wdGlvbiI6IGZhbHNlLCAiaW50ZXJu YWwiOiBmYWxzZSwgInV1aWQiOiAiZWI5YjBmYWYtZGNmMi00YTI1LThmOGUtYjY0NTRiZGM1YWIw IiwgIm9wZXJhdGlvbnMiOiBbXSwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAidmFsdWVzIjogW10s ICJyZWFkX29ubHkiOiBmYWxzZSwgImNoYW5nZWFibGUiOiB0cnVlLCAicmljaF90ZXh0IjogZmFs c2UsICJleHBvcnRfa2V5IjogImFjdGlvbmludm9jYXRpb24vdGFza191dGlsc190YXNrX25hbWUi LCAidGVtcGxhdGVzIjogW10sICJkZXByZWNhdGVkIjogZmFsc2V9LCB7ImlkIjogMjk4LCAibmFt ZSI6ICJ0YXNrX3V0aWxzX3BheWxvYWQiLCAidGV4dCI6ICJ0YXNrX3V0aWxzX3BheWxvYWQiLCAi cHJlZml4IjogbnVsbCwgInR5cGVfaWQiOiAxMSwgInRvb2x0aXAiOiAiQSBKU09OIE9iamVjdCB3 aGljaCBtYXkgY29udGFpbiB0aGUgUGhhc2UsIEluc3RydWN0aW9uIFNldCBvciBBc3NpZ25lZCBV c2VyIHZhbHVlcyBmb3IgYSBuZXcgdGFzayIsICJwbGFjZWhvbGRlciI6ICIiLCAiaW5wdXRfdHlw ZSI6ICJ0ZXh0YXJlYSIsICJoaWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAiY2hvc2VuIjogZmFs c2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgImJsYW5rX29wdGlvbiI6IGZh bHNlLCAiaW50ZXJuYWwiOiBmYWxzZSwgInV1aWQiOiAiMzYxZjQyMGYtMzE4NC00NDI2LTlmZGMt NzY0OWQ1OGVhYzkyIiwgIm9wZXJhdGlvbnMiOiBbXSwgIm9wZXJhdGlvbl9wZXJtcyI6IHt9LCAi dmFsdWVzIjogW10sICJyZWFkX29ubHkiOiBmYWxzZSwgImNoYW5nZWFibGUiOiB0cnVlLCAicmlj aF90ZXh0IjogZmFsc2UsICJleHBvcnRfa2V5IjogIl9fZnVuY3Rpb24vdGFza191dGlsc19wYXls b2FkIiwgInRlbXBsYXRlcyI6IFt7ImlkIjogMywgIm5hbWUiOiAiQ3JlYXRlIE5ldyBPcHRpb25h bCBUYXNrIiwgInRlbXBsYXRlIjogeyJmb3JtYXQiOiAidGV4dCIsICJjb250ZW50IjogIntcblwi bmFtZVwiOiBcIk9wdGlvbmFsIFRhc2sgQ3JlYXRlZCB1c2luZyBUYXNrIFV0aWxzIEludGVncmF0 aW9uXCJcblwicmVxdWlyZWRcIiA6IGZhbHNlXG59XG4ifSwgInV1aWQiOiAiZWI4ZTdiNzUtMTFm Yy00Y2M1LWIwZTItMWJmODllNjA2NmRlIn0sIHsiaWQiOiAyLCAibmFtZSI6ICJDcmVhdGUgTmV3 IFJlcXVpcmVkIFRhc2sgd2l0aCBJbnN0cnVjdGlvbnMgVGV4dCIsICJ0ZW1wbGF0ZSI6IHsiZm9y bWF0IjogInRleHQiLCAiY29udGVudCI6ICJ7XG5cIm5hbWVcIjogXCJSZXF1aXJlZCBUYXNrIENy ZWF0ZWQgdXNpbmcgVGFzayBVdGlscyBJbnRlZ3JhdGlvblwiLFxuXCJpbnN0cl90ZXh0XCI6IFwi UGxlYXNlIGNvbXBsZXRlIHRoaXMgcmVxdWlyZWQgdGFzay5cIixcblwicmVxdWlyZWRcIiA6IHRy dWVcbn1cbiJ9LCAidXVpZCI6ICIxNzZhMmIwNS03NGYwLTRlNDctOTUxZC05ZTA5NDg3MWIwMmIi fSwgeyJpZCI6IDEsICJuYW1lIjogIlVwZGF0ZSBFeGlzdGluZyBUYXNrIE1hcmtpbmcgaXQgYXMg b3B0aW9uYWwiLCAidGVtcGxhdGUiOiB7ImZvcm1hdCI6ICJ0ZXh0IiwgImNvbnRlbnQiOiAie1xu XCJyZXF1aXJlZFwiOiBmYWxzZVxufSJ9LCAidXVpZCI6ICJjZDc2ZTZlYy1hYTZkLTRmYTMtOTM0 ZS04ZmFhMjY5MGM0NjMifV0sICJkZXByZWNhdGVkIjogZmFsc2V9LCB7ImlkIjogMzAxLCAibmFt ZSI6ICJ0YXNrX2lkIiwgInRleHQiOiAidGFza19pZCIsICJwcmVmaXgiOiBudWxsLCAidHlwZV9p ZCI6IDExLCAidG9vbHRpcCI6ICIiLCAicGxhY2Vob2xkZXIiOiAiIiwgImlucHV0X3R5cGUiOiAi bnVtYmVyIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJjaG9zZW4iOiBmYWxzZSwgImRl ZmF1bHRfY2hvc2VuX2J5X3NlcnZlciI6IGZhbHNlLCAiYmxhbmtfb3B0aW9uIjogZmFsc2UsICJp bnRlcm5hbCI6IGZhbHNlLCAidXVpZCI6ICJiYTMxODI2MS1lZDZhLTRhMzgtYTE4Ny05ZTBiNjhk MTYwNGYiLCAib3BlcmF0aW9ucyI6IFtdLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ2YWx1ZXMi OiBbXSwgInJlYWRfb25seSI6IGZhbHNlLCAiY2hhbmdlYWJsZSI6IHRydWUsICJyaWNoX3RleHQi OiBmYWxzZSwgImV4cG9ydF9rZXkiOiAiX19mdW5jdGlvbi90YXNrX2lkIiwgInRlbXBsYXRlcyI6 IFtdLCAiZGVwcmVjYXRlZCI6IGZhbHNlfSwgeyJpZCI6IDI5OSwgIm5hbWUiOiAidGFza19uYW1l IiwgInRleHQiOiAidGFza19uYW1lIiwgInByZWZpeCI6IG51bGwsICJ0eXBlX2lkIjogMTEsICJ0 b29sdGlwIjogIiIsICJwbGFjZWhvbGRlciI6ICIiLCAiaW5wdXRfdHlwZSI6ICJ0ZXh0IiwgImhp ZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJjaG9zZW4iOiBmYWxzZSwgImRlZmF1bHRfY2hvc2Vu X2J5X3NlcnZlciI6IGZhbHNlLCAiYmxhbmtfb3B0aW9uIjogZmFsc2UsICJpbnRlcm5hbCI6IGZh bHNlLCAidXVpZCI6ICJlOWFmMDc3YS0zYjFjLTRmZjctYmVmYi04ZGZlZGQzYzdkYmMiLCAib3Bl cmF0aW9ucyI6IFtdLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ2YWx1ZXMiOiBbXSwgInJlYWRf b25seSI6IGZhbHNlLCAiY2hhbmdlYWJsZSI6IHRydWUsICJyaWNoX3RleHQiOiBmYWxzZSwgImV4 cG9ydF9rZXkiOiAiX19mdW5jdGlvbi90YXNrX25hbWUiLCAidGVtcGxhdGVzIjogW10sICJkZXBy ZWNhdGVkIjogZmFsc2V9LCB7ImlkIjogMzAyLCAibmFtZSI6ICJpbmNpZGVudF9pZCIsICJ0ZXh0 IjogImluY2lkZW50X2lkIiwgInByZWZpeCI6IG51bGwsICJ0eXBlX2lkIjogMTEsICJ0b29sdGlw IjogIiIsICJwbGFjZWhvbGRlciI6ICIiLCAiaW5wdXRfdHlwZSI6ICJudW1iZXIiLCAicmVxdWly ZWQiOiAiYWx3YXlzIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJjaG9zZW4iOiBmYWxz ZSwgImRlZmF1bHRfY2hvc2VuX2J5X3NlcnZlciI6IGZhbHNlLCAiYmxhbmtfb3B0aW9uIjogZmFs c2UsICJpbnRlcm5hbCI6IGZhbHNlLCAidXVpZCI6ICI4MTFlOTlkNy1kMTk0LTRjZTgtODZjYy1h ZmY1ZTAxYWI4NWMiLCAib3BlcmF0aW9ucyI6IFtdLCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ2 YWx1ZXMiOiBbXSwgInJlYWRfb25seSI6IGZhbHNlLCAiY2hhbmdlYWJsZSI6IHRydWUsICJyaWNo X3RleHQiOiBmYWxzZSwgImV4cG9ydF9rZXkiOiAiX19mdW5jdGlvbi9pbmNpZGVudF9pZCIsICJ0 ZW1wbGF0ZXMiOiBbXSwgImRlcHJlY2F0ZWQiOiBmYWxzZX0sIHsiaWQiOiAzMDAsICJuYW1lIjog InRhc2tfdXRpbHNfbm90ZV90eXBlIiwgInRleHQiOiAidGFza191dGlsc19ub3RlX3R5cGUiLCAi cHJlZml4IjogbnVsbCwgInR5cGVfaWQiOiAxMSwgInRvb2x0aXAiOiAiQSBmaWVsZCB1c2VkIHRv IHNwZWNpZnkgd2hlcmUgdGhlIGZpZWxkIHRhc2tfdXRpbHNfbm90ZV9ib2R5IGlzIHBsYWludGV4 dCBvciBodG1sLiIsICJwbGFjZWhvbGRlciI6ICIiLCAiaW5wdXRfdHlwZSI6ICJzZWxlY3QiLCAi cmVxdWlyZWQiOiAiYWx3YXlzIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJjaG9zZW4i OiBmYWxzZSwgImRlZmF1bHRfY2hvc2VuX2J5X3NlcnZlciI6IGZhbHNlLCAiYmxhbmtfb3B0aW9u IjogZmFsc2UsICJpbnRlcm5hbCI6IGZhbHNlLCAidXVpZCI6ICI1ZTIzYjE0NS0yYmVjLTRkODIt YWQ1MC1kYzExNWYzNTUzNjAiLCAib3BlcmF0aW9ucyI6IFtdLCAib3BlcmF0aW9uX3Blcm1zIjog e30sICJ2YWx1ZXMiOiBbeyJ2YWx1ZSI6IDE4MDAsICJsYWJlbCI6ICJ0ZXh0IiwgImVuYWJsZWQi OiB0cnVlLCAicHJvcGVydGllcyI6IG51bGwsICJ1dWlkIjogIjZhMmU0ZTEzLTdmMGMtNGRhYi1h NDYwLTg2YjA0NzY5Y2VlYiIsICJoaWRkZW4iOiBmYWxzZSwgImRlZmF1bHQiOiB0cnVlfSwgeyJ2 YWx1ZSI6IDE4MDEsICJsYWJlbCI6ICJodG1sIiwgImVuYWJsZWQiOiB0cnVlLCAicHJvcGVydGll cyI6IG51bGwsICJ1dWlkIjogIjU2MWZkMGY5LWM1NTctNGQ2My1hOGZjLTIwNTM5ZWE4Yzg2YSIs ICJoaWRkZW4iOiBmYWxzZSwgImRlZmF1bHQiOiBmYWxzZX1dLCAicmVhZF9vbmx5IjogZmFsc2Us ICJjaGFuZ2VhYmxlIjogdHJ1ZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAiZXhwb3J0X2tleSI6ICJf X2Z1bmN0aW9uL3Rhc2tfdXRpbHNfbm90ZV90eXBlIiwgInRlbXBsYXRlcyI6IFtdLCAiZGVwcmVj YXRlZCI6IGZhbHNlfSwgeyJpZCI6IDMwMywgIm5hbWUiOiAidGFza191dGlsc19ub3RlX2JvZHki LCAidGV4dCI6ICJ0YXNrX3V0aWxzX25vdGVfYm9keSIsICJwcmVmaXgiOiBudWxsLCAidHlwZV9p ZCI6IDExLCAidG9vbHRpcCI6ICJBIFRleHQgZmllbGQgdXNlZCB0byBzcGVjaWZ5IHRoZSBub3Rl IHRoYXQgd2lsbCBiZSBhZGRlZCB0byBhIGdpdmVuIFRhc2suIEFjY2VwdHMgdGV4dCBvciBodG1s IGFuZCBpcyBwYXJzZWQgYmFzZWQgb24gdGhlIHJlc3VsdCBvZiB0YXNrX3V0aWxzX25vdGVfdHlw ZS4gRGVmYXVsdCBpcyB0ZXh0IiwgInBsYWNlaG9sZGVyIjogIiIsICJpbnB1dF90eXBlIjogInRl eHQiLCAiaGlkZV9ub3RpZmljYXRpb24iOiBmYWxzZSwgImNob3NlbiI6IGZhbHNlLCAiZGVmYXVs dF9jaG9zZW5fYnlfc2VydmVyIjogZmFsc2UsICJibGFua19vcHRpb24iOiBmYWxzZSwgImludGVy bmFsIjogZmFsc2UsICJ1dWlkIjogIjQ0YzRjNjAwLWYyMmQtNGJmNS1iYmY0LWVmYWQzNThmMDJm NSIsICJvcGVyYXRpb25zIjogW10sICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInZhbHVlcyI6IFtd LCAicmVhZF9vbmx5IjogZmFsc2UsICJjaGFuZ2VhYmxlIjogdHJ1ZSwgInJpY2hfdGV4dCI6IGZh bHNlLCAiZXhwb3J0X2tleSI6ICJfX2Z1bmN0aW9uL3Rhc2tfdXRpbHNfbm90ZV9ib2R5IiwgInRl bXBsYXRlcyI6IFtdLCAiZGVwcmVjYXRlZCI6IGZhbHNlfV0sICJpbmNpZGVudF90eXBlcyI6IFt7 InVwZGF0ZV9kYXRlIjogMTU2MDI0MTc1NzcyNCwgImNyZWF0ZV9kYXRlIjogMTU2MDI0MTc1Nzcy NCwgInV1aWQiOiAiYmZlZWMyZDQtMzc3MC0xMWU4LWFkMzktNGEwMDA0MDQ0YWEwIiwgImRlc2Ny aXB0aW9uIjogIkN1c3RvbWl6YXRpb24gUGFja2FnZXMgKGludGVybmFsKSIsICJleHBvcnRfa2V5 IjogIkN1c3RvbWl6YXRpb24gUGFja2FnZXMgKGludGVybmFsKSIsICJuYW1lIjogIkN1c3RvbWl6 YXRpb24gUGFja2FnZXMgKGludGVybmFsKSIsICJlbmFibGVkIjogZmFsc2UsICJzeXN0ZW0iOiBm YWxzZSwgInBhcmVudF9pZCI6IG51bGwsICJoaWRkZW4iOiBmYWxzZSwgImlkIjogMH1dLCAicGhh c2VzIjogW10sICJhdXRvbWF0aWNfdGFza3MiOiBbXSwgIm92ZXJyaWRlcyI6IFtdLCAibWVzc2Fn ZV9kZXN0aW5hdGlvbnMiOiBbeyJuYW1lIjogImZuX3Rhc2tfdXRpbHMiLCAicHJvZ3JhbW1hdGlj X25hbWUiOiAiZm5fdGFza191dGlscyIsICJkZXN0aW5hdGlvbl90eXBlIjogMCwgImV4cGVjdF9h Y2siOiB0cnVlLCAidXNlcnMiOiBbImFsZnJlZEB3YXluZWNvcnAuY29tIl0sICJ1dWlkIjogImM2 OTdkOTc3LWMxNzMtNDJlMS1iNmQ4LTg1ODBiNTkxZjBjYiIsICJleHBvcnRfa2V5IjogImZuX3Rh c2tfdXRpbHMifV0sICJhY3Rpb25zIjogW3siaWQiOiAyNywgIm5hbWUiOiAiRXhhbXBsZTogVGFz ayBVdGlscyAtIEFkZCBOb3RlIHRvIFRhc2siLCAidHlwZSI6IDEsICJvYmplY3RfdHlwZSI6ICJp bmNpZGVudCIsICJjb25kaXRpb25zIjogW10sICJhdXRvbWF0aW9ucyI6IFtdLCAibWVzc2FnZV9k ZXN0aW5hdGlvbnMiOiBbXSwgIndvcmtmbG93cyI6IFsidGFza191dGlsc19hZGRfbm90ZV90b190 YXNrIl0sICJ2aWV3X2l0ZW1zIjogW10sICJ0aW1lb3V0X3NlY29uZHMiOiA4NjQwMCwgInV1aWQi OiAiZTUyMzE3NDEtMTk2Yy00MzAzLTg3MmYtNDI1NDc4MDVlZDU1IiwgImV4cG9ydF9rZXkiOiAi RXhhbXBsZTogVGFzayBVdGlscyAtIEFkZCBOb3RlIHRvIFRhc2siLCAibG9naWNfdHlwZSI6ICJh bGwifSwgeyJpZCI6IDI4LCAibmFtZSI6ICJFeGFtcGxlOiBUYXNrIFV0aWxzIC0gQ2xvc2UgVGFz ayIsICJ0eXBlIjogMSwgIm9iamVjdF90eXBlIjogImluY2lkZW50IiwgImNvbmRpdGlvbnMiOiBb XSwgImF1dG9tYXRpb25zIjogW10sICJtZXNzYWdlX2Rlc3RpbmF0aW9ucyI6IFtdLCAid29ya2Zs b3dzIjogWyJ0YXNrX3V0aWxzX2Nsb3NlX3Rhc2siXSwgInZpZXdfaXRlbXMiOiBbeyJzdGVwX2xh YmVsIjogbnVsbCwgInNob3dfaWYiOiBudWxsLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImZp ZWxkX3R5cGUiOiAiYWN0aW9uaW52b2NhdGlvbiIsICJjb250ZW50IjogImViOWIwZmFmLWRjZjIt NGEyNS04ZjhlLWI2NDU0YmRjNWFiMCIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2V9XSwgInRp bWVvdXRfc2Vjb25kcyI6IDg2NDAwLCAidXVpZCI6ICIzNWVhNTcyYi1iN2M3LTQ2NTMtYjRmMC1l ZmI4Zjg2MWI3YTMiLCAiZXhwb3J0X2tleSI6ICJFeGFtcGxlOiBUYXNrIFV0aWxzIC0gQ2xvc2Ug VGFzayIsICJsb2dpY190eXBlIjogImFsbCJ9LCB7ImlkIjogMzAsICJuYW1lIjogIkV4YW1wbGU6 IFRhc2sgVXRpbHMgLSBDcmVhdGUgQ3VzdG9tIFRhc2siLCAidHlwZSI6IDEsICJvYmplY3RfdHlw ZSI6ICJpbmNpZGVudCIsICJjb25kaXRpb25zIjogW10sICJhdXRvbWF0aW9ucyI6IFtdLCAibWVz c2FnZV9kZXN0aW5hdGlvbnMiOiBbXSwgIndvcmtmbG93cyI6IFsidGFza191dGlsc19jcmVhdGVf Y3VzdG9tX3Rhc2siXSwgInZpZXdfaXRlbXMiOiBbeyJzdGVwX2xhYmVsIjogbnVsbCwgInNob3df aWYiOiBudWxsLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImZpZWxkX3R5cGUiOiAiYWN0aW9u aW52b2NhdGlvbiIsICJjb250ZW50IjogImViOWIwZmFmLWRjZjItNGEyNS04ZjhlLWI2NDU0YmRj NWFiMCIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2V9XSwgInRpbWVvdXRfc2Vjb25kcyI6IDg2 NDAwLCAidXVpZCI6ICI4YWYxYmMyZi01Y2JhLTQ1OWYtYTE1ZC1lNjkzNWU1NWEzN2YiLCAiZXhw b3J0X2tleSI6ICJFeGFtcGxlOiBUYXNrIFV0aWxzIC0gQ3JlYXRlIEN1c3RvbSBUYXNrIiwgImxv Z2ljX3R5cGUiOiAiYWxsIn0sIHsiaWQiOiAzMSwgIm5hbWUiOiAiRXhhbXBsZTogVGFzayBVdGls cyAtIE1ha2UgdGhpcyBUYXNrIE9wdGlvbmFsIiwgInR5cGUiOiAxLCAib2JqZWN0X3R5cGUiOiAi dGFzayIsICJjb25kaXRpb25zIjogW10sICJhdXRvbWF0aW9ucyI6IFtdLCAibWVzc2FnZV9kZXN0 aW5hdGlvbnMiOiBbXSwgIndvcmtmbG93cyI6IFsidGFza191dGlsc19tYXJrX3Rhc2tfb3B0aW9u YWwiXSwgInZpZXdfaXRlbXMiOiBbXSwgInRpbWVvdXRfc2Vjb25kcyI6IDg2NDAwLCAidXVpZCI6 ICJiYjFkNzU4NS04ZWE0LTQwYmEtYWI4Mi1hZDEwNzNjNjNjZGUiLCAiZXhwb3J0X2tleSI6ICJF eGFtcGxlOiBUYXNrIFV0aWxzIC0gTWFrZSB0aGlzIFRhc2sgT3B0aW9uYWwiLCAibG9naWNfdHlw ZSI6ICJhbGwifV0sICJsYXlvdXRzIjogW10sICJub3RpZmljYXRpb25zIjogbnVsbCwgInRpbWVm cmFtZXMiOiBudWxsLCAibG9jYWxlIjogbnVsbCwgImluZHVzdHJpZXMiOiBudWxsLCAicmVndWxh dG9ycyI6IG51bGwsICJnZW9zIjogbnVsbCwgInRhc2tfb3JkZXIiOiBbXSwgImFjdGlvbl9vcmRl ciI6IFtdLCAidHlwZXMiOiBbXSwgInNjcmlwdHMiOiBbXSwgImluY2lkZW50X2FydGlmYWN0X3R5 cGVzIjogW10sICJ3b3JrZmxvd3MiOiBbeyJ3b3JrZmxvd19pZCI6IDUsICJuYW1lIjogIkV4YW1w bGU6IFRhc2sgVXRpbHMgLSBNYXJrIFRhc2sgYSBPcHRpb25hbCIsICJwcm9ncmFtbWF0aWNfbmFt ZSI6ICJ0YXNrX3V0aWxzX21hcmtfdGFza19vcHRpb25hbCIsICJvYmplY3RfdHlwZSI6ICJ0YXNr IiwgImRlc2NyaXB0aW9uIjogIkFuIGV4YW1wbGUgd29ya2Zsb3cgd2hpY2ggaXMgaW52b2tlZCBv biBhIFRhc2sgb2JqZWN0IHNldHRpbmcgaXRzIFJlcXVpcmVkIGF0dHJpYnV0ZSB0byBmYWxzZS4i LCAiY3JlYXRvcl9pZCI6ICJhbGZyZWRAd2F5bmVjb3JwLmNvbSIsICJsYXN0X21vZGlmaWVkX2J5 IjogImFsZnJlZEB3YXluZWNvcnAuY29tIiwgImxhc3RfbW9kaWZpZWRfdGltZSI6IDE1NTgwOTIw NDE3MzEsICJleHBvcnRfa2V5IjogInRhc2tfdXRpbHNfbWFya190YXNrX29wdGlvbmFsIiwgInV1 aWQiOiAiOTJhYWMzODAtY2IzMy00NTRkLWExMmYtOTVlZmUxNTU0ZWY3IiwgImNvbnRlbnQiOiB7 IndvcmtmbG93X2lkIjogInRhc2tfdXRpbHNfbWFya190YXNrX29wdGlvbmFsIiwgInhtbCI6ICI8 P3htbCB2ZXJzaW9uPVwiMS4wXCIgZW5jb2Rpbmc9XCJVVEYtOFwiPz48ZGVmaW5pdGlvbnMgeG1s bnM9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9CUE1OLzIwMTAwNTI0L01PREVMXCIgeG1sbnM6 YnBtbmRpPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvQlBNTi8yMDEwMDUyNC9ESVwiIHhtbG5z Om9tZ2RjPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvREQvMjAxMDA1MjQvRENcIiB4bWxuczpv bWdkaT1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVjL0RELzIwMTAwNTI0L0RJXCIgeG1sbnM6cmVz aWxpZW50PVwiaHR0cDovL3Jlc2lsaWVudC5pYm0uY29tL2JwbW5cIiB4bWxuczp4c2Q9XCJodHRw Oi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYVwiIHhtbG5zOnhzaT1cImh0dHA6Ly93d3cudzMu b3JnLzIwMDEvWE1MU2NoZW1hLWluc3RhbmNlXCIgdGFyZ2V0TmFtZXNwYWNlPVwiaHR0cDovL3d3 dy5jYW11bmRhLm9yZy90ZXN0XCI+PHByb2Nlc3MgaWQ9XCJ0YXNrX3V0aWxzX21hcmtfdGFza19v cHRpb25hbFwiIGlzRXhlY3V0YWJsZT1cInRydWVcIiBuYW1lPVwiRXhhbXBsZTogVGFzayBVdGls cyAtIE1hcmsgVGFzayBhIE9wdGlvbmFsXCI+PGRvY3VtZW50YXRpb24+QW4gZXhhbXBsZSB3b3Jr ZmxvdyB3aGljaCBpcyBpbnZva2VkIG9uIGEgVGFzayBvYmplY3Qgc2V0dGluZyBpdHMgUmVxdWly ZWQgYXR0cmlidXRlIHRvIGZhbHNlLjwvZG9jdW1lbnRhdGlvbj48c3RhcnRFdmVudCBpZD1cIlN0 YXJ0RXZlbnRfMTU1YXN4bVwiPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMTJlbDZpeDwvb3V0Z29p bmc+PC9zdGFydEV2ZW50PjxzZXJ2aWNlVGFzayBpZD1cIlNlcnZpY2VUYXNrXzFjYmk1azJcIiBu YW1lPVwiVGFzayBVdGlsczogVXBkYXRlIFRhc2tcIiByZXNpbGllbnQ6dHlwZT1cImZ1bmN0aW9u XCI+PGV4dGVuc2lvbkVsZW1lbnRzPjxyZXNpbGllbnQ6ZnVuY3Rpb24gdXVpZD1cImJkOGRmNTNh LTY0NDMtNDBmMS05MGY5LWViNTk5Mzk5NjkyNVwiPntcImlucHV0c1wiOntcIjM2MWY0MjBmLTMx ODQtNDQyNi05ZmRjLTc2NDlkNThlYWM5MlwiOntcImlucHV0X3R5cGVcIjpcInN0YXRpY1wiLFwi c3RhdGljX2lucHV0XCI6e1wibXVsdGlzZWxlY3RfdmFsdWVcIjpbXSxcInRleHRfY29udGVudF92 YWx1ZVwiOntcImZvcm1hdFwiOlwidGV4dFwiLFwiY29udGVudFwiOlwie1xcblxcXCJyZXF1aXJl ZFxcXCI6IGZhbHNlXFxufVwifX19fSxcInByZV9wcm9jZXNzaW5nX3NjcmlwdFwiOlwiaW5wdXRz LnRhc2tfaWQgPSB0YXNrLmlkXFxuaW5wdXRzLmluY2lkZW50X2lkID0gaW5jaWRlbnQuaWRcXG5c In08L3Jlc2lsaWVudDpmdW5jdGlvbj48L2V4dGVuc2lvbkVsZW1lbnRzPjxpbmNvbWluZz5TZXF1 ZW5jZUZsb3dfMTJlbDZpeDwvaW5jb21pbmc+PG91dGdvaW5nPlNlcXVlbmNlRmxvd18xMGR6aXBi PC9vdXRnb2luZz48L3NlcnZpY2VUYXNrPjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3df MTJlbDZpeFwiIHNvdXJjZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIHRhcmdldFJlZj1cIlNl cnZpY2VUYXNrXzFjYmk1azJcIi8+PGVuZEV2ZW50IGlkPVwiRW5kRXZlbnRfMWlkcGYxd1wiPjxp bmNvbWluZz5TZXF1ZW5jZUZsb3dfMTBkemlwYjwvaW5jb21pbmc+PC9lbmRFdmVudD48c2VxdWVu Y2VGbG93IGlkPVwiU2VxdWVuY2VGbG93XzEwZHppcGJcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFz a18xY2JpNWsyXCIgdGFyZ2V0UmVmPVwiRW5kRXZlbnRfMWlkcGYxd1wiLz48dGV4dEFubm90YXRp b24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8xa3h4aXl0XCI+PHRleHQ+U3RhcnQgeW91ciB3b3JrZmxv dyBoZXJlPC90ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRp b25fMXNldWo0OFwiIHNvdXJjZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIHRhcmdldFJlZj1c IlRleHRBbm5vdGF0aW9uXzFreHhpeXRcIi8+PC9wcm9jZXNzPjxicG1uZGk6QlBNTkRpYWdyYW0g aWQ9XCJCUE1ORGlhZ3JhbV8xXCI+PGJwbW5kaTpCUE1OUGxhbmUgYnBtbkVsZW1lbnQ9XCJ1bmRl ZmluZWRcIiBpZD1cIkJQTU5QbGFuZV8xXCI+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9 XCJTdGFydEV2ZW50XzE1NWFzeG1cIiBpZD1cIlN0YXJ0RXZlbnRfMTU1YXN4bV9kaVwiPjxvbWdk YzpCb3VuZHMgaGVpZ2h0PVwiMzZcIiB3aWR0aD1cIjM2XCIgeD1cIjE2MlwiIHk9XCIxODhcIi8+ PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIwXCIgd2lkdGg9XCI5MFwi IHg9XCIxNTdcIiB5PVwiMjIzXCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1OU2hh cGU+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8xa3h4aXl0 XCIgaWQ9XCJUZXh0QW5ub3RhdGlvbl8xa3h4aXl0X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9 XCIzMFwiIHdpZHRoPVwiMTAwXCIgeD1cIjk5XCIgeT1cIjI1NFwiLz48L2JwbW5kaTpCUE1OU2hh cGU+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIkFzc29jaWF0aW9uXzFzZXVqNDhcIiBp ZD1cIkFzc29jaWF0aW9uXzFzZXVqNDhfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjE2OVwiIHhz aTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjIwXCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiMTUz XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyNTRcIi8+PC9icG1uZGk6QlBNTkVkZ2U+ PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJTZXJ2aWNlVGFza18xY2JpNWsyXCIgaWQ9 XCJTZXJ2aWNlVGFza18xY2JpNWsyX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI4MFwiIHdp ZHRoPVwiMTAwXCIgeD1cIjQ2NFwiIHk9XCIxNjZcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1u ZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMTJlbDZpeFwiIGlkPVwiU2Vx dWVuY2VGbG93XzEyZWw2aXhfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjE5OFwiIHhzaTp0eXBl PVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiMzMxXCIgeHNp OnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCIzMzFc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48b21nZGk6d2F5cG9pbnQgeD1c IjQ2NFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxicG1uZGk6QlBNTkxh YmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMTNcIiB3aWR0aD1cIjBcIiB4PVwiMzQ2XCIgeT1c IjE5OS41XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1ORWRnZT48YnBtbmRpOkJQ TU5TaGFwZSBicG1uRWxlbWVudD1cIkVuZEV2ZW50XzFpZHBmMXdcIiBpZD1cIkVuZEV2ZW50XzFp ZHBmMXdfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjM2XCIgd2lkdGg9XCIzNlwiIHg9XCI3 ODVcIiB5PVwiMTg4XCIvPjxicG1uZGk6QlBNTkxhYmVsPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwi MTNcIiB3aWR0aD1cIjBcIiB4PVwiODAzXCIgeT1cIjIyN1wiLz48L2JwbW5kaTpCUE1OTGFiZWw+ PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5j ZUZsb3dfMTBkemlwYlwiIGlkPVwiU2VxdWVuY2VGbG93XzEwZHppcGJfZGlcIj48b21nZGk6d2F5 cG9pbnQgeD1cIjU2NFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdk aTp3YXlwb2ludCB4PVwiNzg1XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+ PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwi IHg9XCI2NzQuNVwiIHk9XCIxODRcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5F ZGdlPjwvYnBtbmRpOkJQTU5QbGFuZT48L2JwbW5kaTpCUE1ORGlhZ3JhbT48L2RlZmluaXRpb25z PiIsICJ2ZXJzaW9uIjogMX0sICJhY3Rpb25zIjogW119LCB7IndvcmtmbG93X2lkIjogMywgIm5h bWUiOiAiRXhhbXBsZTogVGFzayBVdGlscyAtIEFkZCBOb3RlIHRvIFRhc2siLCAicHJvZ3JhbW1h dGljX25hbWUiOiAidGFza191dGlsc19hZGRfbm90ZV90b190YXNrIiwgIm9iamVjdF90eXBlIjog ImluY2lkZW50IiwgImRlc2NyaXB0aW9uIjogIkFuIGV4YW1wbGUgd29ya2Zsb3cgd2hpY2ggdGFr ZXMgYSBUYXNrJ3MgSUQgYW5kIGEgYWRkcyBlaXRoZXIgYSBuZXcgdGV4dCBvciByaWNodGV4dCBu b3RlIHRvIHRoYXQgdGFzay4iLCAiY3JlYXRvcl9pZCI6ICJhbGZyZWRAd2F5bmVjb3JwLmNvbSIs ICJsYXN0X21vZGlmaWVkX2J5IjogImFsZnJlZEB3YXluZWNvcnAuY29tIiwgImxhc3RfbW9kaWZp ZWRfdGltZSI6IDE1NjAyNDE1OTcxOTcsICJleHBvcnRfa2V5IjogInRhc2tfdXRpbHNfYWRkX25v dGVfdG9fdGFzayIsICJ1dWlkIjogIjBlNGNjOWI0LTdiMTktNDIwYy04MDUxLWIzYzhhYWZiNzhh YiIsICJjb250ZW50IjogeyJ3b3JrZmxvd19pZCI6ICJ0YXNrX3V0aWxzX2FkZF9ub3RlX3RvX3Rh c2siLCAieG1sIjogIjw/eG1sIHZlcnNpb249XCIxLjBcIiBlbmNvZGluZz1cIlVURi04XCI/Pjxk ZWZpbml0aW9ucyB4bWxucz1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVjL0JQTU4vMjAxMDA1MjQv TU9ERUxcIiB4bWxuczpicG1uZGk9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9CUE1OLzIwMTAw NTI0L0RJXCIgeG1sbnM6b21nZGM9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9ERC8yMDEwMDUy NC9EQ1wiIHhtbG5zOm9tZ2RpPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvREQvMjAxMDA1MjQv RElcIiB4bWxuczpyZXNpbGllbnQ9XCJodHRwOi8vcmVzaWxpZW50LmlibS5jb20vYnBtblwiIHht bG5zOnhzZD1cImh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hXCIgeG1sbnM6eHNpPVwi aHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWEtaW5zdGFuY2VcIiB0YXJnZXROYW1lc3Bh Y2U9XCJodHRwOi8vd3d3LmNhbXVuZGEub3JnL3Rlc3RcIj48cHJvY2VzcyBpZD1cInRhc2tfdXRp bHNfYWRkX25vdGVfdG9fdGFza1wiIGlzRXhlY3V0YWJsZT1cInRydWVcIiBuYW1lPVwiRXhhbXBs ZTogVGFzayBVdGlscyAtIEFkZCBOb3RlIHRvIFRhc2tcIj48ZG9jdW1lbnRhdGlvbj48IVtDREFU QVtBbiBleGFtcGxlIHdvcmtmbG93IHdoaWNoIHRha2VzIGEgVGFzaydzIElEIGFuZCBhIGFkZHMg ZWl0aGVyIGEgbmV3IHRleHQgb3IgcmljaHRleHQgbm90ZSB0byB0aGF0IHRhc2suXV0+PC9kb2N1 bWVudGF0aW9uPjxzdGFydEV2ZW50IGlkPVwiU3RhcnRFdmVudF8xNTVhc3htXCI+PG91dGdvaW5n PlNlcXVlbmNlRmxvd18wcDlrb2NsPC9vdXRnb2luZz48L3N0YXJ0RXZlbnQ+PHNlcnZpY2VUYXNr IGlkPVwiU2VydmljZVRhc2tfMDkyaXZ1bVwiIG5hbWU9XCJUYXNrIFV0aWxzOiBBZGQgTm90ZVwi IHJlc2lsaWVudDp0eXBlPVwiZnVuY3Rpb25cIj48ZXh0ZW5zaW9uRWxlbWVudHM+PHJlc2lsaWVu dDpmdW5jdGlvbiB1dWlkPVwiZGE2NTNhM2QtOTY0YS00ZTI4LWE2ZTAtYzQzNmRiMGI2Nzc0XCI+ e1wiaW5wdXRzXCI6e1wiNWUyM2IxNDUtMmJlYy00ZDgyLWFkNTAtZGMxMTVmMzU1MzYwXCI6e1wi aW5wdXRfdHlwZVwiOlwic3RhdGljXCIsXCJzdGF0aWNfaW5wdXRcIjp7XCJtdWx0aXNlbGVjdF92 YWx1ZVwiOltdLFwic2VsZWN0X3ZhbHVlXCI6XCI2YTJlNGUxMy03ZjBjLTRkYWItYTQ2MC04NmIw NDc2OWNlZWJcIn19LFwiNDRjNGM2MDAtZjIyZC00YmY1LWJiZjQtZWZhZDM1OGYwMmY1XCI6e1wi aW5wdXRfdHlwZVwiOlwic3RhdGljXCIsXCJzdGF0aWNfaW5wdXRcIjp7XCJtdWx0aXNlbGVjdF92 YWx1ZVwiOltdLFwidGV4dF92YWx1ZVwiOlwidGVzdFwifX19LFwicHJlX3Byb2Nlc3Npbmdfc2Ny aXB0XCI6XCJpbnB1dHMuaW5jaWRlbnRfaWQgPSBpbmNpZGVudC5pZCBcIn08L3Jlc2lsaWVudDpm dW5jdGlvbj48L2V4dGVuc2lvbkVsZW1lbnRzPjxpbmNvbWluZz5TZXF1ZW5jZUZsb3dfMHA5a29j bDwvaW5jb21pbmc+PG91dGdvaW5nPlNlcXVlbmNlRmxvd18wYzBxM3BpPC9vdXRnb2luZz48L3Nl cnZpY2VUYXNrPjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3dfMHA5a29jbFwiIHNvdXJj ZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIHRhcmdldFJlZj1cIlNlcnZpY2VUYXNrXzA5Mml2 dW1cIi8+PGVuZEV2ZW50IGlkPVwiRW5kRXZlbnRfMGJhd3NpMFwiPjxpbmNvbWluZz5TZXF1ZW5j ZUZsb3dfMGMwcTNwaTwvaW5jb21pbmc+PC9lbmRFdmVudD48c2VxdWVuY2VGbG93IGlkPVwiU2Vx dWVuY2VGbG93XzBjMHEzcGlcIiBzb3VyY2VSZWY9XCJTZXJ2aWNlVGFza18wOTJpdnVtXCIgdGFy Z2V0UmVmPVwiRW5kRXZlbnRfMGJhd3NpMFwiLz48dGV4dEFubm90YXRpb24gaWQ9XCJUZXh0QW5u b3RhdGlvbl8xa3h4aXl0XCI+PHRleHQ+U3RhcnQgeW91ciB3b3JrZmxvdyBoZXJlPC90ZXh0Pjwv dGV4dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNzb2NpYXRpb25fMXNldWo0OFwiIHNv dXJjZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIHRhcmdldFJlZj1cIlRleHRBbm5vdGF0aW9u XzFreHhpeXRcIi8+PC9wcm9jZXNzPjxicG1uZGk6QlBNTkRpYWdyYW0gaWQ9XCJCUE1ORGlhZ3Jh bV8xXCI+PGJwbW5kaTpCUE1OUGxhbmUgYnBtbkVsZW1lbnQ9XCJ1bmRlZmluZWRcIiBpZD1cIkJQ TU5QbGFuZV8xXCI+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJTdGFydEV2ZW50XzE1 NWFzeG1cIiBpZD1cIlN0YXJ0RXZlbnRfMTU1YXN4bV9kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0 PVwiMzZcIiB3aWR0aD1cIjM2XCIgeD1cIjE2MlwiIHk9XCIxODhcIi8+PGJwbW5kaTpCUE1OTGFi ZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIwXCIgd2lkdGg9XCI5MFwiIHg9XCIxNTdcIiB5PVwi MjIzXCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1O U2hhcGUgYnBtbkVsZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8xa3h4aXl0XCIgaWQ9XCJUZXh0QW5u b3RhdGlvbl8xa3h4aXl0X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIzMFwiIHdpZHRoPVwi MTAwXCIgeD1cIjk5XCIgeT1cIjI1NFwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1O RWRnZSBicG1uRWxlbWVudD1cIkFzc29jaWF0aW9uXzFzZXVqNDhcIiBpZD1cIkFzc29jaWF0aW9u XzFzZXVqNDhfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjE2OVwiIHhzaTp0eXBlPVwib21nZGM6 UG9pbnRcIiB5PVwiMjIwXCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiMTUzXCIgeHNpOnR5cGU9XCJv bWdkYzpQb2ludFwiIHk9XCIyNTRcIi8+PC9icG1uZGk6QlBNTkVkZ2U+PGJwbW5kaTpCUE1OU2hh cGUgYnBtbkVsZW1lbnQ9XCJTZXJ2aWNlVGFza18wOTJpdnVtXCIgaWQ9XCJTZXJ2aWNlVGFza18w OTJpdnVtX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI4MFwiIHdpZHRoPVwiMTAwXCIgeD1c IjQzN1wiIHk9XCIxNjZcIi8+PC9icG1uZGk6QlBNTlNoYXBlPjxicG1uZGk6QlBNTkVkZ2UgYnBt bkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMHA5a29jbFwiIGlkPVwiU2VxdWVuY2VGbG93XzBwOWtv Y2xfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjE5OFwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRc IiB5PVwiMjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiNDM3XCIgeHNpOnR5cGU9XCJvbWdkYzpQ b2ludFwiIHk9XCIyMDZcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9 XCIxM1wiIHdpZHRoPVwiMFwiIHg9XCIzMTcuNVwiIHk9XCIxODRcIi8+PC9icG1uZGk6QlBNTkxh YmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiRW5k RXZlbnRfMGJhd3NpMFwiIGlkPVwiRW5kRXZlbnRfMGJhd3NpMF9kaVwiPjxvbWdkYzpCb3VuZHMg aGVpZ2h0PVwiMzZcIiB3aWR0aD1cIjM2XCIgeD1cIjc2OFwiIHk9XCIxODhcIi8+PGJwbW5kaTpC UE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwiIHg9XCI3ODZc IiB5PVwiMjI3XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5k aTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18wYzBxM3BpXCIgaWQ9XCJTZXF1 ZW5jZUZsb3dfMGMwcTNwaV9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNTM3XCIgeHNpOnR5cGU9 XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI2NTRcIiB4c2k6 dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48b21nZGk6d2F5cG9pbnQgeD1cIjY1NFwi IHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwi NzY4XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PGJwbW5kaTpCUE1OTGFi ZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwiIHg9XCI2NjlcIiB5PVwi MTk5LjVcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjwvYnBtbmRpOkJQ TU5QbGFuZT48L2JwbW5kaTpCUE1ORGlhZ3JhbT48L2RlZmluaXRpb25zPiIsICJ2ZXJzaW9uIjog M30sICJhY3Rpb25zIjogW119LCB7IndvcmtmbG93X2lkIjogNiwgIm5hbWUiOiAiRXhhbXBsZTog VGFzayBVdGlscyAtIENsb3NlIFRhc2siLCAicHJvZ3JhbW1hdGljX25hbWUiOiAidGFza191dGls c19jbG9zZV90YXNrIiwgIm9iamVjdF90eXBlIjogImluY2lkZW50IiwgImRlc2NyaXB0aW9uIjog IkFuIGV4YW1wbGUgd29ya2Zsb3cgd2hpY2ggdGFrZXMgYSBUYXNrIG5hbWUgZnJvbSBhbiBhY3Rp dml0eSBmaWVsZCBhbmQgYXR0ZW1wdHMgdG8gY2xvc2UgdGhlIHRhc2suIiwgImNyZWF0b3JfaWQi OiAiYWxmcmVkQHdheW5lY29ycC5jb20iLCAibGFzdF9tb2RpZmllZF9ieSI6ICJhbGZyZWRAd2F5 bmVjb3JwLmNvbSIsICJsYXN0X21vZGlmaWVkX3RpbWUiOiAxNTU4MDk3NDM3ODkwLCAiZXhwb3J0 X2tleSI6ICJ0YXNrX3V0aWxzX2Nsb3NlX3Rhc2siLCAidXVpZCI6ICIwYWZkMzM1ZC00NmJjLTQz OWItOTYyOS1mZGNmOWE0OTE2YzAiLCAiY29udGVudCI6IHsid29ya2Zsb3dfaWQiOiAidGFza191 dGlsc19jbG9zZV90YXNrIiwgInhtbCI6ICI8P3htbCB2ZXJzaW9uPVwiMS4wXCIgZW5jb2Rpbmc9 XCJVVEYtOFwiPz48ZGVmaW5pdGlvbnMgeG1sbnM9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9C UE1OLzIwMTAwNTI0L01PREVMXCIgeG1sbnM6YnBtbmRpPVwiaHR0cDovL3d3dy5vbWcub3JnL3Nw ZWMvQlBNTi8yMDEwMDUyNC9ESVwiIHhtbG5zOm9tZ2RjPVwiaHR0cDovL3d3dy5vbWcub3JnL3Nw ZWMvREQvMjAxMDA1MjQvRENcIiB4bWxuczpvbWdkaT1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVj L0RELzIwMTAwNTI0L0RJXCIgeG1sbnM6cmVzaWxpZW50PVwiaHR0cDovL3Jlc2lsaWVudC5pYm0u Y29tL2JwbW5cIiB4bWxuczp4c2Q9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYVwi IHhtbG5zOnhzaT1cImh0dHA6Ly93d3cudzMub3JnLzIwMDEvWE1MU2NoZW1hLWluc3RhbmNlXCIg dGFyZ2V0TmFtZXNwYWNlPVwiaHR0cDovL3d3dy5jYW11bmRhLm9yZy90ZXN0XCI+PHByb2Nlc3Mg aWQ9XCJ0YXNrX3V0aWxzX2Nsb3NlX3Rhc2tcIiBpc0V4ZWN1dGFibGU9XCJ0cnVlXCIgbmFtZT1c IkV4YW1wbGU6IFRhc2sgVXRpbHMgLSBDbG9zZSBUYXNrXCI+PGRvY3VtZW50YXRpb24+QW4gZXhh bXBsZSB3b3JrZmxvdyB3aGljaCB0YWtlcyBhIFRhc2sgbmFtZSBmcm9tIGFuIGFjdGl2aXR5IGZp ZWxkIGFuZCBhdHRlbXB0cyB0byBjbG9zZSB0aGUgdGFzay48L2RvY3VtZW50YXRpb24+PHN0YXJ0 RXZlbnQgaWQ9XCJTdGFydEV2ZW50XzE1NWFzeG1cIj48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzFm dHo0Y2U8L291dGdvaW5nPjwvc3RhcnRFdmVudD48c2VydmljZVRhc2sgaWQ9XCJTZXJ2aWNlVGFz a18wYmNkY3Z4XCIgbmFtZT1cIlRhc2sgVXRpbHM6IENsb3NlIFRhc2tcIiByZXNpbGllbnQ6dHlw ZT1cImZ1bmN0aW9uXCI+PGV4dGVuc2lvbkVsZW1lbnRzPjxyZXNpbGllbnQ6ZnVuY3Rpb24gdXVp ZD1cIjcyMjc5OThhLTE2ZDMtNDZmNi1iYzg4LWNkYzYyNWZmOTlkYVwiPntcImlucHV0c1wiOnt9 LFwicHJlX3Byb2Nlc3Npbmdfc2NyaXB0XCI6XCJpbnB1dHMuaW5jaWRlbnRfaWQgPSBpbmNpZGVu dC5pZFxcbmlucHV0cy50YXNrX25hbWUgPSBydWxlLnByb3BlcnRpZXMudGFza191dGlsc190YXNr X25hbWVcIn08L3Jlc2lsaWVudDpmdW5jdGlvbj48L2V4dGVuc2lvbkVsZW1lbnRzPjxpbmNvbWlu Zz5TZXF1ZW5jZUZsb3dfMWZ0ejRjZTwvaW5jb21pbmc+PG91dGdvaW5nPlNlcXVlbmNlRmxvd18w ZWd3aTdpPC9vdXRnb2luZz48L3NlcnZpY2VUYXNrPjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5j ZUZsb3dfMWZ0ejRjZVwiIHNvdXJjZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIHRhcmdldFJl Zj1cIlNlcnZpY2VUYXNrXzBiY2RjdnhcIi8+PGVuZEV2ZW50IGlkPVwiRW5kRXZlbnRfMHB3YmZs b1wiPjxpbmNvbWluZz5TZXF1ZW5jZUZsb3dfMGVnd2k3aTwvaW5jb21pbmc+PC9lbmRFdmVudD48 c2VxdWVuY2VGbG93IGlkPVwiU2VxdWVuY2VGbG93XzBlZ3dpN2lcIiBzb3VyY2VSZWY9XCJTZXJ2 aWNlVGFza18wYmNkY3Z4XCIgdGFyZ2V0UmVmPVwiRW5kRXZlbnRfMHB3YmZsb1wiLz48dGV4dEFu bm90YXRpb24gaWQ9XCJUZXh0QW5ub3RhdGlvbl8xa3h4aXl0XCI+PHRleHQ+U3RhcnQgeW91ciB3 b3JrZmxvdyBoZXJlPC90ZXh0PjwvdGV4dEFubm90YXRpb24+PGFzc29jaWF0aW9uIGlkPVwiQXNz b2NpYXRpb25fMXNldWo0OFwiIHNvdXJjZVJlZj1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIHRhcmdl dFJlZj1cIlRleHRBbm5vdGF0aW9uXzFreHhpeXRcIi8+PC9wcm9jZXNzPjxicG1uZGk6QlBNTkRp YWdyYW0gaWQ9XCJCUE1ORGlhZ3JhbV8xXCI+PGJwbW5kaTpCUE1OUGxhbmUgYnBtbkVsZW1lbnQ9 XCJ1bmRlZmluZWRcIiBpZD1cIkJQTU5QbGFuZV8xXCI+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVs ZW1lbnQ9XCJTdGFydEV2ZW50XzE1NWFzeG1cIiBpZD1cIlN0YXJ0RXZlbnRfMTU1YXN4bV9kaVwi PjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMzZcIiB3aWR0aD1cIjM2XCIgeD1cIjE2MlwiIHk9XCIx ODhcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIwXCIgd2lkdGg9 XCI5MFwiIHg9XCIxNTdcIiB5PVwiMjIzXCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpC UE1OU2hhcGU+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJUZXh0QW5ub3RhdGlvbl8x a3h4aXl0XCIgaWQ9XCJUZXh0QW5ub3RhdGlvbl8xa3h4aXl0X2RpXCI+PG9tZ2RjOkJvdW5kcyBo ZWlnaHQ9XCIzMFwiIHdpZHRoPVwiMTAwXCIgeD1cIjk5XCIgeT1cIjI1NFwiLz48L2JwbW5kaTpC UE1OU2hhcGU+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIkFzc29jaWF0aW9uXzFzZXVq NDhcIiBpZD1cIkFzc29jaWF0aW9uXzFzZXVqNDhfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjE2 OVwiIHhzaTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjIwXCIvPjxvbWdkaTp3YXlwb2ludCB4 PVwiMTUzXCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyNTRcIi8+PC9icG1uZGk6QlBN TkVkZ2U+PGJwbW5kaTpCUE1OU2hhcGUgYnBtbkVsZW1lbnQ9XCJTZXJ2aWNlVGFza18wYmNkY3Z4 XCIgaWQ9XCJTZXJ2aWNlVGFza18wYmNkY3Z4X2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCI4 MFwiIHdpZHRoPVwiMTAwXCIgeD1cIjM4NVwiIHk9XCIxNjZcIi8+PC9icG1uZGk6QlBNTlNoYXBl PjxicG1uZGk6QlBNTkVkZ2UgYnBtbkVsZW1lbnQ9XCJTZXF1ZW5jZUZsb3dfMWZ0ejRjZVwiIGlk PVwiU2VxdWVuY2VGbG93XzFmdHo0Y2VfZGlcIj48b21nZGk6d2F5cG9pbnQgeD1cIjE5OFwiIHhz aTp0eXBlPVwib21nZGM6UG9pbnRcIiB5PVwiMjA2XCIvPjxvbWdkaTp3YXlwb2ludCB4PVwiMzg1 XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PGJwbW5kaTpCUE1OTGFiZWw+ PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwiIHg9XCIyOTEuNVwiIHk9XCIx ODRcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNo YXBlIGJwbW5FbGVtZW50PVwiRW5kRXZlbnRfMHB3YmZsb1wiIGlkPVwiRW5kRXZlbnRfMHB3YmZs b19kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMzZcIiB3aWR0aD1cIjM2XCIgeD1cIjY5NFwi IHk9XCIxODhcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wi IHdpZHRoPVwiMFwiIHg9XCI3MTJcIiB5PVwiMjI3XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2Jw bW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxv d18wZWd3aTdpXCIgaWQ9XCJTZXF1ZW5jZUZsb3dfMGVnd2k3aV9kaVwiPjxvbWdkaTp3YXlwb2lu dCB4PVwiNDg1XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndh eXBvaW50IHg9XCI2OTRcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48YnBt bmRpOkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCIwXCIgeD1c IjU4OS41XCIgeT1cIjE4NFwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+ PC9icG1uZGk6QlBNTlBsYW5lPjwvYnBtbmRpOkJQTU5EaWFncmFtPjwvZGVmaW5pdGlvbnM+Iiwg InZlcnNpb24iOiAyfSwgImFjdGlvbnMiOiBbXX0sIHsid29ya2Zsb3dfaWQiOiAyLCAibmFtZSI6 ICJFeGFtcGxlOiBUYXNrIFV0aWxzIC0gQ3JlYXRlIEN1c3RvbSBUYXNrIiwgInByb2dyYW1tYXRp Y19uYW1lIjogInRhc2tfdXRpbHNfY3JlYXRlX2N1c3RvbV90YXNrIiwgIm9iamVjdF90eXBlIjog ImluY2lkZW50IiwgImRlc2NyaXB0aW9uIjogIkFuIGV4YW1wbGUgd29ya2Zsb3cgdXNlZCB0byBk ZW1vbnN0cmF0ZSBob3cgeW91IGNhbiBjcmVhdGUgYSBjdXN0b20gdGFzayB1c2luZyB0aGUgVGFz ayBVdGlscyBJbnRlZ3JhdGlvbi4gVGhpcyBleGFtcGxlIHdvcmtmbG93IHNob3dzIGhvdyB5b3Ug Y2FuIHVzZSB0aGUgUHJlLVByb2Nlc3Npbmcgc2NyaXB0IHRvIHByZXBhcmUgYSBjdXN0b20gSlNP TiBQYXlsb2FkIGJhc2VkIG9uIHlvdXIgdXNlIGNhc2UuIiwgImNyZWF0b3JfaWQiOiAiYWxmcmVk QHdheW5lY29ycC5jb20iLCAibGFzdF9tb2RpZmllZF9ieSI6ICJhbGZyZWRAd2F5bmVjb3JwLmNv bSIsICJsYXN0X21vZGlmaWVkX3RpbWUiOiAxNTU4OTU4NDEzNDU4LCAiZXhwb3J0X2tleSI6ICJ0 YXNrX3V0aWxzX2NyZWF0ZV9jdXN0b21fdGFzayIsICJ1dWlkIjogIjYxYzA5NWU1LWRiOTktNGRi OS1hYTBhLThiOTQxMjVmMTk3OCIsICJjb250ZW50IjogeyJ3b3JrZmxvd19pZCI6ICJ0YXNrX3V0 aWxzX2NyZWF0ZV9jdXN0b21fdGFzayIsICJ4bWwiOiAiPD94bWwgdmVyc2lvbj1cIjEuMFwiIGVu Y29kaW5nPVwiVVRGLThcIj8+PGRlZmluaXRpb25zIHhtbG5zPVwiaHR0cDovL3d3dy5vbWcub3Jn L3NwZWMvQlBNTi8yMDEwMDUyNC9NT0RFTFwiIHhtbG5zOmJwbW5kaT1cImh0dHA6Ly93d3cub21n Lm9yZy9zcGVjL0JQTU4vMjAxMDA1MjQvRElcIiB4bWxuczpvbWdkYz1cImh0dHA6Ly93d3cub21n Lm9yZy9zcGVjL0RELzIwMTAwNTI0L0RDXCIgeG1sbnM6b21nZGk9XCJodHRwOi8vd3d3Lm9tZy5v cmcvc3BlYy9ERC8yMDEwMDUyNC9ESVwiIHhtbG5zOnJlc2lsaWVudD1cImh0dHA6Ly9yZXNpbGll bnQuaWJtLmNvbS9icG1uXCIgeG1sbnM6eHNkPVwiaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxT Y2hlbWFcIiB4bWxuczp4c2k9XCJodHRwOi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0 YW5jZVwiIHRhcmdldE5hbWVzcGFjZT1cImh0dHA6Ly93d3cuY2FtdW5kYS5vcmcvdGVzdFwiPjxw cm9jZXNzIGlkPVwidGFza191dGlsc19jcmVhdGVfY3VzdG9tX3Rhc2tcIiBpc0V4ZWN1dGFibGU9 XCJ0cnVlXCIgbmFtZT1cIkV4YW1wbGU6IFRhc2sgVXRpbHMgLSBDcmVhdGUgQ3VzdG9tIFRhc2tc Ij48ZG9jdW1lbnRhdGlvbj5BbiBleGFtcGxlIHdvcmtmbG93IHVzZWQgdG8gZGVtb25zdHJhdGUg aG93IHlvdSBjYW4gY3JlYXRlIGEgY3VzdG9tIHRhc2sgdXNpbmcgdGhlIFRhc2sgVXRpbHMgSW50 ZWdyYXRpb24uIFRoaXMgZXhhbXBsZSB3b3JrZmxvdyBzaG93cyBob3cgeW91IGNhbiB1c2UgdGhl IFByZS1Qcm9jZXNzaW5nIHNjcmlwdCB0byBwcmVwYXJlIGEgY3VzdG9tIEpTT04gUGF5bG9hZCBi YXNlZCBvbiB5b3VyIHVzZSBjYXNlLjwvZG9jdW1lbnRhdGlvbj48c3RhcnRFdmVudCBpZD1cIlN0 YXJ0RXZlbnRfMTU1YXN4bVwiPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMXFuZHNvMTwvb3V0Z29p bmc+PC9zdGFydEV2ZW50PjxzZXJ2aWNlVGFzayBpZD1cIlNlcnZpY2VUYXNrXzA5eGd3YnJcIiBu YW1lPVwiVGFzayBVdGlsczogQ3JlYXRlIEN1c3RvbSBUYXNrXCIgcmVzaWxpZW50OnR5cGU9XCJm dW5jdGlvblwiPjxleHRlbnNpb25FbGVtZW50cz48cmVzaWxpZW50OmZ1bmN0aW9uIHV1aWQ9XCJj NDI4MWJkNC1kODcyLTQ1NjItYjdjOC1iMGUzNzlhZWE4YWRcIj57XCJpbnB1dHNcIjp7XCIzNjFm NDIwZi0zMTg0LTQ0MjYtOWZkYy03NjQ5ZDU4ZWFjOTJcIjp7XCJpbnB1dF90eXBlXCI6XCJzdGF0 aWNcIixcInN0YXRpY19pbnB1dFwiOntcIm11bHRpc2VsZWN0X3ZhbHVlXCI6W10sXCJ0ZXh0X2Nv bnRlbnRfdmFsdWVcIjp7XCJmb3JtYXRcIjpcInRleHRcIixcImNvbnRlbnRcIjpcIntcXG5cXFwi cmVxdWlyZWRcXFwiOiBmYWxzZSxcXG5cXFwiaW5zdHJfdGV4dFxcXCI6IFxcXCJDbG9zZSBvdXQg dGhpcyByZXF1aXJlZCBUYXNrXFxcIixcXG5cXFwicGhhc2VfaWRcXFwiOiBcXFwiSW5pdGlhbFxc XCJcXG59XCJ9fX19LFwicHJlX3Byb2Nlc3Npbmdfc2NyaXB0XCI6XCIjIyMjIyMjIyMjIyMjIyMj IyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG4jIyMgRGVmaW5lIHByZS1wcm9jZXNzaW5nIGZ1bmN0 aW9ucyAjIyNcXG4jIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyNcXG5wYXls b2FkID0ge1xcblxcXCJyZXF1aXJlZFxcXCI6IFRydWUsXFxuXFxcImluc3RyX3RleHRcXFwiOiBc XFwiQ2xvc2Ugb3V0IHRoaXMgcmVxdWlyZWQgVGFza1xcXCIsXFxuXFxcInBoYXNlX2lkXFxcIjog XFxcIkluaXRpYWxcXFwiXFxufVxcblxcbmRlZiBkaWN0X3RvX2pzb25fc3RyKGQpOlxcbiAgXFxc IlxcXCJcXFwiRnVuY3Rpb24gdGhhdCBjb252ZXJ0cyBhIGRpY3Rpb25hcnkgaW50byBhIEpTT04g c3RyaW5nc2VsZi5cXG4gICAgIFN1cHBvcnRzIGJhc2VzdHJpbmcsIGJvb2wgYW5kIGludC5cXG4g ICAgIElmIHRoZSB2YWx1ZSBpcyBOb25lLCBpdCBzZXRzIGl0IHRvIEZhbHNlXFxcIlxcXCJcXFwi XFxuXFxuICBqc29uX3N0ciA9ICdcXFwieyB7MH0gfVxcXCInXFxuICBqc29uX2VudHJ5ID0gJ1xc XCJ7MH1cXFwiOnsxfSdcXG4gIGpzb25fZW50cnlfc3RyID0gJ1xcXCJ7MH1cXFwiOlxcXCJ7MX1c XFwiJ1xcbiAgZW50cmllcyA9IFtdIFxcbiAgXFxuICBmb3IgZW50cnkgaW4gZDpcXG4gICAga2V5 ID0gZW50cnlcXG4gICAgdmFsdWUgPSBkW2VudHJ5XVxcbiAgICBcXG4gICAgICBcXG4gICAgaWYg dmFsdWUgaXMgTm9uZTpcXG4gICAgICB2YWx1ZSA9IEZhbHNlXFxuICAgICAgXFxuICAgIFxcbiAg ICBpZiBpc2luc3RhbmNlKHZhbHVlLCBiYXNlc3RyaW5nKTpcXG4gICAgICBlbnRyaWVzLmFwcGVu ZChqc29uX2VudHJ5X3N0ci5mb3JtYXQoa2V5LCB2YWx1ZSkpXFxuICAgIFxcbiAgICBlbGlmIGlz aW5zdGFuY2UodmFsdWUsIGJvb2wpOlxcbiAgICAgIHZhbHVlID0gJ3RydWUnIGlmIHZhbHVlID09 IFRydWUgZWxzZSAnZmFsc2UnXFxuICAgICAgZW50cmllcy5hcHBlbmQoanNvbl9lbnRyeS5mb3Jt YXQoa2V5LCB2YWx1ZSkpXFxuICAgIFxcbiAgICBlbHNlOlxcbiAgICAgIGVudHJpZXMuYXBwZW5k KGpzb25fZW50cnkuZm9ybWF0KGtleSwgdmFsdWUpKVxcbiAgXFxuICByZXR1cm4gJ3snICsgJywn LmpvaW4oZW50cmllcykgKyAnfSdcXG5cXG4jIElmIHlvdSBkb24ndCBhbHJlYWR5IGhhdmUgc29t ZXRoaW5nIGluIHRhc2tfdXRpbHNfcGF5bG9hZFxcbmlmIGlucHV0cy50YXNrX3V0aWxzX3BheWxv YWQgIT0gTm9uZTogXFxuICAjIHByZXBhcmUgYSBKU09OIHBheWxvYWQgdXNpbmcgYWJvdmUgY29k ZTsgXFxuICBpbnB1dHMudGFza191dGlsc19wYXlsb2FkID0gZGljdF90b19qc29uX3N0cihwYXls b2FkKVxcblxcbiMgVGFrZSB0aGUgaW5jaWRlbnQgaWQgZnJvbSB0aGlzIGluY2lkZW50XFxuaW5w dXRzLmluY2lkZW50X2lkID0gaW5jaWRlbnQuaWRcXG5cXG4jIElmIHlvdSBzcGVjaWZpZWQgYSB2 YWx1ZSBpbiB0aGUgQWN0aXZpdHkgRmllbGQgdGhlbiB1c2UgaXQgZm9yIHRhc2tfbmFtZVxcbmlm IHJ1bGUucHJvcGVydGllcy50YXNrX3V0aWxzX3Rhc2tfbmFtZSAhPSBOb25lOlxcbiAgaW5wdXRz LnRhc2tfbmFtZSA9IHJ1bGUucHJvcGVydGllcy50YXNrX3V0aWxzX3Rhc2tfbmFtZVwifTwvcmVz aWxpZW50OmZ1bmN0aW9uPjwvZXh0ZW5zaW9uRWxlbWVudHM+PGluY29taW5nPlNlcXVlbmNlRmxv d18xcW5kc28xPC9pbmNvbWluZz48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzF5N3lnczQ8L291dGdv aW5nPjwvc2VydmljZVRhc2s+PHNlcXVlbmNlRmxvdyBpZD1cIlNlcXVlbmNlRmxvd18xcW5kc28x XCIgc291cmNlUmVmPVwiU3RhcnRFdmVudF8xNTVhc3htXCIgdGFyZ2V0UmVmPVwiU2VydmljZVRh c2tfMDl4Z3diclwiLz48ZW5kRXZlbnQgaWQ9XCJFbmRFdmVudF8wOXQxYXMzXCI+PGluY29taW5n PlNlcXVlbmNlRmxvd18xeTd5Z3M0PC9pbmNvbWluZz48L2VuZEV2ZW50PjxzZXF1ZW5jZUZsb3cg aWQ9XCJTZXF1ZW5jZUZsb3dfMXk3eWdzNFwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzA5eGd3 YnJcIiB0YXJnZXRSZWY9XCJFbmRFdmVudF8wOXQxYXMzXCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1c IlRleHRBbm5vdGF0aW9uXzFreHhpeXRcIj48dGV4dD5TdGFydCB5b3VyIHdvcmtmbG93IGhlcmU8 L3RleHQ+PC90ZXh0QW5ub3RhdGlvbj48YXNzb2NpYXRpb24gaWQ9XCJBc3NvY2lhdGlvbl8xc2V1 ajQ4XCIgc291cmNlUmVmPVwiU3RhcnRFdmVudF8xNTVhc3htXCIgdGFyZ2V0UmVmPVwiVGV4dEFu bm90YXRpb25fMWt4eGl5dFwiLz48L3Byb2Nlc3M+PGJwbW5kaTpCUE1ORGlhZ3JhbSBpZD1cIkJQ TU5EaWFncmFtXzFcIj48YnBtbmRpOkJQTU5QbGFuZSBicG1uRWxlbWVudD1cInVuZGVmaW5lZFwi IGlkPVwiQlBNTlBsYW5lXzFcIj48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlN0YXJ0 RXZlbnRfMTU1YXN4bVwiIGlkPVwiU3RhcnRFdmVudF8xNTVhc3htX2RpXCI+PG9tZ2RjOkJvdW5k cyBoZWlnaHQ9XCIzNlwiIHdpZHRoPVwiMzZcIiB4PVwiMTYyXCIgeT1cIjE4OFwiLz48YnBtbmRp OkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjBcIiB3aWR0aD1cIjkwXCIgeD1cIjE1 N1wiIHk9XCIyMjNcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBt bmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlRleHRBbm5vdGF0aW9uXzFreHhpeXRcIiBpZD1c IlRleHRBbm5vdGF0aW9uXzFreHhpeXRfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjMwXCIg d2lkdGg9XCIxMDBcIiB4PVwiOTlcIiB5PVwiMjU0XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBt bmRpOkJQTU5FZGdlIGJwbW5FbGVtZW50PVwiQXNzb2NpYXRpb25fMXNldWo0OFwiIGlkPVwiQXNz b2NpYXRpb25fMXNldWo0OF9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiMTY5XCIgeHNpOnR5cGU9 XCJvbWdkYzpQb2ludFwiIHk9XCIyMjBcIi8+PG9tZ2RpOndheXBvaW50IHg9XCIxNTNcIiB4c2k6 dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjI1NFwiLz48L2JwbW5kaTpCUE1ORWRnZT48YnBtbmRp OkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlNlcnZpY2VUYXNrXzA5eGd3YnJcIiBpZD1cIlNlcnZp Y2VUYXNrXzA5eGd3YnJfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjgwXCIgd2lkdGg9XCIx MDBcIiB4PVwiNDMwXCIgeT1cIjE2NlwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1O RWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18xcW5kc28xXCIgaWQ9XCJTZXF1ZW5jZUZs b3dfMXFuZHNvMV9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiMTk4XCIgeHNpOnR5cGU9XCJvbWdk YzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI0MzBcIiB4c2k6dHlwZT1c Im9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91bmRz IGhlaWdodD1cIjEzXCIgd2lkdGg9XCIwXCIgeD1cIjMxNFwiIHk9XCIxODRcIi8+PC9icG1uZGk6 QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50 PVwiRW5kRXZlbnRfMDl0MWFzM1wiIGlkPVwiRW5kRXZlbnRfMDl0MWFzM19kaVwiPjxvbWdkYzpC b3VuZHMgaGVpZ2h0PVwiMzZcIiB3aWR0aD1cIjM2XCIgeD1cIjc4MVwiIHk9XCIxODhcIi8+PGJw bW5kaTpCUE1OTGFiZWw+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwiIHg9 XCI3OTlcIiB5PVwiMjI3XCIvPjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1OU2hhcGU+ PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18xeTd5Z3M0XCIgaWQ9 XCJTZXF1ZW5jZUZsb3dfMXk3eWdzNF9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNTMwXCIgeHNp OnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI3ODFc IiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1cIjIwNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48 b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lkdGg9XCIwXCIgeD1cIjY1NS41XCIgeT1cIjE4 NFwiLz48L2JwbW5kaTpCUE1OTGFiZWw+PC9icG1uZGk6QlBNTkVkZ2U+PC9icG1uZGk6QlBNTlBs YW5lPjwvYnBtbmRpOkJQTU5EaWFncmFtPjwvZGVmaW5pdGlvbnM+IiwgInZlcnNpb24iOiAzfSwg ImFjdGlvbnMiOiBbXX1dLCAicm9sZXMiOiBbXSwgIndvcmtzcGFjZXMiOiBbXSwgImZ1bmN0aW9u cyI6IFt7ImlkIjogMzQsICJuYW1lIjogInRhc2tfdXRpbHNfYWRkX25vdGUiLCAiZGlzcGxheV9u YW1lIjogIlRhc2sgVXRpbHM6IEFkZCBOb3RlIiwgImRlc2NyaXB0aW9uIjogeyJmb3JtYXQiOiAi dGV4dCIsICJjb250ZW50IjogIkEgZnVuY3Rpb24gd2hpY2ggdGFrZXMgaW4gdGhlIElEIG9mIGFu IGV4aXN0aW5nIFRhc2sgYW5kIHRoZW4gYWRkcyBlaXRoZXIgYSBwbGFpbiBvciByaWNodGV4dCBu b3RlIHRvIHRoZSBUYXNrLiJ9LCAiZGVzdGluYXRpb25faGFuZGxlIjogImZuX3Rhc2tfdXRpbHMi LCAiZXhwb3J0X2tleSI6ICJ0YXNrX3V0aWxzX2FkZF9ub3RlIiwgInV1aWQiOiAiZGE2NTNhM2Qt OTY0YS00ZTI4LWE2ZTAtYzQzNmRiMGI2Nzc0IiwgInZlcnNpb24iOiAxLCAiY3JlYXRvciI6IHsi aWQiOiAzOSwgInR5cGUiOiAidXNlciIsICJuYW1lIjogImFsZnJlZEB3YXluZWNvcnAuY29tIiwg ImRpc3BsYXlfbmFtZSI6ICJBbGZyZWQgUGVubnl3b3J0aCJ9LCAibGFzdF9tb2RpZmllZF9ieSI6 IHsiaWQiOiAzOSwgInR5cGUiOiAidXNlciIsICJuYW1lIjogImFsZnJlZEB3YXluZWNvcnAuY29t IiwgImRpc3BsYXlfbmFtZSI6ICJBbGZyZWQgUGVubnl3b3J0aCJ9LCAibGFzdF9tb2RpZmllZF90 aW1lIjogMTU1ODA5MjA0MDU0MCwgInZpZXdfaXRlbXMiOiBbeyJzdGVwX2xhYmVsIjogbnVsbCwg InNob3dfaWYiOiBudWxsLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImZpZWxkX3R5cGUiOiAi X19mdW5jdGlvbiIsICJjb250ZW50IjogIjgxMWU5OWQ3LWQxOTQtNGNlOC04NmNjLWFmZjVlMDFh Yjg1YyIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2V9LCB7InN0ZXBfbGFiZWwiOiBudWxsLCAi c2hvd19pZiI6IG51bGwsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiZmllbGRfdHlwZSI6ICJf X2Z1bmN0aW9uIiwgImNvbnRlbnQiOiAiYmEzMTgyNjEtZWQ2YS00YTM4LWExODctOWUwYjY4ZDE2 MDRmIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZX0sIHsic3RlcF9sYWJlbCI6IG51bGwsICJz aG93X2lmIjogbnVsbCwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJmaWVsZF90eXBlIjogIl9f ZnVuY3Rpb24iLCAiY29udGVudCI6ICJlOWFmMDc3YS0zYjFjLTRmZjctYmVmYi04ZGZlZGQzYzdk YmMiLCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNlfSwgeyJzdGVwX2xhYmVsIjogbnVsbCwgInNo b3dfaWYiOiBudWxsLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImZpZWxkX3R5cGUiOiAiX19m dW5jdGlvbiIsICJjb250ZW50IjogIjVlMjNiMTQ1LTJiZWMtNGQ4Mi1hZDUwLWRjMTE1ZjM1NTM2 MCIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2V9LCB7InN0ZXBfbGFiZWwiOiBudWxsLCAic2hv d19pZiI6IG51bGwsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiZmllbGRfdHlwZSI6ICJfX2Z1 bmN0aW9uIiwgImNvbnRlbnQiOiAiNDRjNGM2MDAtZjIyZC00YmY1LWJiZjQtZWZhZDM1OGYwMmY1 IiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZX1dLCAid29ya2Zsb3dzIjogW3sid29ya2Zsb3df aWQiOiAzLCAibmFtZSI6ICJFeGFtcGxlOiBUYXNrIFV0aWxzIC0gQWRkIE5vdGUgdG8gVGFzayIs ICJwcm9ncmFtbWF0aWNfbmFtZSI6ICJ0YXNrX3V0aWxzX2FkZF9ub3RlX3RvX3Rhc2siLCAib2Jq ZWN0X3R5cGUiOiAiaW5jaWRlbnQiLCAiZGVzY3JpcHRpb24iOiBudWxsLCAidXVpZCI6IG51bGws ICJhY3Rpb25zIjogW119XX0sIHsiaWQiOiAzNSwgIm5hbWUiOiAidGFza191dGlsc19jbG9zZV90 YXNrIiwgImRpc3BsYXlfbmFtZSI6ICJUYXNrIFV0aWxzOiBDbG9zZSBUYXNrIiwgImRlc2NyaXB0 aW9uIjogeyJmb3JtYXQiOiAidGV4dCIsICJjb250ZW50IjogIkEgZnVuY3Rpb24gd2hpY2ggd2ls bCBhdHRlbXB0IHRvIGNsb3NlIGVpdGhlciBhIFN5c3RlbSBvciBDdXN0b20gdGFzayB1c2luZyB0 aGUgUkVTVCBBUEkuIn0sICJkZXN0aW5hdGlvbl9oYW5kbGUiOiAiZm5fdGFza191dGlscyIsICJl eHBvcnRfa2V5IjogInRhc2tfdXRpbHNfY2xvc2VfdGFzayIsICJ1dWlkIjogIjcyMjc5OThhLTE2 ZDMtNDZmNi1iYzg4LWNkYzYyNWZmOTlkYSIsICJ2ZXJzaW9uIjogMSwgImNyZWF0b3IiOiB7Imlk IjogMzksICJ0eXBlIjogInVzZXIiLCAibmFtZSI6ICJhbGZyZWRAd2F5bmVjb3JwLmNvbSIsICJk aXNwbGF5X25hbWUiOiAiQWxmcmVkIFBlbm55d29ydGgifSwgImxhc3RfbW9kaWZpZWRfYnkiOiB7 ImlkIjogMzksICJ0eXBlIjogInVzZXIiLCAibmFtZSI6ICJhbGZyZWRAd2F5bmVjb3JwLmNvbSIs ICJkaXNwbGF5X25hbWUiOiAiQWxmcmVkIFBlbm55d29ydGgifSwgImxhc3RfbW9kaWZpZWRfdGlt ZSI6IDE1NTgwOTIwNDA1NDAsICJ2aWV3X2l0ZW1zIjogW3sic3RlcF9sYWJlbCI6IG51bGwsICJz aG93X2lmIjogbnVsbCwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJmaWVsZF90eXBlIjogIl9f ZnVuY3Rpb24iLCAiY29udGVudCI6ICI4MTFlOTlkNy1kMTk0LTRjZTgtODZjYy1hZmY1ZTAxYWI4 NWMiLCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNlfSwgeyJzdGVwX2xhYmVsIjogbnVsbCwgInNo b3dfaWYiOiBudWxsLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImZpZWxkX3R5cGUiOiAiX19m dW5jdGlvbiIsICJjb250ZW50IjogImJhMzE4MjYxLWVkNmEtNGEzOC1hMTg3LTllMGI2OGQxNjA0 ZiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2V9LCB7InN0ZXBfbGFiZWwiOiBudWxsLCAic2hv d19pZiI6IG51bGwsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiZmllbGRfdHlwZSI6ICJfX2Z1 bmN0aW9uIiwgImNvbnRlbnQiOiAiZTlhZjA3N2EtM2IxYy00ZmY3LWJlZmItOGRmZWRkM2M3ZGJj IiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZX1dLCAid29ya2Zsb3dzIjogW3sid29ya2Zsb3df aWQiOiA2LCAibmFtZSI6ICJFeGFtcGxlOiBUYXNrIFV0aWxzIC0gQ2xvc2UgVGFzayIsICJwcm9n cmFtbWF0aWNfbmFtZSI6ICJ0YXNrX3V0aWxzX2Nsb3NlX3Rhc2siLCAib2JqZWN0X3R5cGUiOiAi aW5jaWRlbnQiLCAiZGVzY3JpcHRpb24iOiBudWxsLCAidXVpZCI6IG51bGwsICJhY3Rpb25zIjog W119XX0sIHsiaWQiOiAzNiwgIm5hbWUiOiAidGFza191dGlsc19jcmVhdGUiLCAiZGlzcGxheV9u YW1lIjogIlRhc2sgVXRpbHM6IENyZWF0ZSBDdXN0b20gVGFzayIsICJkZXNjcmlwdGlvbiI6IHsi Zm9ybWF0IjogInRleHQiLCAiY29udGVudCI6ICJBIGZ1bmN0aW9uIHdoaWNoIGNhbiBiZSB1c2Vk IHRvIGNyZWF0ZSBhIGN1c3RvbSB0YXNrIHVzaW5nIHRoZSBSRVNUIEFQSS4ifSwgImRlc3RpbmF0 aW9uX2hhbmRsZSI6ICJmbl90YXNrX3V0aWxzIiwgImV4cG9ydF9rZXkiOiAidGFza191dGlsc19j cmVhdGUiLCAidXVpZCI6ICJjNDI4MWJkNC1kODcyLTQ1NjItYjdjOC1iMGUzNzlhZWE4YWQiLCAi dmVyc2lvbiI6IDEsICJjcmVhdG9yIjogeyJpZCI6IDM5LCAidHlwZSI6ICJ1c2VyIiwgIm5hbWUi OiAiYWxmcmVkQHdheW5lY29ycC5jb20iLCAiZGlzcGxheV9uYW1lIjogIkFsZnJlZCBQZW5ueXdv cnRoIn0sICJsYXN0X21vZGlmaWVkX2J5IjogeyJpZCI6IDM5LCAidHlwZSI6ICJ1c2VyIiwgIm5h bWUiOiAiYWxmcmVkQHdheW5lY29ycC5jb20iLCAiZGlzcGxheV9uYW1lIjogIkFsZnJlZCBQZW5u eXdvcnRoIn0sICJsYXN0X21vZGlmaWVkX3RpbWUiOiAxNTU4MDkyMDQwNTQwLCAidmlld19pdGVt cyI6IFt7InN0ZXBfbGFiZWwiOiBudWxsLCAic2hvd19pZiI6IG51bGwsICJlbGVtZW50IjogImZp ZWxkX3V1aWQiLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgImNvbnRlbnQiOiAiODExZTk5 ZDctZDE5NC00Y2U4LTg2Y2MtYWZmNWUwMWFiODVjIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxz ZX0sIHsic3RlcF9sYWJlbCI6IG51bGwsICJzaG93X2lmIjogbnVsbCwgImVsZW1lbnQiOiAiZmll bGRfdXVpZCIsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAiY29udGVudCI6ICJlOWFmMDc3 YS0zYjFjLTRmZjctYmVmYi04ZGZlZGQzYzdkYmMiLCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNl fSwgeyJzdGVwX2xhYmVsIjogbnVsbCwgInNob3dfaWYiOiBudWxsLCAiZWxlbWVudCI6ICJmaWVs ZF91dWlkIiwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJjb250ZW50IjogIjM2MWY0MjBm LTMxODQtNDQyNi05ZmRjLTc2NDlkNThlYWM5MiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2V9 XSwgIndvcmtmbG93cyI6IFt7IndvcmtmbG93X2lkIjogMiwgIm5hbWUiOiAiRXhhbXBsZTogVGFz ayBVdGlscyAtIENyZWF0ZSBDdXN0b20gVGFzayIsICJwcm9ncmFtbWF0aWNfbmFtZSI6ICJ0YXNr X3V0aWxzX2NyZWF0ZV9jdXN0b21fdGFzayIsICJvYmplY3RfdHlwZSI6ICJpbmNpZGVudCIsICJk ZXNjcmlwdGlvbiI6IG51bGwsICJ1dWlkIjogbnVsbCwgImFjdGlvbnMiOiBbXX1dfSwgeyJpZCI6 IDM3LCAibmFtZSI6ICJ0YXNrX3V0aWxzX3VwZGF0ZV90YXNrIiwgImRpc3BsYXlfbmFtZSI6ICJU YXNrIFV0aWxzOiBVcGRhdGUgVGFzayIsICJkZXNjcmlwdGlvbiI6IHsiZm9ybWF0IjogInRleHQi LCAiY29udGVudCI6ICJBIGZ1bmN0aW9uIHdoaWNoIHRha2VzIGluIHRoZSBJRCBvZiBhbiBleGlz dGluZyBUYXNrIGFuZCBhIHRhc2tfdXRpbHNfcGF5bG9hZCB3aGljaCBpcyBhIEpTT04gU3RyaW5n IG9mIHRoZSB0YXNrIGRldGFpbHMgdG8gdXBkYXRlLiJ9LCAiZGVzdGluYXRpb25faGFuZGxlIjog ImZuX3Rhc2tfdXRpbHMiLCAiZXhwb3J0X2tleSI6ICJ0YXNrX3V0aWxzX3VwZGF0ZV90YXNrIiwg InV1aWQiOiAiYmQ4ZGY1M2EtNjQ0My00MGYxLTkwZjktZWI1OTkzOTk2OTI1IiwgInZlcnNpb24i OiAxLCAiY3JlYXRvciI6IHsiaWQiOiAzOSwgInR5cGUiOiAidXNlciIsICJuYW1lIjogImFsZnJl ZEB3YXluZWNvcnAuY29tIiwgImRpc3BsYXlfbmFtZSI6ICJBbGZyZWQgUGVubnl3b3J0aCJ9LCAi bGFzdF9tb2RpZmllZF9ieSI6IHsiaWQiOiAzOSwgInR5cGUiOiAidXNlciIsICJuYW1lIjogImFs ZnJlZEB3YXluZWNvcnAuY29tIiwgImRpc3BsYXlfbmFtZSI6ICJBbGZyZWQgUGVubnl3b3J0aCJ9 LCAibGFzdF9tb2RpZmllZF90aW1lIjogMTU1ODA5MjA0MDU0MCwgInZpZXdfaXRlbXMiOiBbeyJz dGVwX2xhYmVsIjogbnVsbCwgInNob3dfaWYiOiBudWxsLCAiZWxlbWVudCI6ICJmaWVsZF91dWlk IiwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJjb250ZW50IjogIjgxMWU5OWQ3LWQxOTQt NGNlOC04NmNjLWFmZjVlMDFhYjg1YyIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2V9LCB7InN0 ZXBfbGFiZWwiOiBudWxsLCAic2hvd19pZiI6IG51bGwsICJlbGVtZW50IjogImZpZWxkX3V1aWQi LCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgImNvbnRlbnQiOiAiYmEzMTgyNjEtZWQ2YS00 YTM4LWExODctOWUwYjY4ZDE2MDRmIiwgInNob3dfbGlua19oZWFkZXIiOiBmYWxzZX0sIHsic3Rl cF9sYWJlbCI6IG51bGwsICJzaG93X2lmIjogbnVsbCwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIs ICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAiY29udGVudCI6ICJlOWFmMDc3YS0zYjFjLTRm ZjctYmVmYi04ZGZlZGQzYzdkYmMiLCAic2hvd19saW5rX2hlYWRlciI6IGZhbHNlfSwgeyJzdGVw X2xhYmVsIjogbnVsbCwgInNob3dfaWYiOiBudWxsLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwg ImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJjb250ZW50IjogIjM2MWY0MjBmLTMxODQtNDQy Ni05ZmRjLTc2NDlkNThlYWM5MiIsICJzaG93X2xpbmtfaGVhZGVyIjogZmFsc2V9XSwgIndvcmtm bG93cyI6IFt7IndvcmtmbG93X2lkIjogNSwgIm5hbWUiOiAiRXhhbXBsZTogVGFzayBVdGlscyAt IE1hcmsgVGFzayBhIE9wdGlvbmFsIiwgInByb2dyYW1tYXRpY19uYW1lIjogInRhc2tfdXRpbHNf bWFya190YXNrX29wdGlvbmFsIiwgIm9iamVjdF90eXBlIjogInRhc2siLCAiZGVzY3JpcHRpb24i OiBudWxsLCAidXVpZCI6IG51bGwsICJhY3Rpb25zIjogW119XX1dfQ== """ )
python
"""This module contains the class declaration for the MapViewWidget.""" from math import pi, sin, cos from PySide6.QtCore import QPoint, QPointF, Qt from PySide6.QtGui import QCursor, QPainter, QPainterPath, QPen from PySide6.QtWidgets import QApplication, QWidget from sailsim.sailor.Commands import Waypoint # Map constants ZoomInFactor = 1.25 ZoomOutFactor = 1 / ZoomInFactor ScrollStep = 10 def pointsToPath(points, jump=1): """Convert a pointlist into a QPainterPath.""" path = QPainterPath() path.moveTo(QPointF(points[0][0], -points[0][1])) for i in range(0, len(points), jump)[1:]: point = points[i] path.lineTo(QPointF(point[0], -point[1])) return path def boatPainterPath(): """Return the QPainterPath for drawing a boat.""" boat = QPainterPath() boat.moveTo(0, -2) boat.cubicTo(QPointF(1, -.5), QPointF(1, .5), QPointF(.8, 2.2)) boat.lineTo(-.8, 2.2) boat.cubicTo(QPointF(-1, .5), QPointF(-1, -.5), QPointF(0, -2)) return boat class MapViewWidget(QWidget): """Map Widget that displays the boat and its path.""" windowWidth = 0 windowHeight = 0 offset = QPoint() scale = 4 lastDragPos = QPoint() waypointsLink = QPainterPath() waypoints = QPainterPath() path = QPainterPath() # Boat properties boatPos = QPointF(0, 0) boatDir = 0 boatMainSailAngle = 0 boatRudderAngle = 0 # Display proerties displayWaypointLink = True displayWaypoints = True displayPath = True displayMainSail = True displayRudder = True def __init__(self, parent=None): super(MapViewWidget, self).__init__(parent) self.setWindowTitle("MapViewWidget") self.setCursor(Qt.CrossCursor) self.resize(550, 400) def paintEvent(self, event): painter = QPainter(self) painter.setRenderHint(QPainter.Antialiasing, True) painter.translate(self.offset) painter.scale(self.scale, self.scale) if self.displayWaypointLink: painter.setPen(QPen(Qt.gray, .1, Qt.SolidLine, Qt.RoundCap, Qt.RoundJoin)) painter.drawPath(self.waypointsLink) if self.displayWaypoints: painter.setPen(QPen(Qt.blue, .1, Qt.SolidLine, Qt.RoundCap, Qt.RoundJoin)) painter.drawPath(self.waypoints) if self.displayPath: painter.setPen(QPen(Qt.darkGray, 4 / self.scale, Qt.SolidLine, Qt.RoundCap, Qt.RoundJoin)) painter.drawPath(self.path) painter.translate(self.boatPos) painter.rotate(self.boatDir) painter.setPen(Qt.NoPen) painter.setBrush(Qt.black) painter.drawPath(boatPainterPath()) if self.displayMainSail: painter.setPen(QPen(Qt.green, 0.1, Qt.SolidLine, Qt.RoundCap)) painter.drawLine(QPointF(0, 0), QPointF(sin(self.boatMainSailAngle), cos(self.boatMainSailAngle)) * 2) if self.displayRudder: painter.setPen(QPen(Qt.blue, 0.1, Qt.SolidLine, Qt.RoundCap)) painter.drawLine(QPointF(0, 2.2), QPointF(sin(self.boatRudderAngle), cos(self.boatRudderAngle)) * 0.5 + QPointF(0, 2.2)) def setPath(self, path): """Change the path and updates the painter.""" self.path = path self.update() def setWaypoints(self, commands): """Display the waypoints in a commandList on mapView.""" if len(commands) > 0: wpPath = QPainterPath() # TODO find out boat starting coordinates wpLinkList = [[0, 0]] for command in commands: if isinstance(command, Waypoint): wpPath.addEllipse(QPoint(command.destX, -command.destY), command.radius, command.radius) wpLinkList.append([command.destX, command.destY]) self.waypointsLink = pointsToPath(wpLinkList) self.waypoints = wpPath self.update() def viewFrame(self, frame): """Set the boat to a position saved in a frame given.""" self.setBoat(frame.boatPosX, frame.boatPosY, frame.boatDirection, frame.boatMainSailAngle, frame.boatRudderAngle) def setBoat(self, posX, posY, direction, mainSailAngle, rudderAngle): """Set boat to a position given.""" self.boatPos = QPointF(posX, -posY) self.boatDir = direction / pi * 180 self.boatMainSailAngle = -mainSailAngle self.boatRudderAngle = rudderAngle self.update() def resizeEvent(self, event): """Keep center of the map in the center.""" width, height = event.size().width(), event.size().height() self.offset -= QPoint((self.windowWidth - width) / 2, (self.windowHeight - height) / 2) self.windowWidth, self.windowHeight = width, height def keyPressEvent(self, event): """Move mapView according to the button pressed.""" # TODO is this working? if event.key() == Qt.Key_Plus: self.zoom(ZoomInFactor) elif event.key() == Qt.Key_Minus: self.zoom(ZoomOutFactor) elif event.key() == Qt.Key_Left: self.scroll(+ScrollStep, 0) elif event.key() == Qt.Key_Right: self.scroll(-ScrollStep, 0) elif event.key() == Qt.Key_Down: self.scroll(0, -ScrollStep) elif event.key() == Qt.Key_Up: self.scroll(0, +ScrollStep) else: super(MapViewWidget, self).keyPressEvent(event) def wheelEvent(self, event): """Zoom in and out when mouse wheel is moved.""" numDegrees = event.angleDelta().y() / 8 numSteps = numDegrees / 32 self.zoom(pow(ZoomInFactor, numSteps)) def mousePressEvent(self, event): if event.buttons() == Qt.LeftButton: self.lastDragPos = QPoint(event.pos()) def mouseMoveEvent(self, event): if event.buttons() & Qt.LeftButton: self.offset += event.pos() - self.lastDragPos self.lastDragPos = QPoint(event.pos()) self.update() def zoom(self, zoomFactor): """Zoom the mapView and keep mouse in the same spot.""" self.scale *= zoomFactor self.offset += (self.mapFromGlobal(QCursor.pos()) - self.offset) * (1 - zoomFactor) self.update() def scroll(self, deltaX, deltaY): """Translate mapView.""" self.offset += QPoint(deltaX, deltaY) self.update() if __name__ == '__main__': import sys app = QApplication(sys.argv) widget = MapViewWidget() widget.show() r = app.exec_() sys.exit(r)
python
from .uia_control import UIAControl class HeaderItem(UIAControl): CONTROL_TYPE = "HeaderItem"
python
#!/usr/bin/env python3 # This is awful. What it does is scan the specified root paths, recursively, # for zip files (checking magic number, not extension), and unzips those which # contain only a single file. The file's name inside the zip is ignored, except # for the extension, which is combined with the extension-less name of the zip. # The original zip is then moved to {root}/__unzipped/{zip_path} # This is done so unzips preserve renames done to the zip files after the # disk imaging program has written them. # usage: $0 ROOTDIR+ import calendar import itertools import os import shutil import sys import zipfile UNZIPPED_DIRNAME = "__unzipped" def strip_exts(s): # yes, this is wrong and stupid and you should use os.path.splitext, but # this covers the mess i made of naming conventions bits = s.split(".") if len(bits) == 1: return s if bits[0] == "": prefix = bits[0:2] domain = bits[2:] else: prefix = bits[0:1] domain = bits[1:] truncated = itertools.dropwhile(lambda s: 2 <= len(s) <= 3, reversed(domain)) return ".".join(itertools.chain(prefix, reversed(list(truncated)))) def unzip_image(zip_path, move_to_on_success=None): with zipfile.ZipFile(zip_path, "r") as archive: members = archive.infolist() if len(members) != 1: print("Contains multiple files: {0}".format(zip_path), file=sys.stderr) return base_name = strip_exts(zip_path) member = members[0] _, member_ext = os.path.splitext(member.filename) out_name = base_name + member_ext.lower() print("{0} >> {1}".format(member.filename, out_name)) with open(out_name, "wb") as out_stream: zstream = archive.open(member, "r") try: out_stream.write(zstream.read()) finally: zstream.close() volume_mtime = os.path.getmtime(zip_path) member_mtime = calendar.timegm(member.date_time) earliest = min(volume_mtime, member_mtime) os.utime(out_name, (earliest, earliest)) if move_to_on_success: root = os.path.dirname(move_to_on_success) relpath = os.path.relpath(zip_path, root) move_dest = os.path.join(move_to_on_success, relpath) print("{0} -> {1}".format(zip_path, move_dest)) move_parent = os.path.dirname(move_dest) try: os.makedirs(move_parent) except EnvironmentError: if os.path.isdir(move_parent): pass else: raise shutil.move(zip_path, move_dest) def main(): for root in sys.argv[1:]: success_path = os.path.join(root, UNZIPPED_DIRNAME) for path, dirnames, filenames in os.walk(root): try: dirnames.pop(dirnames.index(UNZIPPED_DIRNAME)) except ValueError: pass for filename in filenames: filepath = os.path.join(path, filename) if zipfile.is_zipfile(filepath): unzip_image(filepath, success_path) if __name__ == '__main__': main()
python
nun = int(input('Digite um número para ver sua tabuada: ')) print('-' * 12) print('{} x {} = {}'.format(nun, 1, nun*1)) print('{} x {} = {}'.format(nun, 2, nun*2)) print('{} x {} = {}'.format(nun, 3, nun*3)) print('{} x {} = {}'.format(nun, 4, nun*4)) print('{} x {} = {}'.format(nun, 5, nun*5)) print('{} x {} = {}'.format(nun, 6, nun*6)) print('{} x {} = {}'.format(nun, 7, nun*7)) print('{} x {} = {}'.format(nun, 8, nun*8)) print('{} x {:2} = {}'.format(nun, 9, nun*9)) print('{} x {:2} = {}'.format(nun, 10, nun*10)) print('-' * 12)
python
# Copyright (C) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See LICENSE in project root for information. from mmlspark.vw._VowpalWabbitContextualBandit import _VowpalWabbitContextualBandit, _VowpalWabbitContextualBanditModel from pyspark.ml.common import inherit_doc from pyspark import SparkContext, SQLContext from pyspark.sql import DataFrame from pyspark.ml.wrapper import JavaWrapper from pyspark.ml.common import _py2java, _java2py def to_java_params(sc, model, pyParamMap): paramMap = JavaWrapper._new_java_obj("org.apache.spark.ml.param.ParamMap") for param, value in pyParamMap.items(): java_param = model._java_obj.getParam(param.name) java_value = _py2java(sc, value) paramMap.put([java_param.w(java_value)]) return paramMap @inherit_doc class VowpalWabbitContextualBandit(_VowpalWabbitContextualBandit): def _create_model(self, java_model): model = VowpalWabbitContextualBanditModel() model._java_obj = java_model model._transfer_params_from_java() return model def setInitialModel(self, model): """ Initialize the estimator with a previously trained model. """ self._java_obj.setInitialModel(model._java_obj.getModel()) def parallelFit(self, dataset, param_maps): sc = SparkContext._active_spark_context self._transfer_params_to_java() javaParamMaps = [to_java_params(sc, self, x) for x in param_maps] javaModels = self._java_obj.parallelFit(dataset._jdf, javaParamMaps) return [self._copyValues(self._create_model(x)) for x in javaModels] @inherit_doc class VowpalWabbitContextualBanditModel(_VowpalWabbitContextualBanditModel): def saveNativeModel(self, filename): """ Save the native model to a local or WASB remote location. """ self._java_obj.saveNativeModel(filename) def getNativeModel(self): """ Get the binary native VW model. """ return self._java_obj.getModel() def getReadableModel(self): return self._java_obj.getReadableModel() def getPerformanceStatistics(self): ctx = SparkContext._active_spark_context sql_ctx = SQLContext.getOrCreate(ctx) return DataFrame(self._java_obj.getPerformanceStatistics(), sql_ctx)
python
""" /* * ----------------------------------------------------------------- * $Revision: 1.3 $ * $Date: 2010/12/01 23:08:49 $ * ----------------------------------------------------------------- * Programmer(s): Allan Taylor, Alan Hindmarsh and * Radu Serban @ LLNL * ----------------------------------------------------------------- * Example (serial): * * This example solves a nonlinear system that arises from a system * of partial differential equations. The PDE system is a food web * population model, with predator-prey interaction and diffusion * on the unit square in two dimensions. The dependent variable * vector is the following: * * 1 2 ns * c = (c , c , ..., c ) (denoted by the variable cc) * * and the PDE's are as follows: * * i i * 0 = d(i)*(c + c ) + f (x,y,c) (i=1,...,ns) * xx yy i * * where * * i ns j * f (x,y,c) = c * (b(i) + sum a(i,j)*c ) * i j=1 * * The number of species is ns = 2 * np, with the first np being * prey and the last np being predators. The number np is both the * number of prey and predator species. The coefficients a(i,j), * b(i), d(i) are: * * a(i,i) = -AA (all i) * a(i,j) = -GG (i <= np , j > np) * a(i,j) = EE (i > np, j <= np) * b(i) = BB * (1 + alpha * x * y) (i <= np) * b(i) =-BB * (1 + alpha * x * y) (i > np) * d(i) = DPREY (i <= np) * d(i) = DPRED ( i > np) * * The various scalar parameters are set using define's or in * routine InitUserData. * * The boundary conditions are: normal derivative = 0, and the * initial guess is constant in x and y, but the final solution * is not. * * The PDEs are discretized by central differencing on an MX by * MY mesh. * * The nonlinear system is solved by KINSOL using the method * specified in local variable globalstrat. * * The preconditioner matrix is a block-diagonal matrix based on * the partial derivatives of the interaction terms f only. * * Constraints are imposed to make all components of the solution * positive. * ----------------------------------------------------------------- * References: * * 1. Peter N. Brown and Youcef Saad, * Hybrid Krylov Methods for Nonlinear Systems of Equations * LLNL report UCRL-97645, November 1987. * * 2. Peter N. Brown and Alan C. Hindmarsh, * Reduced Storage Matrix Methods in Stiff ODE systems, * Lawrence Livermore National Laboratory Report UCRL-95088, * Rev. 1, June 1987, and Journal of Applied Mathematics and * Computation, Vol. 31 (May 1989), pp. 40-91. (Presents a * description of the time-dependent version of this test * problem.) * ----------------------------------------------------------------- */ """ import numpy as np from pySundials.kinsol import Kinsol, denseGETRF, denseGETRS from pySundials.sundials import NvectorNdarrayFloat64 np.seterr(all='raise') #/* Problem Constants */ NUM_SPECIES = 6# /* must equal 2*(number of prey or predators) # number of prey = number of predators */ #define PI RCONST(3.1415926535898) /* pi */ MX =5 #/* MX = number of x mesh points */ MY =5 #/* MY = number of y mesh points */ NSMX =NUM_SPECIES * MX NEQ =NSMX * MY #/* number of equations in the system */ AA =1.0 #/* value of coefficient AA in above eqns */ EE =10000. #/* value of coefficient EE in above eqns */ GG =0.5e-6 #/* value of coefficient GG in above eqns */ BB =1.0 #/* value of coefficient BB in above eqns */ DPREY =1.0 #/* value of coefficient dprey above */ DPRED =0.5 #/* value of coefficient dpred above */ ALPHA =1.0 #/* value of coefficient alpha above */ AX =1.0 #/* total range of x variable */ AY =1.0 #/* total range of y variable */ FTOL =1.e-7 #/* ftol tolerance */ STOL =1.e-13 #/* stol tolerance */ THOUSAND =1000.0 #/* one thousand */ ZERO =0. #/* 0. */ ONE =1.0 #/* 1. */ TWO =2.0 #/* 2. */ PREYIN =1.0 #/* initial guess for prey concentrations. */ PREDIN =30000.0 #/* initial guess for predator concs. */ CORRECT_VALUES_BL = [1.16428,1.16428,1.16428,34927.48780,34927.48780,34927.48780] CORRECT_VALUES_TR = [1.25797,1.25797,1.25797,37736.66420,37736.66420,37736.66420] #/* User-defined vector access macro: IJ_Vptr */ #/* IJ_Vptr is defined in order to translate from the underlying 3D structure # of the dependent variable vector to the 1D storage scheme for an N-vector. # IJ_Vptr(vv,i,j) returns a pointer to the location in vv corresponding to # indices is = 0, jx = i, jy = j. */ #define IJ_Vptr(vv,i,j) (&NV_Ith_S(vv, i*NUM_SPECIES + j*NSMX)) #/* Type : UserData # contains preconditioner blocks, pivot arrays, and problem constants */ class FoodWeb(Kinsol): def __init__(self, mx, my, num_species, ax, ay, uround ): self.mx = mx self.my = my self.ns = num_species self.np = num_species/2 self.ax = ax self.ay = ay self.dx = ax/(mx-1) self.dy = ay/(my-1) self.uround = uround self.sqruround = np.sqrt(uround) #/* # * Allocate memory for data structure of type UserData # */ self.P = np.empty( (mx,my,num_species,num_species), dtype=np.float64 ) self.pivot = np.zeros( (mx,my,num_species), dtype=np.int32 ) self.acoef = np.empty( (num_species,num_species) ) self.bcoef = np.empty( num_species ) self.cox = np.empty( num_species ) self.coy = np.empty( num_species ) self.rates = NvectorNdarrayFloat64((mx,my,num_species)) # /* Set up the coefficients a and b plus others found in the equations */ for i in range(self.np): a1 = (i,self.np) a2 = (i+self.np,0) for j in range(self.np): self.acoef[i,self.np+j] = -GG self.acoef[i+self.np,j] = EE self.acoef[i,j] = ZERO self.acoef[i+self.np,self.np+j] = ZERO self.acoef[i,i] = -AA self.acoef[i+self.np,i+self.np] = - AA self.bcoef[i] = BB self.bcoef[i+self.np] = -BB self.cox[i] = DPREY/self.dx**2 self.cox[i+self.np] = DPRED/self.dx**2 self.coy[i] = DPREY/self.dy**2 self.coy[i+self.np] = DPRED/self.dy**2 def SetInitialProfiles(self, cc, sc): ctemp = np.empty(self.ns) stemp = np.empty(self.ns) ctemp[:self.np] = PREYIN stemp[:self.np] = ONE ctemp[self.np:] = PREDIN stemp[self.np:] = 0.00001 for i in range(self.ns): cc.data[:,:,i] = ctemp[i] sc.data[:,:,i] = stemp[i] def WebRate(self, xx, yy, jx, jy, cc, rates ): for i in range(self.ns): rates[jx,jy,i] = np.dot(cc[jx,jy,:], self.acoef[i,:]) fac = ONE + ALPHA * xx * yy for i in range(self.ns): rates[jx,jy,i] = cc[jx,jy,i] * (self.bcoef[i]*fac+rates[jx,jy,i]) def RhsFn(self, cc, fval): """ /* * System function for predator-prey system */ """ delx = self.dx dely = self.dy try: #/* Loop over all mesh points, evaluating rate array at each point*/ for jy in range(self.my): yy = dely*jy #/* Set lower/upper index shifts, special at boundaries. */ idyl = 1 if jy != 0 else -1 idyu = 1 if jy != (MY-1) else -1 for jx in range(self.mx): xx = delx*jx #/* Set left/right index shifts, special at boundaries. */ idxl = 1 if jx != 0 else -1 idxr = 1 if jx != (MX-1) else -1 #/* Get species interaction rate array at (xx,yy) */ self.WebRate(xx, yy, jx, jy, cc.data, self.rates.data) dcyli = cc.data[jx,jy,:] - cc.data[jx,jy-idyl,:] dcyui = cc.data[jx,jy+idyu,:] - cc.data[jx,jy,:] dcxli = cc.data[jx,jy,:] - cc.data[jx-idxl,jy,:] dcxri = cc.data[jx+idxr,jy,:] - cc.data[jx,jy,:] #/* Compute the total rate value at (xx,yy) */ fval.data[jx,jy,:] = self.coy*(dcyui-dcyli) + self.cox*(dcxri-dcxli) + self.rates.data[jx,jy,:] except Exception as e: print e, e.message return -1 #print fval.data.min(), fval.data.max() return 0 def SpilsPrecSetup(self, cc, cscale, fval, fscale, vtemp1, vtemp2): """ /* * Preconditioner setup routine. Generate and preprocess P. */ """ #realtype r, r0, uround, sqruround, xx, yy, delx, dely, csave, fac; #realtype *cxy, *scxy, **Pxy, *ratesxy, *Pxycol, perturb_rates[NUM_SPECIES]; #long int i, j, jx, jy, ret; #UserData data; delx = self.dx dely = self.dy uround = self.uround sqruround = self.sqruround fac = fval.WL2Norm( fscale ) perturb_rates = np.empty_like( self.rates.data ) r0 = THOUSAND * uround * fac * NEQ if r0 == ZERO: r0 = ONE #/* Loop over spatial points; get size NUM_SPECIES Jacobian block at each */ for jy in range(self.my): yy = jy*dely for jx in range(self.mx): xx = jx*delx # Pxy = self.P[ix,iy] #Pxy = (data->P)[jx][jy]; #cxy = IJ_Vptr(cc,jx,jy); #scxy= IJ_Vptr(cscale,jx,jy); #ratesxy = IJ_Vptr((data->rates),jx,jy); #/* Compute difference quotients of interaction rate fn. */ for j in range(self.ns): csave = cc.data[jx,jy,j] # /* Save the j,jx,jy element of cc */ r = max(sqruround*abs(csave), r0/cscale.data[jx,jy,j]) cc.data[jx,jy,j] += r # /* Perturb the j,jx,jy element of cc */ fac = ONE/r self.WebRate(xx, yy, jx, jy, cc.data, perturb_rates ) #/* Restore j,jx,jy element of cc */ cc.data[jx,jy,j] = csave #/* Load the j-th column of difference quotients */ for i in range(self.ns): self.P[jx,jy,j,i] = (perturb_rates[jx,jy,i] - self.rates.data[jx,jy,i])*fac #/* Do LU decomposition of size NUM_SPECIES preconditioner block */ # P shuold be order='F' from the outset, alternatively use # scipy for this calculation. P = np.asfortranarray(self.P[jx,jy,:,:].T) ret = denseGETRF(P, self.pivot[jx,jy,:]) #if ret != 0: return 1 return 0 def SpilsPrecSolve(self, cc, cscale, fval, fscale, vv, ftem): """ /* * Preconditioner solve routine */ """ #print 'SpilsPrecSolve' for jx in range(self.mx): for jy in range(self.my): #For each (jx,jy), solve a linear system of size NUM_SPECIES. #vxy is the address of the corresponding portion of the vector vv; #Pxy is the address of the corresponding block of the matrix P; #piv is the address of the corresponding block of the array pivot. piv = self.pivot[jx,jy,:] Pxy = self.P[jx,jy,:,:] #print Pxy, piv P = np.asfortranarray(self.P[jx,jy,:,:].T) denseGETRS(P, self.pivot[jx,jy,:], vv.data[jx,jy,:]) return 0 def PrintFinalStats(self, ): """ Print final statistics contained in iopt """ nni = self.GetNumNonlinSolvIters() nfe = self.GetNumFuncEvals() nli = self.SpilsGetNumLinIters() npe = self.SpilsGetNumPrecEvals() nps = self.SpilsGetNumPrecSolves() ncfl = self.SpilsGetNumConvFails() nfeSG = self.SpilsGetNumFuncEvals() print "Final Statistics.. " print "nni = %5ld nli = %5ld"%(nni, nli) print "nfe = %5ld nfeSG = %5ld"%(nfe, nfeSG) print "nps = %5ld npe = %5ld ncfl = %5ld"%(nps, npe, ncfl) #/* Functions Called by the KINSOL Solver */ # #static int func(N_Vector cc, N_Vector fval, void *user_data); # #static int PrecSetupBD(N_Vector cc, N_Vector cscale, # N_Vector fval, N_Vector fscale, # void *user_data, # N_Vector vtemp1, N_Vector vtemp2); # #static int PrecSolveBD(N_Vector cc, N_Vector cscale, # N_Vector fval, N_Vector fscale, # N_Vector vv, void *user_data, # N_Vector ftem); # #/* Private Helper Functions */ # #static UserData AllocUserData(void); #static void InitUserData(UserData data); #static void FreeUserData(UserData data); #static void SetInitialProfiles(N_Vector cc, N_Vector sc); #static void PrintHeader(int globalstrategy, int maxl, int maxlrst, # realtype fnormtol, realtype scsteptol); #static void PrintOutput(N_Vector cc); #static void PrintFinalStats(void *kmem); #static void WebRate(realtype xx, realtype yy, realtype *cxy, realtype *ratesxy, # void *user_data); #static realtype DotProd(long int size, realtype *x1, realtype *x2); #static int check_flag(void *flagvalue, char *funcname, int opt); #/* # *-------------------------------------------------------------------- # * MAIN PROGRAM # *-------------------------------------------------------------------- # */ def testKinFoodWeb(): #int globalstrategy; #realtype fnormtol, scsteptol; #N_Vector cc, sc, constraints; #UserData data; #int flag, maxl, maxlrst; #void *kmem; data = FoodWeb(MX,MY, NUM_SPECIES, AX,AY, 1E-10) #/* Create serial vectors of length NEQ */ cc = NvectorNdarrayFloat64((MX,MY, NUM_SPECIES)) sc = NvectorNdarrayFloat64((MX,MY, NUM_SPECIES)) constraints = NvectorNdarrayFloat64((MX,MY, NUM_SPECIES)) constraints.Constant(TWO) data.SetInitialProfiles(cc, sc); fnormtol=FTOL scsteptol=STOL #/* Call KINCreate/KINInit to initialize KINSOL. #A pointer to KINSOL problem memory is returned and stored in kmem. */ #/* Vector cc passed as template vector. */ data.SetConstraints(constraints) #/* Call KINSpgmr to specify the linear solver KINSPGMR with preconditioner #routines PrecSetupBD and PrecSolveBD. */ maxl = 15 maxlrst = 2 strategy = 'none' data.initSolver(cc) data.setupIndirectLinearSolver(solver='spgmr', maxl=maxl, user_pre=True) data.funcNormTol=FTOL data.scaledStepTol=STOL data.spilsMaxRestarts=maxlrst #/* Print out the problem size, solution parameters, initial guess. */ PrintHeader(strategy, maxl, maxlrst, fnormtol, scsteptol); #/* Call KINSol and print output concentration profile */ print 'Solving...' flag = data.Solve(cc,sc,sc, strategy=strategy) # flag = KINSol(kmem, /* KINSol memory block */ # cc, /* initial guess on input; solution vector */ # globalstrategy, /* global stragegy choice */ # sc, /* scaling vector, for the variable cc */ # sc); /* scaling vector for function values fval */ print "\n\nComputed equilibrium species concentrations:\n" PrintAndAssertOutput(cc) #/* Print final statistics and free memory */ data.PrintFinalStats() return 0 def PrintHeader(globalstrategy, maxl, maxlrst, fnormtol, scsteptol): """ /* * Print first lines of output (problem description) */ """ print "\nPredator-prey test problem -- KINSol (serial version)\n" print "Mesh dimensions = %d X %d"%(MX, MY) print "Number of species = %d"% NUM_SPECIES print "Total system size = %d\n"% NEQ print "Flag globalstrategy = %s "%globalstrategy print "Linear solver is SPGMR with maxl = %d, maxlrst = %d"%(maxl, maxlrst) print "Preconditioning uses interaction-only block-diagonal matrix" print "Positivity constraints imposed on all components" print "Tolerance parameters: fnormtol = %g scsteptol = %g"%(fnormtol, scsteptol) print "\nInitial profile of concentration" print "At all mesh points: %g %g %g %g %g %g"%(PREYIN, PREYIN, PREYIN, PREDIN, PREDIN, PREDIN) def PrintAndAssertOutput(cc): """ /* * Print sampled values of current cc */ """ from nose.tools import assert_almost_equal jy = 0 jx = 0 print "\nAt bottom left:" #/* Print out lines with up to 6 values per line */ for _is in range(NUM_SPECIES): print " %g"% cc.data[jx,jy,_is], assert_almost_equal(CORRECT_VALUES_BL[_is], cc.data[jx,jy,_is], places=4) jy = MY-1 jx = MX-1 print "\n\nAt top right:" #/* Print out lines with up to 6 values per line */ for _is in range(NUM_SPECIES): print " %g"% cc.data[jx,jy,_is], assert_almost_equal(CORRECT_VALUES_TR[_is], cc.data[jx,jy,_is], places=4) print "\n" if __name__ == '__main__': testKinFoodWeb()
python
class NetworkNode: nodeClass = 'IoT' def __init__(self, serialNumber, os, ip, location='5th Floor Storage Room'): self.serialNumber = serialNumber self.os = os self.ip = ip def nodeInfo(self): print('-' * 79) return '{} {} {} {}'.format(self.serialNumber, self.os, self.ip, self.location) def nodeType(self): return '{}'.format(self.nodeClass) node01 = NetworkNode('FTX8675309', 'IOS-XE', '10.0.0.11') print(node01.nodeInfo()) print(node01.nodeType())
python
import json import os from collections import OrderedDict def load_characters(): fname = os.path.join(os.path.dirname(__file__), 'charactersdata.json') with open(fname, 'r') as f: return json.load(f, object_pairs_hook=OrderedDict) def load_locations(): fname = os.path.join(os.path.dirname(__file__), 'locationsdata.json') with open (fname, 'r') as f: return json.load(f, object_pairs_hook=OrderedDict) def load_bending(): fname = os.path.join(os.path.dirname(__file__), 'bendingdata.json') with open (fname, 'r') as f: return json.load(f, object_pairs_hook=OrderedDict)
python
from behave import use_step_matcher, step, when, then use_step_matcher("re") @when('I want to calculate (?P<number_a>\d) and (?P<number_b>\d)') def step_impl(context, number_a, number_b): context.number_a = int(number_a) context.number_b = int(number_b) @step('use addition method') def use_addition_method(context): context.result = context.number_a + context.number_b @then('result is (?P<expected_result>\d)') def result_assertion(context, expected_result): assert context.result == int(expected_result), 'Result is incorrect\nExpected: {}\nGot: {}'.format(expected_result, context.result) @step('use multiplication method') def use_multiplication_method(context): if 'input_data' in context: for i in context.input_data: i['actual'] = i['a'] * i['b'] else: context.result = context.number_a * context.number_b @step('this step is for incorrect expected result') def step_impl(context): assert context.result == 7, 'Result is incorrect\nExpected: {}\nGot: {}'.format(7, context.result) @then("all table data calculated correctly") def step_impl(context): for i in context.input_data: assert i['expected'] == i['actual'], 'Result is incorrect\nExpected: {}\nGot: {}'.format(i['expected'], i['actual']) @when("I want to calculate numbers from table") def step_impl(context): step_table = context.table context.input_data = [] for row in step_table: data = { 'a': int(row['number_a']), 'b': int(row['number_b']), 'expected': int(row['expected']) } context.input_data.append(dict(data))
python
from django.apps import AppConfig class DeliverymanagementConfig(AppConfig): name = 'DeliveryManagement'
python
import groups import config import discord import log.logging from discord import Option from discord.ext import commands from utility import EncodeDrawCode class Draw(commands.Cog): def __init__(self, bot): self.bot = bot @groups.fun.command() async def draw( ctx: commands.Context, code: Option( str, description="Width x Hight : 1 = Blue | 0 = Black", # noqa: F722 required=True ) ): """Draws the spesified code to the screen using emotes""" await log.logging.Info( f"{ctx.author.name}#{ctx.author.discriminator} ({ctx.author.id})" " executed Draw in Fun" ) if "x" not in code.lower() or ":" not in code: await ctx.respond( ":anger: Grrrr, invalid draw code format", ephemeral=True ) return message = await EncodeDrawCode(code) if not message: await ctx.respond( ":anger: Grrrr, Failed to encode message, it may be out of " "bounds of your dimensions or has invalid characters", ephemeral=True ) return emb = discord.Embed( title="Drawing", description=message, color=config.embed_color ) emb.add_field(name="Code", value=code) await ctx.respond(embed=emb) def setup(bot): bot.add_cog(Draw(bot))
python
from math import ceil def find_median(arr): n = len(arr) median = find_median_util(arr, n/2+1, 0, n-1) print(median) def find_median_util(arr, k, low, high): m = partition(arr, low, high) length = m - low + 1 if length == k: return arr[m] if length > k: return find_median_util(arr, k, low, m-1) else: return find_median_util(arr, k-length, m+1, high) def partition(arr, low, high): pivot = get_pivot_val(arr, low, high) while low < high: while arr[low] < pivot: low += 1 while arr[high] > pivot: high -= 1 if arr[low] == arr[high]: low += 1 # swap elif low < high: temp = arr[low] arr[low] = arr[high] arr[high] = temp return high def get_pivot_val(arr, low, high): if high - low + 1 <= 9: sorted(arr) return arr[int(len(arr)/2)] medians = [0] * int(ceil(( high - low +1 )/5)) median_index = 0 while high >= low: temp = [0]* min(5, (high - low + 1)) for i in range(0, len(temp)): if low <= high : temp[i] = arr[low] low += 1 sorted(temp) medians[median_index] = temp[int(len(temp)/2)] median_index += 1 return get_pivot_val(medians, 0, len(medians) - 1) arr = [25, 24, 33, 39, 3, 18, 19, 31, 23, 49, 45, 16, 1, 29, 40, 22, 15, 20, 24, 4, 13, 34] find_median(arr)
python
# ------------------------------------------------------------------------------ # CodeHawk Binary Analyzer # Author: Henny Sipma # ------------------------------------------------------------------------------ # The MIT License (MIT) # # Copyright (c) 2021 Aarno Labs LLC # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ------------------------------------------------------------------------------ """Basis for dictionary records in the MIPS dictionary.""" from typing import Callable, cast, Dict, List, Tuple, Type, TypeVar, TYPE_CHECKING from chb.app.BDictionary import BDictionary import chb.util.fileutil as UF from chb.util.IndexedTable import IndexedTableValue if TYPE_CHECKING: from chb.api.InterfaceDictionary import InterfaceDictionary from chb.mips.MIPSDictionary import MIPSDictionary class MIPSDictionaryRecord(IndexedTableValue): def __init__( self, mipsd: "MIPSDictionary", ixval: IndexedTableValue) -> None: IndexedTableValue.__init__(self, ixval.index, ixval.tags, ixval.args) self._mipsd = mipsd @property def mipsd(self) -> "MIPSDictionary": return self._mipsd @property def bd(self) -> BDictionary: return self.mipsd.bd @property def ixd(self) -> "InterfaceDictionary": return self.mipsd.ixd MdR = TypeVar("MdR", bound=MIPSDictionaryRecord, covariant=True) class MIPSDictionaryRegistry: def __init__(self) -> None: self.register: Dict[Tuple[type, str], Type[MIPSDictionaryRecord]] = {} def register_tag( self, tag: str, anchor: type) -> Callable[[type], type]: def handler(t: type) -> type: self.register[(anchor, tag)] = t return t return handler def mk_instance( self, md: "MIPSDictionary", ixval: IndexedTableValue, anchor: Type[MdR]) -> MdR: tag = ixval.tags[0] if (anchor, tag) not in self.register: raise UF.CHBError("Unknown mipsdictionary type: " + tag) instance = self.register[(anchor, tag)](md, ixval) return cast(MdR, instance) mipsregistry: MIPSDictionaryRegistry = MIPSDictionaryRegistry()
python
"""init Revision ID: 51b36c819d5f Revises: Create Date: 2019-12-07 22:55:45.980654 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '51b36c819d5f' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('prize', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=128), nullable=False), sa.Column('logo', sa.String(length=128), nullable=True), sa.Column('description', sa.String(length=128), nullable=False), sa.Column('score', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('id', name=op.f('pk_prize')) ) op.create_table('station', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=128), nullable=False), sa.Column('score', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('id', name=op.f('pk_station')) ) op.create_index(op.f('ix_station_name'), 'station', ['name'], unique=False) op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('email', sa.String(length=128), nullable=False), sa.Column('password', sa.String(length=128), nullable=True), sa.PrimaryKeyConstraint('id', name=op.f('pk_user')) ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=False) op.create_table('token', sa.Column('id', sa.Integer(), nullable=False), sa.Column('station_id', sa.Integer(), nullable=False), sa.Column('timestamp', sa.DateTime(), nullable=False), sa.Column('value', sa.String(length=128), nullable=True), sa.ForeignKeyConstraint(['station_id'], ['station.id'], name=op.f('fk_token_station_id_station')), sa.PrimaryKeyConstraint('id', name=op.f('pk_token')) ) op.create_table('usedtoken', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.Column('token_id', sa.Integer(), nullable=False), sa.Column('timestamp', sa.DateTime(), nullable=False), sa.Column('score', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['token_id'], ['token.id'], name=op.f('fk_usedtoken_token_id_token')), sa.ForeignKeyConstraint(['user_id'], ['user.id'], name=op.f('fk_usedtoken_user_id_user')), sa.PrimaryKeyConstraint('id', name=op.f('pk_usedtoken')) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('usedtoken') op.drop_table('token') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') op.drop_index(op.f('ix_station_name'), table_name='station') op.drop_table('station') op.drop_table('prize') # ### end Alembic commands ###
python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import unicode_literals from __future__ import absolute_import import ew from ew import jinja2_ew from allura.lib import validators as v from forgetracker import model class BinForm(ew.SimpleForm): template = 'jinja:forgetracker:templates/tracker_widgets/bin_form.html' defaults = dict( ew.SimpleForm.defaults, submit_text="Save Bin") class hidden_fields(ew.NameList): _id = jinja2_ew.HiddenField( validator=v.Ming(model.Bin), if_missing=None) class fields(ew.NameList): summary = jinja2_ew.TextField( label='Bin Name', validator=v.UnicodeString(not_empty=True)) terms = jinja2_ew.TextField( label='Search Terms', validator=v.UnicodeString(not_empty=True))
python
import numpy as np import pandas as pd import matplotlib.pyplot as plt import sklearn as sk import copy import warnings import pickle import joblib warnings.filterwarnings("ignore") import pandas as pd import numpy as np import math from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.svm import SVC from sklearn.utils import shuffle from sklearn.linear_model import SGDClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_val_predict from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import roc_curve, auc from sklearn.metrics import accuracy_score,make_scorer from numpy.random import seed seed(1) df = pd.read_csv('covid-dataset.csv') df = df.astype({"label":'string'}) X=df.drop("label",axis=1).values[0:399] X=X.astype(int) y=df["label"].values[0:399] print(X.shape) print(X,y) from sklearn.preprocessing import LabelEncoder enc = LabelEncoder() y = enc.fit_transform(y) from imblearn.over_sampling import SMOTE smt = SMOTE(k_neighbors = 2) X_train_res, y_train_res = smt.fit_resample(X, y) X, y = shuffle(X_train_res, y_train_res) for i in [10]: originalclass = [] predictedclass = [] def classification_report_with_accuracy_score(y_true, y_pred): originalclass.extend(y_true) predictedclass.extend(y_pred) return accuracy_score(y_true, y_pred) model = KNeighborsClassifier() n_neighbors = range(1, 21, 2) weights = ['uniform', 'distance'] metric = ['euclidean', 'manhattan', 'minkowski'] grid = dict(n_neighbors=n_neighbors,weights=weights,metric=metric) cv = StratifiedKFold(n_splits=i, shuffle=True, random_state=1) grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy',error_score=0) grid_search.fit(X,y) print(grid_search.best_params_) nested_score = cross_val_score(grid_search, X, y, cv=cv, scoring=make_scorer(classification_report_with_accuracy_score)) print(classification_report(originalclass, predictedclass)) print(np.mean(nested_score)) joblib.dump(grid_search,open('model.pkl','wb'))
python
from constants import CURRENCY_SYMBOLS_MAP class CurrencySymbols(object): # Checks if the input currency name exists in the map # If it exists, return the symbbol @staticmethod def get_symbol(currency): if not currency: return None else: return CURRENCY_SYMBOLS_MAP.get(currency)
python
class WorkflowException(Exception): pass class UnsupportedRequirement(WorkflowException): pass
python
# BSD 3-Clause License # # Copyright (c) 2017 xxxx # All rights reserved. # Copyright 2021 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================ import os import argparse import random import shutil from shutil import copyfile from misc import printProgressBar def rm_mkdir(dir_path): if os.path.exists(dir_path): shutil.rmtree(dir_path) print('Remove path - %s'%dir_path) os.makedirs(dir_path) print('Create path - %s'%dir_path) def main(config): rm_mkdir(config.train_path) rm_mkdir(config.train_GT_path) rm_mkdir(config.valid_path) rm_mkdir(config.valid_GT_path) rm_mkdir(config.test_path) rm_mkdir(config.test_GT_path) filenames = os.listdir(config.origin_data_path) data_list = [] GT_list = [] for filename in filenames: ext = os.path.splitext(filename)[-1] if ext =='.jpg': filename = filename.split('_')[-1][:-len('.jpg')] data_list.append('ISIC_'+filename+'.jpg') GT_list.append('ISIC_'+filename+'_segmentation.png') num_total = len(data_list) num_train = int((config.train_ratio/(config.train_ratio+config.valid_ratio+config.test_ratio))*num_total) num_valid = int((config.valid_ratio/(config.train_ratio+config.valid_ratio+config.test_ratio))*num_total) num_test = num_total - num_train - num_valid print('\nNum of train set : ',num_train) print('\nNum of valid set : ',num_valid) print('\nNum of test set : ',num_test) Arange = list(range(num_total)) random.shuffle(Arange) for i in range(num_train): idx = Arange.pop() src = os.path.join(config.origin_data_path, data_list[idx]) dst = os.path.join(config.train_path,data_list[idx]) copyfile(src, dst) src = os.path.join(config.origin_GT_path, GT_list[idx]) dst = os.path.join(config.train_GT_path, GT_list[idx]) copyfile(src, dst) printProgressBar(i + 1, num_train, prefix = 'Producing train set:', suffix = 'Complete', length = 50) for i in range(num_valid): idx = Arange.pop() src = os.path.join(config.origin_data_path, data_list[idx]) dst = os.path.join(config.valid_path,data_list[idx]) copyfile(src, dst) src = os.path.join(config.origin_GT_path, GT_list[idx]) dst = os.path.join(config.valid_GT_path, GT_list[idx]) copyfile(src, dst) printProgressBar(i + 1, num_valid, prefix = 'Producing valid set:', suffix = 'Complete', length = 50) for i in range(num_test): idx = Arange.pop() src = os.path.join(config.origin_data_path, data_list[idx]) dst = os.path.join(config.test_path,data_list[idx]) copyfile(src, dst) src = os.path.join(config.origin_GT_path, GT_list[idx]) dst = os.path.join(config.test_GT_path, GT_list[idx]) copyfile(src, dst) printProgressBar(i + 1, num_test, prefix = 'Producing test set:', suffix = 'Complete', length = 50) if __name__ == '__main__': parser = argparse.ArgumentParser() # model hyper-parameters parser.add_argument('--train_ratio', type=float, default=0.7) parser.add_argument('--valid_ratio', type=float, default=0.1) parser.add_argument('--test_ratio', type=float, default=0.2) # data path parser.add_argument('--origin_data_path', type=str, default='../ISIC/dataset/ISIC2018_Task1-2_Training_Input') parser.add_argument('--origin_GT_path', type=str, default='../ISIC/dataset/ISIC2018_Task1_Training_GroundTruth') parser.add_argument('--train_path', type=str, default='./dataset/train/') parser.add_argument('--train_GT_path', type=str, default='./dataset/train_GT/') parser.add_argument('--valid_path', type=str, default='./dataset/valid/') parser.add_argument('--valid_GT_path', type=str, default='./dataset/valid_GT/') parser.add_argument('--test_path', type=str, default='./dataset/test/') parser.add_argument('--test_GT_path', type=str, default='./dataset/test_GT/') config = parser.parse_args() print(config) main(config)
python
from .model import TapisModel from .searchable import SearchableCommand
python
from cfnlint.core.BaseYamlLinter import BaseYamlLinter class Linter(BaseYamlLinter): def lint(self): resources = self.file_as_yaml['Resources'] lintingrules = self.lintingrules['ResourceTypes'] for resource_name, resource in resources.items(): # Skip custom resources, cannot be linted if resource['Type'].startswith("Custom::"): continue # Check if the resource is supported if resource['Type'] not in lintingrules: self.errors.append( "Unsupported resource: %s (%s)" % (resource_name, resource['Type']) ) continue # Check if there are rules specified for the resource if not lintingrules[resource['Type']]: continue if not 'Properties' in resource: continue # Check mandatory properties resource_properties = resource['Properties'] rule_properties = lintingrules[resource['Type']]['Properties'] # If there are no required resources, skip if not rule_properties: continue # Validate all properties in the rules for rule_property, rules in rule_properties.items(): if rules['Required']: # Check if the property is specified if rule_property not in resource_properties: self.errors.append( 'Mandatory property "{}" not specified for {} ({}). See: {}' .format(rule_property, resource_name, resource['Type'], rules['Documentation']) ) continue if rule_property in resource_properties: property_value = resource_properties[rule_property] # Check if it has is a valid value if rules: if 'AllowedValues' in rules: if rules['AllowedValues']: if property_value not in rules['AllowedValues']: self.errors.append( 'Invalid property value "{}" specified for {}.{} See: {}' .format(property_value, resource_name, rule_property, rules['Documentation']) ) continue
python
from rest_framework import serializers from app_idea_feed.serializers import IdeaFeedItemSerializer from user_profiles_api.serializers import UserProfileSerializer from app_user_actions.serializers import UserLikedIdeasSerializer, \ IdeaLikedByUsersSerializer, IdeaCommentByUsersSerializer from app_user_actions.models import UserLikedIdeas, UserFavouriteIdeas from app_idea_feed.models import IdeaFeedItem class ViewLikedIdeasSerializer(serializers.ModelSerializer): """Serializes user liked ideas""" user_profile = UserProfileSerializer() idea_feed = IdeaFeedItemSerializer() class Meta: model = UserLikedIdeas fields = ('id', 'user_profile', 'idea_feed') extra_kwargs = {'user_profile': {'read_only': True}} class ViewFavouriteIdeasSerializer(serializers.ModelSerializer): """Serializes user favourite ideas""" user_profile = UserProfileSerializer() idea_feed = IdeaFeedItemSerializer() class Meta: model = UserFavouriteIdeas fields = ('id', 'user_profile', 'idea_feed') extra_kwargs = {'user_profile': {'read_only': True}} class ViewIdeasFeed(serializers.ModelSerializer): """Serializes ideas feed for view""" user_profile = UserProfileSerializer() class Meta: model = IdeaFeedItem fields = ('id', 'user_profile', 'name', 'description', 'theme', 'department', 'rag_status', 'tags', 'stage', 'contributor', 'created_on') extra_kwargs = {'user_profile': {'read_only': True}} class ViewIdeasCompleteFeed(serializers.ModelSerializer): """Serializes complete ideas feed for view with likes and comments""" user_profile = UserProfileSerializer() liked_idea = IdeaLikedByUsersSerializer(many=True) comments_idea = IdeaCommentByUsersSerializer(many=True) class Meta: model = IdeaFeedItem fields = ('id', 'user_profile', 'liked_idea', 'comments_idea', 'name', 'description', 'theme', 'department', 'rag_status', 'tags', 'stage', 'contributor', 'created_on') extra_kwargs = {'user_profile': {'read_only': True}}
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from .models import Customer, CreditCard, Transaction, Product, ScheduledPayment class CustomerAdmin(admin.ModelAdmin): """CustomerAdmin""" list_display = ('owner_id', 'name', 'mobile', 'email', 'company') class ProductAdmin(admin.ModelAdmin): """ServiceAdmin""" list_display = ('title', 'description', 'currency', 'price') class TransactionAdmin(admin.ModelAdmin): list_display = ('owner_id', 'customer', 'transaction_id', 'card', 'product', 'status', 'result_code', 'result_description', 'currency', 'price') search_fields = ('transaction_id','registration_id',) # list_filter = ('status', 'result_code', 'is_initial',) # inlines = [ScheduledPaymentInline] class CreditCardAdmin(admin.ModelAdmin): list_display = ('owner_id', 'bin', 'cardholder_name', 'expiry_month', 'expiry_year', 'last_four_digits') class ScheduledPaymentAdmin(admin.ModelAdmin): list_display = ('customer', 'card', 'product', 'amount', 'status', 'scheduled_date') admin.site.register(Customer, CustomerAdmin) admin.site.register(Product, ProductAdmin) admin.site.register(CreditCard, CreditCardAdmin) admin.site.register(Transaction, TransactionAdmin) admin.site.register(ScheduledPayment, ScheduledPaymentAdmin)
python
from dunderfile import __FILE__, __LINE__, __func__, helper assert __FILE__() == __file__ assert helper.__FILE__ == __FILE__() assert helper.__LINE__ == __LINE__() # Because we're at top-level in the module. assert __func__() == '<module>' def my_function(): assert __func__() == 'my_function' assert __func__() == helper.__func__ my_function() def nested_functions(): def inner_function(): assert __func__() == "inner_function" assert __func__(depth=1) == "nested_functions" nested_functions()
python
import requests from datetime import datetime def str_parse_time(string): """Parses given string into time""" r = requests.get("https://dateparser.piyush.codes/fromstr", params={"message": string}) data = r.json() return data["message"] def format_time(time): """Formats the time""" format = time.strftime("%a, %b %d, %Y %X") days = round((datetime.utcnow() - time).total_seconds() / 86400) format += f"\n*{days} {'days' if days != 1 else 'day'} ago*" return format
python
import django.forms from .models import City class CityForm(django.forms.ModelForm): class Meta: model = City fields = ['name'] widgets = {'name': django.forms.TextInput(attrs={'class': 'input', 'placeholder': 'City Name'})}
python
from nose.tools import * from pysb.core import Model, SelfExporter import pickle def with_model(func): """Decorate a test to set up and tear down a Model.""" def inner(*args, **kwargs): model = Model(func.__name__, _export=False) # manually set up SelfExporter, targeting func's globals selfexporter_state = SelfExporter.do_export SelfExporter.do_export = True SelfExporter.default_model = model SelfExporter.target_module = func.__module__ SelfExporter.target_globals = func.__globals__ SelfExporter.target_globals['model'] = model try: # call the actual test function func(*args, **kwargs) finally: # clean up the globals SelfExporter.cleanup() SelfExporter.do_export = selfexporter_state return make_decorator(func)(inner) def serialize_component_list(model, filename): """Serialize (pickle) the components of the given model to a file. This can later be used to compare the state of the model against a previously validated state using :py:func:`check_model_against_component_list`. """ f = open(filename, 'w') pickle.dump(list(model.all_components().values()), f) f.close() def check_model_against_component_list(model, component_list): """Check the components of the given model against the provided list of components, asserting that they are equal. Useful for testing a model against a previously validated (and serialized) state. Currently checks equality by performing a string comparison of the repr() of each component, however, this may be revised to use alternative measures of equality in the future. To serialize the list of components to create a record of a validated state, see :py:func:`serialize_component_list`. """ assert len(model.all_components()) == len(component_list), \ "Model %s does not have the same " \ "number of components as the previously validated version. " \ "The validated model has %d components, current model has " \ "%d components." % \ (model.name, len(model.all_components()), len(component_list)) model_components = list(model.all_components().values()) for i, comp in enumerate(component_list): model_comp_str = repr(model_components[i]) comp_str = repr(comp) assert comp_str == model_comp_str, \ "Model %s does not match reference version: " \ "Mismatch at component %d: %s in the reference model not " \ "equal to %s in the current model." \ % (model.name, i, comp_str, model_comp_str) assert True
python
# Copyright (C) 2007 Samuel Abels # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA import re from SpiffWorkflow.Operators import * from SpiffWorkflow.Task import Task from SpiffWorkflow.Exception import WorkflowException from TaskSpec import TaskSpec class MultiChoice(TaskSpec): """ This class represents an if condition where multiple conditions may match at the same time, creating multiple outgoing branches. This task has one or more inputs, and one or more incoming branches. This task has one or more outputs. """ def __init__(self, parent, name, **kwargs): """ Constructor. parent -- a reference to the parent (TaskSpec) name -- a name for the pattern (string) """ TaskSpec.__init__(self, parent, name, **kwargs) self.cond_taskspecs = [] self.choice = None def connect(self, taskspec): """ Convenience wrapper around connect_if() where condition is set to None. """ return self.connect_if(None, taskspec) def connect_if(self, condition, taskspec): """ Connects a taskspec that is executed if the condition DOES match. condition -- a condition (Condition) taskspec -- the conditional taskspec """ assert taskspec is not None self.outputs.append(taskspec) self.cond_taskspecs.append((condition, taskspec)) taskspec._connect_notify(self) def test(self): """ Checks whether all required attributes are set. Throws an exception if an error was detected. """ TaskSpec.test(self) if len(self.cond_taskspecs) < 1: raise WorkflowException(self, 'At least one output required.') for condition, task in self.cond_taskspecs: if task is None: raise WorkflowException(self, 'Condition with no task.') if condition is None: continue if condition is None: raise WorkflowException(self, 'Condition is None.') def _on_trigger(self, my_task, choice): """ Lets a caller narrow down the choice by using a Choose trigger. """ self.choice = choice def _predict_hook(self, my_task): my_task._update_children(self.outputs, Task.MAYBE) def _on_complete_hook(self, my_task): """ Runs the task. Should not be called directly. Returns True if completed, False otherwise. """ # Find all matching conditions. outputs = [] for condition, output in self.cond_taskspecs: if condition is not None and not condition._matches(my_task): continue if self.choice is not None and output.name not in self.choice: continue outputs.append(output) my_task._update_children(outputs) return True
python
ascii_snek = """\ --..,_ _,.--. `'.'. .'`__ o `;__. '.'. .'.'` '---'` ` '.`'--....--'`.' `'--....--'` """ def main(): print(ascii_snek) if __name__ == '__main__': main()
python
if __name__ == '__main__': from pino.ino import Arduino, Comport, PinMode, PinState from pino.config import Config # from pino.ui.clap import PinoCli from time import sleep # com = Comport().set_baudrate(115200) \ # .set_port("/dev/ttyACM0") \ # .set_inofile("$HOME/Experimental/pino/example/proto.ino") \ # .deploy() \ # .connect(1.15) # loop = 10 # interval = 0.5 config = Config("./example/config.yml") # config = PinoCli().get_config() com = Comport() \ .apply_settings(config.get_comport()) \ .deploy() \ .connect() arduino = Arduino(com) arduino.set_pinmode(13, PinMode.OUTPUT) variables = config.get_experimental() loop = variables.get("loop", 10) interval = variables.get("interval", 0.5) for _ in range(loop): arduino.digital_write(13, PinState.HIGH) sleep(interval) arduino.digital_write(13, PinState.LOW) sleep(interval)
python
"""""" from sys import stdout from typing import List, Dict, Optional, Union, Tuple, Any, Iterable import logging import json from itertools import product import pandas as pd from pandas import DataFrame from shimoku_api_python.exceptions import ApiClientError from .data_managing_api import DataValidation from .explorer_api import ( BusinessExplorerApi, CreateExplorerAPI, CascadeExplorerAPI, MultiCreateApi, ReportExplorerApi, DeleteExplorerApi, UniverseExplorerApi ) from .data_managing_api import DataManagingApi from .app_type_metadata_api import AppTypeMetadataApi logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) logging.basicConfig( stream=stdout, datefmt='%Y-%m-%d %H:%M', format='%(asctime)s | %(levelname)s | %(message)s' ) class PlotAux: _get_business = BusinessExplorerApi.get_business _get_business_apps = BusinessExplorerApi.get_business_apps get_business_apps = BusinessExplorerApi.get_business_apps get_universe_businesses = UniverseExplorerApi.get_universe_businesses get_report = ReportExplorerApi.get_report _get_report_with_data = ReportExplorerApi._get_report_with_data _update_report = ReportExplorerApi.update_report update_report = ReportExplorerApi.update_report get_report_data = ReportExplorerApi.get_report_data _find_app_by_name_filter = CascadeExplorerAPI.find_app_by_name_filter _find_app_type_by_name_filter = ( CascadeExplorerAPI.find_app_type_by_name_filter ) # TODO this shit has to be fixed get_universe_app_types = CascadeExplorerAPI.get_universe_app_types _get_universe_app_types = CascadeExplorerAPI.get_universe_app_types _get_app_reports = CascadeExplorerAPI.get_app_reports _get_app_by_type = CascadeExplorerAPI.get_app_by_type _get_app_by_name = CascadeExplorerAPI.get_app_by_name _find_business_by_name_filter = CascadeExplorerAPI.find_business_by_name_filter _create_report = CreateExplorerAPI.create_report _create_app_type = CreateExplorerAPI.create_app_type _create_normalized_name = CreateExplorerAPI._create_normalized_name _create_key_name = CreateExplorerAPI._create_key_name _create_app = CreateExplorerAPI.create_app _create_business = CreateExplorerAPI.create_business _get_app_type_by_name = AppTypeMetadataApi.get_app_type_by_name _update_report_data = DataManagingApi.update_report_data _append_report_data = DataManagingApi.append_report_data _transform_report_data_to_chart_data = DataManagingApi._transform_report_data_to_chart_data _is_report_data_empty = DataManagingApi._is_report_data_empty _convert_dataframe_to_report_entry = DataManagingApi._convert_dataframe_to_report_entry _create_report_entries = DataManagingApi._create_report_entries _validate_table_data = DataValidation._validate_table_data _validate_tree_data = DataValidation._validate_tree_data _validate_data_is_pandarable = DataValidation._validate_data_is_pandarable _create_app_type_and_app = MultiCreateApi.create_app_type_and_app _delete_report = DeleteExplorerApi.delete_report _delete_app = DeleteExplorerApi.delete_app _delete_report_entries = DeleteExplorerApi.delete_report_entries class PlotApi(PlotAux): """ """ def __init__(self, api_client, **kwargs): self.api_client = api_client if kwargs.get('business_id'): self.business_id: Optional[str] = kwargs['business_id'] else: self.business_id: Optional[str] = None @staticmethod def _validate_filters(filters: Dict) -> None: # Check the filters is built properly try: if filters.get('update_filter_type'): cols: List[str] = ['row', 'column', 'filter_cols', 'update_filter_type'] assert sorted(list(filters.keys())) == sorted(cols) else: old_cols: List[str] = ['row', 'column', 'filter_cols'] new_cols: List[str] = ['order', 'filter_cols'] assert ( sorted(list(filters.keys())) == sorted(old_cols) or sorted(list(filters.keys())) == sorted(new_cols) ) except AssertionError: raise KeyError( f'filters object must contain the keys' f'"exists", "row", "column", "filter_cols" | ' f'Provided keys are: {list(filters.keys())}' ) def _find_target_reports( self, menu_path: str, grid: Optional[str] = None, order: Optional[int] = None, component_type: Optional[str] = None, by_component_type: bool = True, ) -> List[Dict]: type_map = { 'alert_indicator': 'INDICATORS', 'indicator': 'INDICATORS', 'table': None, 'stockline': 'STOCKLINECHART', 'html': 'HTML', 'MULTIFILTER': 'MULTIFILTER', } if component_type in type_map.keys(): component_type = type_map[component_type] else: component_type = 'ECHARTS' by_grid: bool = False if grid: by_grid = True elif order is not None: pass else: raise ValueError( 'Row and Column or Order must be specified' ) name, path_name = self._clean_menu_path(menu_path=menu_path) app: Dict = self._get_app_by_name( business_id=self.business_id, name=name, ) app_id: str = app['id'] reports: List[Dict] = self._get_app_reports( business_id=self.business_id, app_id=app_id, ) # Delete specific components in a path / grid # or all of them whatsoever is its component_type if by_component_type: target_reports: List[Dict] = [ report for report in reports if ( report['path'] == path_name and report['grid'] == grid and report['reportType'] == component_type ) ] elif by_grid: # Whatever is the reportType delete it target_reports: List[Dict] = [ report for report in reports if ( report['path'] == path_name and report['grid'] == grid ) ] else: target_reports: List[Dict] = [ report for report in reports if ( report['path'] == path_name and report['order'] == order ) ] return target_reports def _get_component_order(self, app_id: str, path_name: str) -> int: """Set an ascending report.Order to new path created If a report in the same path exists take its order otherwise find the higher report.Order and set it +1 as the report.Order of the new path """ reports_ = self._get_app_reports( business_id=self.business_id, app_id=app_id, ) try: order_temp = max([report['order'] for report in reports_]) except ValueError: order_temp = 0 path_order: List[int] = [ report['order'] for report in reports_ if report['path'] == path_name ] if path_order: return min(path_order) else: return order_temp + 1 def _clean_menu_path(self, menu_path: str) -> Tuple[str, str]: """Break the menu path in the apptype or app normalizedName and the path normalizedName if any""" # remove empty spaces menu_path: str = menu_path.strip() # replace "_" for www protocol it is not good menu_path = menu_path.replace('_', '-') try: assert len(menu_path.split('/')) <= 2 # we allow only one level of path except AssertionError: raise ValueError( f'We only allow one subpath in your request | ' f'you introduced {menu_path} it should be maximum ' f'{"/".join(menu_path.split("/")[:1])}' ) # Split AppType or App Normalized Name normalized_name: str = menu_path.split('/')[0] name: str = ( ' '.join(normalized_name.split('-')) ) try: path_normalized_name: str = menu_path.split('/')[1] path_name: str = ( ' '.join(path_normalized_name.split('-')) ) except IndexError: path_name = None return name, path_name def _create_chart( self, data: Union[str, DataFrame, List[Dict]], menu_path: str, report_metadata: Dict, order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: Optional[int] = None, padding: Optional[int] = None, overwrite: bool = True, real_time: bool = False, ) -> str: """ :param data: :param menu_path: :param report_metadata: :param row: Only required for Overwrite :param column: Only required for Overwrite :param report_type: Only required for Overwrite :param overwrite: Whether to Update (delete) any report in the same menu_path and grid position or not """ if order is not None and rows_size and cols_size: report_metadata['order'] = order report_metadata['sizeRows'] = rows_size report_metadata['sizeColumns'] = cols_size if padding: report_metadata['sizePadding'] = padding name, path_name = self._clean_menu_path(menu_path=menu_path) try: d: Dict[str, Dict] = self._create_app_type_and_app( business_id=self.business_id, app_type_metadata={'name': name}, app_metadata={}, ) app: Dict = d['app'] except ApiClientError: # Business admin user app: Dict = self._get_app_by_name(business_id=self.business_id, name=name) if not app: app: Dict = self._create_app( business_id=self.business_id, name=name, ) app_id: str = app['id'] if order is not None: # elif order fails when order = 0! kwargs = {'order': order} elif report_metadata.get('grid'): kwargs = {'grid': report_metadata.get('grid'), 'order': 0} else: raise ValueError( 'Row and Column or Order must be specified to overwrite a report' ) report_metadata.update({'path': path_name}) report_metadata.update(kwargs) if report_metadata.get('dataFields'): report_metadata['dataFields'] = ( json.dumps(report_metadata['dataFields']) ) if overwrite: self.delete( menu_path=menu_path, by_component_type=False, **kwargs ) report: Dict = self._create_report( business_id=self.business_id, app_id=app_id, report_metadata=report_metadata, real_time=real_time, ) report_id: str = report['id'] try: if data: self._update_report_data( business_id=self.business_id, app_id=app_id, report_id=report_id, report_data=data, ) except ValueError: if not data.empty: self._update_report_data( business_id=self.business_id, app_id=app_id, report_id=report_id, report_data=data, ) return report_id def _create_trend_chart( self, echart_type: str, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], # first layer menu_path: str, row: Optional[int] = None, # TODO to deprecate column: Optional[int] = None, # TODO to deprecate order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: Optional[int] = None, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, overwrite: bool = True, ) -> str: """For Linechart, Barchart, Stocklinechart, Scatter chart, and alike Example ------------------- input data: val_a, val_b, mon, 7, tue, 10, wed, 11, thu, 20, fri, 27, x: 'val_a' y: 'val_b' menu_path: 'purchases/weekly' row: 2 column: 1 title: 'Purchases by week' color: None option_modifications: {} :param echart_type: :param data: :param x: :param y: :param menu_path: it contain the `app_name/path` for instance "product-suite/results" and it will use the AppType ProductSuite (if it does not it will create it) then it will check if the App exists, if not create it and finally create the report with the specific path "results" :param row: :param column: :param title: :param option_modifications: :param filters: To create a filter for every specified column """ cols: List[str] = [x] + y self._validate_table_data(data, elements=cols) df: DataFrame = self._validate_data_is_pandarable(data) df = df[cols] # keep only x and y df.rename(columns={x: 'xAxis'}, inplace=True) # Default option_modifications_temp = { "legend": {"type": "scroll"}, "toolbox": {"orient": "vertical", "top": 20}, 'series': {'smooth': True} } # TODO this will be done in FE # https://trello.com/c/GXRYHEsO/ num_size: int = len(df[y].max()) if num_size > 6: margin: int = 12 * (num_size - 6) # 12 pixels by extra num option_modifications_temp["yAxis"] = { "axisLabel": {"margin": margin}, } if option_modifications: if not option_modifications.get('legend'): option_modifications.update({"legend": {"type": "scroll"}}) if not option_modifications.get('toolbox'): option_modifications['toolbox'] = {"orient": "vertical", "top": 20} elif not option_modifications.get('toolbox').get('orient'): option_modifications['toolbox'].update({"orient": "vertical", "top": 20}) if not option_modifications.get('series'): option_modifications['series'] = {'smooth': True} elif not option_modifications.get('series').get('smooth'): option_modifications['series'].update({'smooth': True}) else: option_modifications = option_modifications_temp # TODO we have two titles now, take a decision # one in dataFields the other as field data_fields: Dict = self._set_data_fields( title='', subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, ) data_fields['type'] = echart_type report_metadata: Dict = { 'reportType': 'ECHARTS', 'dataFields': data_fields, 'title': title, } if row and column: report_metadata['grid'] = f'{row}, {column}' if filters: raise NotImplementedError return self._create_chart( data=df, menu_path=menu_path, overwrite=overwrite, report_metadata=report_metadata, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, ) def _create_multifilter_reports( self, data: Union[str, DataFrame, List[Dict]], filters: Dict, ) -> Iterable: """ Create chunks of the data to create N reports for every filter combination """ df: DataFrame = self._validate_data_is_pandarable(data) filter_cols: List[str] = filters['filter_cols'] select_filter: Dict[str, str] = { v: f'Select{index + 1}' for index, v in enumerate(filter_cols) } # Create all combinations # https://stackoverflow.com/questions/18497604/combining-all-combinations-of-two-lists-into-a-dict-of-special-form d: Dict = {} for filter_name in filter_cols: d[filter_name] = df[filter_name].unique().tolist() filter_combinations = [ dict(zip((list(d.keys())), row)) for row in product(*list(d.values())) ] for filter_combination in filter_combinations: df_temp = df.copy() filter_element: Dict = {} for filter_, value in filter_combination.items(): filter_element[select_filter[filter_]] = value df_temp = df_temp[df_temp[filter_] == value] if df_temp.empty: break if df_temp.empty: continue # Get rid of NaN columns based on the filters df_temp = df_temp.dropna(axis=1) yield df_temp, filter_element def _update_filter_report( self, filter_row: Optional[int], filter_column: Optional[int], filter_order: Optional[int], filter_elements: List, menu_path: str, update_type: str = 'concat', ) -> None: """""" filter_reports: List[Dict] = ( self._find_target_reports( menu_path=menu_path, grid=f'{filter_row}, {filter_column}', order=filter_order, component_type='MULTIFILTER', by_component_type=True, ) ) try: assert len(filter_reports) == 1 filter_report = filter_reports[0] except AssertionError: raise ValueError( f'The Filter you are defining does not exist in the specified position | ' f'{len(filter_reports)} | row {filter_row} | column {filter_column}' ) filter_report_data: Dict = json.loads( filter_report['chartData'] ) # Here we append old and new reportId df_filter_report_data: pd.DataFrame = pd.DataFrame(filter_report_data) df_filter_elements: pd.DataFrame = pd.DataFrame(filter_elements) if update_type == 'concat': df_chart_data: pd.DataFrame = pd.concat([ df_filter_report_data, df_filter_elements, ]) elif update_type == 'append': df_chart_data: pd.DataFrame = pd.merge( df_filter_report_data, df_filter_elements, how='left', on=[ c for c in df_filter_report_data.columns if 'Select' in c ], suffixes=('_old', '_new') ) df_chart_data['reportId'] = ( df_chart_data['reportId_old'] + df_chart_data['reportId_new'] ) df_chart_data.drop( columns=['reportId_old', 'reportId_new'], axis=1, inplace=True, ) else: raise ValueError( f'update_type can only be "concat" or "append" | ' f'Value provided is {update_type}' ) chart_data: List[Dict] = df_chart_data.to_dict(orient='records') del df_chart_data report_metadata: Dict = { 'reportType': 'MULTIFILTER', 'grid': f'{filter_row}, {filter_column}', 'title': '', } self._create_chart( data=chart_data, menu_path=menu_path, report_metadata=report_metadata, overwrite=True, ) def _create_trend_charts_with_filters( self, data: Union[str, DataFrame, List[Dict]], filters: Dict, **kwargs, ): """""" filter_elements: List[Dict] = [] self._validate_filters(filters=filters) # We are going to save all the reports one by one for df_temp, filter_element in ( self._create_multifilter_reports( data=data, filters=filters, ) ): kwargs_: Dict = kwargs.copy() cols: List[str] = df_temp.columns kwargs_['y'] = [ value for value in kwargs_['y'] if value in cols ] report_id = self._create_trend_chart( data=df_temp, overwrite=False, **kwargs_, ) filter_element['reportId'] = [report_id] filter_elements.append(filter_element) update_filter_type: Optional[str] = filters.get('update_filter_type') filter_row: Optional[int] = filters.get('row') filter_column: Optional[int] = filters.get('column') filter_order: Optional[int] = filters.get('order') if update_filter_type: # concat is to add new filter options # append is to add new reports to existing filter options try: assert update_filter_type in ['concat', 'append'] except AssertionError: raise ValueError( f'update_filter_type must be one of both: "concat" or "append" | ' f'Value provided: {update_filter_type}' ) self._update_filter_report( filter_row=filter_row, filter_column=filter_column, filter_order=filter_order, filter_elements=filter_elements, menu_path=kwargs['menu_path'], update_type=update_filter_type, ) else: report_metadata: Dict = { 'reportType': 'MULTIFILTER', 'title': '', } if filter_row and filter_column: report_metadata['grid'] = f'{filter_row}, {filter_column}' elif filter_order is not None: report_metadata['order'] = filter_order else: raise ValueError('Either row and column or order must be provided') self._create_chart( data=filter_elements, menu_path=kwargs['menu_path'], report_metadata=report_metadata, order=filter_order, overwrite=True, ) def _create_trend_charts( self, data: Union[str, DataFrame, List[Dict]], filters: Optional[Dict], **kwargs, ): """ Example ----------------- filters: Dict = { 'exists': False, 'row': 1, 'column': 1, 'filter_cols': [ 'seccion', 'frecuencia', 'region', ], } """ if filters: self._create_trend_charts_with_filters( data=data, filters=filters, **kwargs ) else: self._create_trend_chart(data=data, **kwargs) def _set_data_fields( self, title: str, subtitle: str, x_axis_name: str, y_axis_name: str, option_modifications: Dict, ) -> Dict: """""" chart_options: Dict = { 'title': title if title else "", 'subtitle': subtitle if subtitle else "", 'legend': True, 'tooltip': True, 'axisPointer': True, 'toolbox': { 'saveAsImage': True, 'restore': True, 'dataView': False, 'dataZoom': True, 'magicType': False, }, 'xAxis': { 'name': x_axis_name if x_axis_name else "", 'type': 'category', }, 'yAxis': { 'name': y_axis_name if y_axis_name else "", 'type': 'value', }, 'dataZoom': True, 'smooth': True, } data_fields: Dict = { 'chartOptions': chart_options, } if option_modifications: for k, v in option_modifications.items(): if k == 'optionModifications': data_fields[k] = v else: data_fields['chartOptions'][k] = v return data_fields def set_business(self, business_id: str): """""" # If the business id does not exists it raises an ApiClientError _ = self._get_business(business_id) self.business_id: str = business_id def set_new_business(self, name: str): """""" business: Dict = self._create_business(name=name) self.business_id: str = business['id'] def set_path_orders( self, app_name: str, path_order: Dict[str, int], ) -> None: """ :param app_name: the App name :param path_order: example {'test': 0, 'more-test': 1} """ app: Dict = self._get_app_by_name( business_id=self.business_id, name=app_name, ) app_id = app['id'] reports = self._get_app_reports( business_id=self.business_id, app_id=app_id, ) for report in reports: path: str = report['path'] # TODO we need to use something else besides `order` order: int = path_order.get(path) if order: self.update_report( business_id=self.business_id, app_id=app_id, report_id=report['id'], # TODO this needs to be replaced report_metadata={'order': order}, ) def append_data_to_trend_chart( self, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], component_type: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, ) -> None: """Append new data""" allowed_components_type: List[str] = [ 'line', 'bar', 'scatter', 'predictive_line', ] if component_type not in allowed_components_type: raise ValueError( f'{component_type} not allowed | ' f'Must be one of {allowed_components_type}' ) cols: List[str] = [x] + y self._validate_table_data(data, elements=cols) df: DataFrame = self._validate_data_is_pandarable(data) df = df[cols] # keep only x and y df.rename(columns={x: 'xAxis'}, inplace=True) if row and column: target_reports: List[Dict] = ( self._find_target_reports( menu_path=menu_path, grid=f'{row}, {column}', component_type=component_type, ) ) else: target_reports: List[Dict] = ( self._find_target_reports( menu_path=menu_path, order=order, component_type=component_type, ) ) # TODO for multifilter we will need to iterate on this assert len(target_reports) == 1 for report in target_reports: self._append_report_data( business_id=self.business_id, app_id=report['appId'], report_id=report['id'], report_data=df, ) # TODO move part of it to get_reports_by_path_grid_and_type() in report_metadata_api.py def delete( self, menu_path: str, grid: Optional[str] = None, order: Optional[int] = None, row: Optional[int] = None, column: Optional[int] = None, component_type: Optional[str] = None, by_component_type: bool = True, ) -> None: """In cascade find the reports that match the query and delete them all """ if grid: kwargs = {'grid': grid} elif order is not None: kwargs = {'order': order} elif row and column: kwargs = {'grid': f'{row}, {column}'} else: raise ValueError('Either Row and Column or Order must be specified') target_reports: List[Dict] = ( self._find_target_reports( menu_path=menu_path, component_type=component_type, by_component_type=by_component_type, **kwargs, ) ) for report in target_reports: self._delete_report( business_id=self.business_id, app_id=report['appId'], report_id=report['id'] ) def delete_path(self, menu_path: str) -> None: """In cascade delete an App or Path and all the reports within it If menu_path contains an "{App}/{Path}" then it removes the path otherwise it removes the whole app """ name, path_name = self._clean_menu_path(menu_path=menu_path) app: Dict = self._get_app_by_name( business_id=self.business_id, name=name, ) if not app: return app_id: str = app['id'] reports: List[Dict] = self._get_app_reports( business_id=self.business_id, app_id=app_id, ) if path_name: target_reports: List[Dict] = [ report for report in reports if report['path'] == path_name ] else: target_reports: List[Dict] = reports for report in target_reports: self._delete_report( business_id=self.business_id, app_id=app_id, report_id=report['id'] ) else: if '/' not in menu_path: self._delete_app( business_id=self.business_id, app_id=app_id, ) def table( self, data: Union[str, DataFrame, List[Dict]], menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, title: Optional[str] = None, # second layer filter_columns: Optional[List[str]] = None, sort_table_by_col: Optional[Dict] = None, horizontal_scrolling: bool = False, overwrite: bool = True, ): """ { "Product": null, "Monetary importance": { "field": "stringField2", "filterBy": ["High", "Medium", "Low"] "defaultOrder": "asc", }, "Purchase soon": { "field": "stringField3", "filterBy": ["Yes", "No"] }, } """ def _calculate_table_extra_map() -> Dict[str, str]: """ Example ---------------- input filter_columns = ["Monetary importance"] sort_table_by_col = {'date': 'asc'} output filters_map = { 'stringField1': 'Monetary importance', 'stringField2': 'date', } """ filters_map: Dict[str, str] = {} key_prefix_name: str = 'stringField' if sort_table_by_col: field_cols: List[str] = filter_columns + list(sort_table_by_col.keys()) else: field_cols: List[str] = filter_columns if field_cols: for index, filter_column in enumerate(field_cols): filters_map[filter_column] = f'{key_prefix_name}{index + 1}' return filters_map else: return {} def _calculate_table_filter_fields() -> Dict[str, List[str]]: """ Example ---------------- input df x, y, Monetary importance, 1, 2, high, 2, 2, high, 10, 9, low, 2, 1, high, 4, 6, medium, filter_columns = ["Monetary importance"] output filter_fields = { 'Monetary importance': ['high', 'medium', 'low'], } """ filter_fields_: Dict[str, List[str]] = {} if filter_columns: for filter_column in filter_columns: values: List[str] = df[filter_column].unique().tolist() try: assert len(values) <= 20 except AssertionError: raise ValueError( f'At maximum a table may have 20 different values in a filter | ' f'You provided {len(values)} | ' f'You provided {values}' ) filter_fields_[filter_column] = values return filter_fields_ else: return {} def _calculate_table_data_fields() -> Dict: """ Example ------------- input df x, y, Monetary importance, 1, 2, high, 2, 2, high, 10, 9, low, 2, 1, high, 4, 6, medium, filters_map = { 'stringField1': 'Monetary importance', } filter_fields = { 'Monetary importance': ['high', 'medium', 'low'], } output { "Product": null, "Monetary importance": { "field": "stringField1", "filterBy": ["high", "medium", "low"] }, } """ data_fields: Dict = {} cols: List[str] = df.columns.tolist() if sort_table_by_col: cols_to_sort_by: List[str] = list(sort_table_by_col.keys()) else: cols_to_sort_by: List[str] = [] for col in cols: if col in filter_fields: data_fields[col] = { 'field': extra_map[col], 'filterBy': filter_fields[col], } else: data_fields[col] = None if col in cols_to_sort_by: if data_fields: if data_fields[col]: data_fields[col].update( { 'field': extra_map[col], "defaultOrder": sort_table_by_col[col], } ) else: data_fields[col] = { 'field': extra_map[col], "defaultOrder": sort_table_by_col[col], } else: data_fields[col] = { 'field': extra_map[col], "defaultOrder": sort_table_by_col[col], } return json.dumps(data_fields) df: DataFrame = self._validate_data_is_pandarable(data) if sort_table_by_col: try: assert len(sort_table_by_col) == 1 except AssertionError: raise ValueError( f'Currently we can only sort tables by one column ' f'You passed {len(sort_table_by_col)} columns' ) # This is for the responsive part of the application # by default 6 is the maximum for average desktop screensize # then it starts creating an horizontal scrolling if horizontal_scrolling: if len(df.columns) > 6: raise ValueError( f'Tables with more than 6 columns are not allowed' ) extra_map: Dict[str, str] = _calculate_table_extra_map() filter_fields: Dict[str, List[str]] = _calculate_table_filter_fields() name, path_name = self._clean_menu_path(menu_path=menu_path) try: d: Dict[str, Dict] = self._create_app_type_and_app( business_id=self.business_id, app_type_metadata={'name': name}, app_metadata={}, ) app: Dict = d['app'] except ApiClientError: # Business admin user app: Dict = self._get_app_by_name(business_id=self.business_id, name=name) if not app: app: Dict = self._create_app( business_id=self.business_id, name=name, ) app_id: str = app['id'] order: int = self._get_component_order( app_id=app_id, path_name=path_name, ) report_metadata: Dict[str, Any] = { 'title': title, 'path': path_name, 'order': order, 'dataFields': _calculate_table_data_fields(), } if row and column: report_metadata['grid']: str = f'{row}, {column}' if overwrite: if not row and not column and not order: raise ValueError( 'Row, Column or Order must be specified to overwrite a report' ) if report_metadata.get('grid'): self.delete( menu_path=menu_path, grid=report_metadata.get('grid'), by_component_type=False, ) else: self.delete( menu_path=menu_path, order=order, by_component_type=False, ) report: Dict = self._create_report( business_id=self.business_id, app_id=app_id, report_metadata=report_metadata, ) report_id: str = report['id'] report_entry_filter_fields: Dict[str, List[str]] = { extra_map[extra_name]: values for extra_name, values in filter_fields.items() } # We do not allow NaN values for report Entry df = df.fillna('') report_entries: List[Dict] = ( self._convert_dataframe_to_report_entry( df=df, filter_map=extra_map, sort_table_by_col=sort_table_by_col, filter_fields=report_entry_filter_fields ) ) self._update_report_data( business_id=self.business_id, app_id=app_id, report_id=report_id, report_data=report_entries, ) def html( self, html: str, menu_path: str, title: Optional[str] = None, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[str] = None, ): report_metadata: Dict = { 'reportType': 'HTML', 'order': order if order else 1, 'title': title if title else '', } if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=[{'value': html}], menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def iframe( self, menu_path: str, url: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[str] = None, title: Optional[str] = None, height: Optional[int] = None, ): report_metadata: Dict = { 'reportType': 'IFRAME', 'dataFields': { 'url': url, 'height': height if height else 600 }, 'order': order if order else 1, 'title': title if title else '', } if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=[], menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def bar( self, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a barchart """ # TODO this only works for single bar: """ 'xAxis': { 'axisLabel': { 'inside': True, 'color': '#ffffff' }, 'axisTick': { 'show': False } }, 'color': '#002FD8', # put multicolor """ option_modifications: Dict[str, Any] = { 'dataZoom': False, 'optionModifications': { 'series': { 'itemStyle': { 'borderRadius': [9, 9, 0, 0] } }, # 'color': '#002FD8', # TODO put multicolor 'emphasis': { 'itemStyle': {'color': '#29D86F'} }, } } return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=y, menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='bar', ) ) def horizontal_barchart( self, data: Union[str, DataFrame, List[Dict]], x: List[str], y: str, # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a Horizontal barchart https://echarts.apache.org/examples/en/editor.html?c=bar-y-category """ option_modifications: Dict[str, Any] = { 'dataZoom': False, 'xAxis': {'type': 'value'}, 'yAxis': {'type': 'category'}, 'optionModifications': {'yAxis': {'boundaryGap': True}}, } return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=y, menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='bar', ) ) def zero_centered_barchart( self, data: Union[str, DataFrame, List[Dict]], x: List[str], y: str, # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a Horizontal barchart https://echarts.apache.org/examples/en/editor.html?c=bar-y-category """ option_modifications: Dict[str, Any] = { 'dataZoom': False, 'xAxis': { 'type': 'value', 'position': 'top', 'splitLine': { 'lineStyle': {'type': 'dashed'} } }, 'yAxis': { 'type': 'category', 'axisLine': {'show': False}, 'axisLabel': {'show': False}, 'axisTick': {'show': False}, 'splitLine': {'show': False}, }, 'optionModifications': {'yAxis': {'boundaryGap': True}}, } return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=y, menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='bar', ) ) def line( self, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # thid layer filters: Optional[Dict] = None, # thid layer ): """""" return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=y, menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='line', ) ) def predictive_line( self, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], # first layer menu_path: str, min_value_mark: Any, max_value_mark: Any, color_mark: str = 'rgba(255, 173, 177, 0.4)', row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, filters: Optional[Dict] = None, ): """ :param data: :param x: :param y: :param menu_path: :param row: :param column: :param min_value_mark: :param max_value_mark: :param color_mark: RGBA code :param title: :param x_axis_name: :param y_axis_name: :param filters: """ option_modifications = { 'optionModifications': { 'series': { 'smooth': True, 'markArea': { 'itemStyle': { 'color': color_mark }, 'data': [ [ { 'name': 'Prediction', 'xAxis': min_value_mark }, { 'xAxis': max_value_mark } ], ], } }, } } return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=y, menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='line', ) ) def line_with_confidence_area( self, data: Union[str, DataFrame, List[Dict]], x: str, y: str, # above_band_name: str, below_band_name: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, filters: Optional[Dict] = None, ): """ https://echarts.apache.org/examples/en/editor.html?c=line-stack option = { title: { text: 'Stacked Line' }, tooltip: { trigger: 'axis' }, legend: { data: ['Email', 'Union Ads', 'Video Ads', 'Direct', 'Search Engine'] }, grid: { left: '3%', right: '4%', bottom: '3%', containLabel: true }, toolbox: { feature: { saveAsImage: {} } }, xAxis: { type: 'category', boundaryGap: false, data: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] }, yAxis: { type: 'value' }, series: [ { name: 'Email', type: 'line', stack: 'Total', data: [120, 132, 101, 134, 90, 230, 210] }, { name: 'Union Ads', type: 'line', stack: 'Total', lineStyle: { opacity: 0 }, stack: 'confidence-band', symbol: 'none', data: [220, 182, 191, 234, 290, 330, 310] }, { name: 'Video Ads', type: 'line', stack: 'Total', data: [150, 232, 201, 154, 190, 330, 410] }, { name: 'Direct', type: 'line', data: [320, 332, 301, 334, 390, 330, 320] }, { name: 'Search Engine', type: 'line', lineStyle: { opacity: 0 }, areaStyle: { color: '#ccc' }, stack: 'confidence-band', symbol: 'none', data: [820, 932, 901, 934, 1290, 1330, 1320] } ] }; """ option_modifications = { 'series': [{ 'smooth': True, 'lineStyle': { 'opacity': 0 }, 'areaStyle': { 'color': '#ccc' }, 'stack': 'confidence-band', 'symbol': 'none', }, ], } return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=[y], menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='line', ) ) def scatter_with_confidence_area( self, data: Union[str, DataFrame, List[Dict]], x: str, y: str, # above_band_name: str, below_band_name: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, filters: Optional[Dict] = None, ): """ https://echarts.apache.org/examples/en/editor.html?c=line-stack option = { title: { text: 'Stacked Line' }, tooltip: { trigger: 'axis' }, legend: { data: ['Email', 'Union Ads', 'Video Ads', 'Direct', 'Search Engine'] }, grid: { left: '3%', right: '4%', bottom: '3%', containLabel: true }, toolbox: { feature: { saveAsImage: {} } }, xAxis: { type: 'category', boundaryGap: false, data: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] }, yAxis: { type: 'value' }, series: [ { name: 'Email', type: 'line', stack: 'Total', data: [120, 132, 101, 134, 90, 230, 210] }, { name: 'Union Ads', type: 'line', stack: 'Total', lineStyle: { opacity: 0 }, stack: 'confidence-band', symbol: 'none', data: [220, 182, 191, 234, 290, 330, 310] }, { name: 'Video Ads', type: 'line', stack: 'Total', data: [150, 232, 201, 154, 190, 330, 410] }, { name: 'Direct', type: 'line', data: [320, 332, 301, 334, 390, 330, 320] }, { name: 'Search Engine', type: 'line', lineStyle: { opacity: 0 }, areaStyle: { color: '#ccc' }, stack: 'confidence-band', symbol: 'none', data: [820, 932, 901, 934, 1290, 1330, 1320] } ] }; """ option_modifications = { 'series': [{ 'smooth': True, 'lineStyle': { 'opacity': 0 }, 'areaStyle': { 'color': '#ccc' }, 'stack': 'confidence-band', 'symbol': 'none', }, ], } return self._create_trend_chart( data=data, x=x, y=[y], menu_path=menu_path, row=row, column=column, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='scatter', filters=filters, ) def stockline( self, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """""" self._validate_table_data(data, elements=[x] + y) df: DataFrame = self._validate_data_is_pandarable(data) data_fields: Dict = { "key": x, "labels": { "key": x_axis_name, "value": y_axis_name, "hideKey": False, "hideValue": False }, "values": y, "dataZoomX": True, "smooth": True, "symbol": "circle", } report_metadata: Dict = { 'reportType': 'STOCKLINECHART', 'title': title if title else '', 'dataFields': data_fields, } if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def scatter( self, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """""" try: assert 2 <= len(y) <= 3 except Exception: raise ValueError(f'y provided has {len(y)} it has to have 2 or 3 dimensions') return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=y, menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='scatter', ) ) def bubble_chart( self, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], z: str, # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, # to create filters ): """""" return self._create_trend_chart( data=data, x=x, y=y, menu_path=menu_path, row=row, column=column, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='scatter', filters=filters, ) def indicator( self, data: Union[str, DataFrame, List[Dict]], value: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, target_path: Optional[str] = None, set_title: Optional[str] = None, header: Optional[str] = None, footer: Optional[str] = None, color: Optional[str] = None, align: Optional[str] = None, multi_column: int = 4, real_time: bool = False, ): """ :param data: :param value: :param menu_path: :param row: :param column: :param order: :param rows_size: :param cols_size: :param padding: :param target_path: :param set_title: the title of the set of indicators :param header: :param footer: :param color: :param align: to align center, left or right a component :param multi_column: how many indicators are allowed by column :param real_time: """ mandatory_elements: List[str] = [ header, value, target_path, ] mandatory_elements = [element for element in mandatory_elements if element] extra_elements: List[str] = [footer, color, align] extra_elements = [element for element in extra_elements if element] self._validate_table_data(data, elements=mandatory_elements) df: DataFrame = self._validate_data_is_pandarable(data) df = df[mandatory_elements + extra_elements] # keep only x and y cols_to_rename: Dict[str, str] = { header: 'title', footer: 'description', value: 'value', color: 'color', align: 'align', } if target_path: cols_to_rename.update({target_path: 'targetPath'}) cols_to_rename = { col_to_rename: v for col_to_rename, v in cols_to_rename.items() if col_to_rename in mandatory_elements + extra_elements } df.rename(columns=cols_to_rename, inplace=True) for extra_element in extra_elements: if extra_element == 'align': df['align'] = df['align'].fillna('right') elif extra_element == 'color': df['color'] = df['color'].fillna('black') elif extra_element == 'description': df['description'] = df['description'].fillna('') else: raise ValueError(f'{extra_element} is not solved') report_metadata: Dict = { 'reportType': 'INDICATORS', 'title': set_title if set_title else '' } # TODO align is not working well yet # By default Shimoku assigns 4 indicators per row # the following lines adjust it to the nature of the data # and the multi_column variable len_df: int = len(df) columns: int = 4 if len_df < multi_column: columns: int = len_df elif multi_column != 4: columns: int = multi_column data_fields: Dict = {'dataFields': {'columns': columns}} report_metadata.update(data_fields) if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, real_time=real_time, ) def alert_indicator( self, data: Union[str, DataFrame, List[Dict]], value: str, target_path: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, set_title: Optional[str] = None, header: Optional[str] = None, footer: Optional[str] = None, color: Optional[str] = None, multi_column: int = 4, ): """""" elements: List[str] = [header, footer, value, color, target_path] elements = [element for element in elements if element] self._validate_table_data(data, elements=elements) return self.indicator( data=data, value=value, menu_path=menu_path, row=row, column=column, order=order, cols_size=cols_size, rows_size=rows_size, padding=padding, target_path=target_path, set_title=set_title, header=header, footer=footer, color=color, multi_column=multi_column, ) def pie( self, data: Union[str, DataFrame, List[Dict]], x: str, y: str, # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a Piechart """ self._validate_table_data(data, elements=[x, y]) df: DataFrame = self._validate_data_is_pandarable(data) df = df[[x, y]] # keep only x and y df.rename(columns={x: 'name', y: 'value'}, inplace=True) report_metadata: Dict = { 'reportType': 'ECHARTS', 'dataFields': {'type': 'pie'}, 'title': title, } if filters: raise NotImplementedError if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def radar( self, data: Union[str, DataFrame, List[Dict]], x: str, y: List[str], # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer # subtitle: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a RADAR """ self._validate_table_data(data, elements=[x] + y) df: DataFrame = self._validate_data_is_pandarable(data) df = df[[x] + y] # keep only x and y df.rename(columns={x: 'name'}, inplace=True) data_fields: Dict = { 'type': 'radar', } if option_modifications: data_fields['optionModifications'] = option_modifications report_metadata: Dict = { 'reportType': 'ECHARTS', 'dataFields': data_fields, 'title': title, } if filters: raise NotImplementedError if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def tree( self, data: Union[str, List[Dict]], menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a Tree """ self._validate_tree_data(data[0], vals=['name', 'value', 'children']) report_metadata: Dict = { 'reportType': 'ECHARTS', 'dataFields': {'type': 'tree'}, 'title': title, } if filters: raise NotImplementedError if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def treemap( self, data: Union[str, List[Dict]], menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a Treemap """ self._validate_tree_data(data[0], vals=['name', 'value', 'children']) report_metadata: Dict = { 'title': title, 'reportType': 'ECHARTS', 'dataFields': {'type': 'treemap'}, } if filters: raise NotImplementedError if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def sunburst( self, data: List[Dict], name: str, children: str, value: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a Sunburst """ self._validate_tree_data(data[0], vals=['name', 'children']) report_metadata: Dict = { 'reportType': 'ECHARTS', 'title': title, 'dataFields': {'type': 'sunburst'}, } if filters: raise NotImplementedError if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def candlestick( self, data: Union[str, DataFrame, List[Dict]], x: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """""" y = ['open', 'close', 'highest', 'lowest'] return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=y, menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='candlestick', ) ) def heatmap( self, data: Union[str, DataFrame, List[Dict]], x: str, y: str, value: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """""" df: DataFrame = self._validate_data_is_pandarable(data) df = df[[x, y, value]] # keep only x and y df.rename(columns={x: 'xAxis', y: 'yAxis', value: 'value'}, inplace=True) option_modifications: Dict = { "toolbox": {"orient": "horizontal", "top": 0}, } return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=[y, value], menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='heatmap', ) ) def cohort( self, data: Union[str, DataFrame, List[Dict]], x: str, y: str, value: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, filters: Optional[Dict] = None, ): """""" df: DataFrame = self._validate_data_is_pandarable(data) df = df[[x, y, value]] # keep only x and y df.rename(columns={x: 'xAxis', y: 'yAxis', value: 'value'}, inplace=True) option_modifications: Dict = { "toolbox": {"orient": "horizontal", "top": 0}, "xAxis": {"axisLabel": {"margin": '10%'}}, 'optionModifications': { 'grid': { 'bottom': '20%', # 'top': '10%' }, "visualMap": { 'calculable': True, "inRange": { "color": ['#cfb1ff', '#0000ff'] }, }, }, } return self._create_trend_charts( data=data, filters=filters, **dict( x=x, y=[y, value], menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='heatmap', ) ) def predictive_cohort(self): """""" raise NotImplementedError def sankey( self, data: Union[str, DataFrame, List[Dict]], source: str, target: str, value: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """""" df: DataFrame = self._validate_data_is_pandarable(data) df = df[[source, target, value]] # keep only x and y df.rename( columns={ source: 'source', target: 'target', value: 'value', }, inplace=True, ) report_metadata: Dict = { 'title': title, 'reportType': 'ECHARTS', 'dataFields': {'type': 'sankey'}, } if filters: raise NotImplementedError if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def funnel( self, data: Union[str, DataFrame, List[Dict]], name: str, value: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """""" df: DataFrame = self._validate_data_is_pandarable(data) df = df[[name, value]] # keep only x and y df.rename( columns={ name: 'name', value: 'value', }, inplace=True, ) return self._create_trend_charts( data=data, filters=filters, **dict( x=name, y=[value], menu_path=menu_path, row=row, column=column, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='funnel', ) ) def speed_gauge( self, data: Union[str, DataFrame, List[Dict]], name: str, value: str, menu_path: str, min: int, max: int, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer # subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ) -> str: """ option = { series: [ { type: 'gauge', startAngle: 190, endAngle: -10, min: 0, max: 80, pointer: { show: true }, progress: { show: true, overlap: false, roundCap: true, clip: false, itemStyle: { borderWidth: 0, borderColor: '#464646' } }, axisLine: { lineStyle: { width: 10 } }, splitLine: { show: true, distance: 0, length: 5 }, axisTick: { show: true }, axisLabel: { show: true, distance: 30 }, data: gaugeData, title: { fontSize: 14, offsetCenter: ['0%', '30%'], }, anchor: { show: true, showAbove: true, size: 25, itemStyle: { borderWidth: 10 } }, detail: { bottom: 10, width: 10, height: 14, fontSize: 14, color: 'auto', borderRadius: 20, borderWidth: 0, formatter: '{value}%', offsetCenter: [0, '45%'] } } ] } """ self._validate_table_data(data, elements=[name, value]) df: DataFrame = self._validate_data_is_pandarable(data) title: str = ( title if title else f'{df["name"].to_list()[0]}: {df["value"].to_list()[0]}' ) df = df[[name, value]] # keep only x and y df.rename( columns={ name: 'name', value: 'value', }, inplace=True, ) data_fields: Dict = { 'type': 'gauge', 'optionModifications': { 'series': { 'startAngle': 190, 'endAngle': -10, 'min': min, 'max': max, 'pointer': { 'show': True }, 'progress': { 'show': True, 'overlap': False, 'roundCap': True, 'clip': False, 'itemStyle': { 'borderWidth': 0, 'borderColor': '#464646' } }, 'axisLine': { 'lineStyle': { 'width': 10 } }, 'splitLine': { 'show': True, 'distance': 0, 'length': 5 }, 'axisTick': { 'show': True, }, 'axisLabel': { 'show': True, 'distance': 30 }, 'title': { 'show': False, }, 'anchor': { 'show': True, 'showAbove': True, 'size': 25, 'itemStyle': { 'borderWidth': 10 } }, 'detail': { 'show': False, } }, }, } if option_modifications: raise NotImplementedError report_metadata: Dict = { 'reportType': 'ECHARTS', 'dataFields': data_fields, 'title': title, } if filters: raise NotImplementedError if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def ring_gauge( self, data: Union[str, DataFrame, List[Dict]], name: str, value: str, menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer # subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ) -> str: """""" self._validate_table_data(data, elements=[name, value]) df: DataFrame = self._validate_data_is_pandarable(data) df = df[[name, value]] # keep only x and y df.rename( columns={ name: 'name', value: 'value', }, inplace=True, ) data_fields: Dict = { 'type': 'gauge', } if option_modifications: data_fields['optionModifications'] = option_modifications report_metadata: Dict = { 'reportType': 'ECHARTS', 'dataFields': data_fields, 'title': title, } if filters: raise NotImplementedError if row and column: report_metadata['grid'] = f'{row}, {column}' return self._create_chart( data=data, menu_path=menu_path, order=order, rows_size=rows_size, cols_size=cols_size, padding=padding, report_metadata=report_metadata, ) def themeriver( self, data: Union[str, DataFrame, List[Dict]], x: str, y: str, name: str, # first layer menu_path: str, row: Optional[int] = None, column: Optional[int] = None, # report creation order: Optional[int] = None, rows_size: Optional[int] = None, cols_size: int = 12, padding: Optional[List[int]] = None, title: Optional[str] = None, # second layer subtitle: Optional[str] = None, x_axis_name: Optional[str] = None, y_axis_name: Optional[str] = None, option_modifications: Optional[Dict] = None, # third layer filters: Optional[Dict] = None, ): """Create a barchart """ df: DataFrame = self._validate_data_is_pandarable(data) df = df[[x, y, name]] # keep only x and y df.rename( columns={ name: 'name', y: 'value', }, inplace=True, ) y = [y, name] self._create_trend_chart( data=df, x=x, y=y, menu_path=menu_path, row=row, column=column, title=title, subtitle=subtitle, x_axis_name=x_axis_name, y_axis_name=y_axis_name, option_modifications=option_modifications, echart_type='themeriver', filters=filters, ) def stacked_barchart(self): raise NotImplementedError
python
import numpy as np from pyscf.pbc import scf as pbchf from pyscf.pbc import dft as pbcdft import ase import ase.lattice import ase.dft.kpoints def run_hf(cell, exxdiv=None): """Run a gamma-point Hartree-Fock calculation.""" mf = pbchf.RHF(cell, exxdiv=exxdiv) mf.verbose = 7 print mf.scf() return mf def run_dft(cell): """Run a gamma-point DFT (LDA) calculation.""" mf = pbcdft.RKS(cell) mf.xc = 'lda,vwn' mf.verbose = 7 print mf.scf() return mf def run_khf(cell, nmp=[1,1,1], gamma=False, kshift=np.zeros(3), exxdiv=None): """Run a k-point-sampling Hartree-Fock calculation.""" scaled_kpts = ase.dft.kpoints.monkhorst_pack(nmp) if gamma: for i in range(3): if nmp[i] % 2 == 0: scaled_kpts[:,i] += 0.5/nmp[i] # Move first kpt to the Gamma pt scaled_kpts -= scaled_kpts[0,:] # Shift by kshift scaled_kpts += kshift # Put back in BZ print "Before shifting back" print scaled_kpts scaled_kpts -= 1.0*np.round(scaled_kpts/1.0) print "After shifting back" print scaled_kpts abs_kpts = cell.get_abs_kpts(scaled_kpts) kmf = pbchf.KRHF(cell, abs_kpts, exxdiv=exxdiv) kmf.verbose = 7 print kmf.scf() return kmf def run_kdft(cell, nmp=[1,1,1], gamma=False): """Run a k-point-sampling DFT (LDA) calculation.""" scaled_kpts = ase.dft.kpoints.monkhorst_pack(nmp) if gamma: for i in range(3): if nmp[i] % 2 == 0: scaled_kpts[:,i] += 0.5/nmp[i] abs_kpts = cell.get_abs_kpts(scaled_kpts) kmf = pbcdft.KRKS(cell, abs_kpts) kmf.xc = 'lda,vwn' kmf.verbose = 7 print kmf.scf() return kmf if __name__ == '__main__': from helpers import get_ase_diamond_primitive, build_cell ase_atom = get_ase_diamond_primitive() cell = build_cell(ase_atom) run_hf(cell) run_dft(cell) run_khf(cell) run_kdft(cell)
python
from django.core.management.base import BaseCommand, CommandError from django.contrib.sites.models import Site import urllib.request import json import pytz import datetime from django.utils import timezone import html import uuid from time import sleep from apps.pages.models import SuperintendentMessage from apps.images.models import NewsThumbnail, ContentBanner from apps.objects.models import User import apps.common.functions class Command(BaseCommand): site = Site.objects.get(domain='www.slcschools.org') host = 'https://www1.slcschools.org' req = urllib.request.Request(host + '/rest/supermessages') resp = urllib.request.urlopen(req,timeout=600) supermessagejson = resp.read().decode('utf8') supermessage = json.loads(supermessagejson) webmaster = User.objects.get(username='[email protected]') for article in supermessage: sleep(2) article_uuid = uuid.UUID(article['uuid']) body = article['body'] summary = article['body_1'] author_date = timezone.datetime(int(article['created_1']),int(article['created_2']), int(article['created_3']), hour=int(article['created_4']), minute=int(article['created_5']), tzinfo=timezone.utc) message, created = SuperintendentMessage.objects.get_or_create(uuid=article_uuid, defaults={'author_date':author_date,'deleted':0,'create_user':webmaster,'update_user':webmaster,'published':1,'url':'/tempnewsurl', 'site': site }) message.body=body message.summary=summary message.author_date=author_date message.deleted=False message.create_user=webmaster message.update_user=webmaster message.published=True message.save() print(message) if article['field_article_image'] != '': newsthumbimage, created = NewsThumbnail.objects.get_or_create(uuid=uuid.uuid5(message.uuid, article['field_article_image']), defaults={'related_node':message.page_node,'title':message.title + ' Thumbnail','deleted':0,'create_user':webmaster,'update_user':webmaster, 'published':1,'url':'/tempnewsthumburl','parent':message.page_node, 'site': site}) newsthumbimage.related_node = message.page_node newsthumbimage.title = message.title + ' Thumbnail' newsthumbimage.deleted = 0 newsthumbimage.create_user = webmaster newsthumbimage.update_user = webmaster newsthumbimage.published = 1 newsthumbimage.parent = message.page_node newsthumbimage.alttext=article['field_article_image_2'] thumbreq = urllib.request.Request(article['field_article_image_1']) thumbresp = urllib.request.urlopen(thumbreq,timeout=600) imagedata = thumbresp original_file, original_extension = apps.common.functions.findfileext_media(article['field_article_image_1']) newsthumbimage.image_file.save(original_file + original_extension, imagedata) newsthumbimage.save()
python
import os import unittest import sqlite3 import datetime import pandas from gtfspy.gtfs import GTFS from gtfspy.filter import FilterExtract from gtfspy.filter import remove_all_trips_fully_outside_buffer from gtfspy.import_gtfs import import_gtfs import hashlib class TestGTFSFilter(unittest.TestCase): def setUp(self): self.gtfs_source_dir = os.path.join(os.path.dirname(__file__), "test_data") self.gtfs_source_dir_filter_test = os.path.join(self.gtfs_source_dir, "filter_test_feed/") # self.G = GTFS.from_directory_as_inmemory_db(self.gtfs_source_dir) # some preparations: self.fname = self.gtfs_source_dir + "/test_gtfs.sqlite" self.fname_copy = self.gtfs_source_dir + "/test_gtfs_copy.sqlite" self.fname_filter = self.gtfs_source_dir + "/test_gtfs_filter_test.sqlite" self._remove_temporary_files() self.assertFalse(os.path.exists(self.fname_copy)) conn = sqlite3.connect(self.fname) import_gtfs(self.gtfs_source_dir, conn, preserve_connection=True, print_progress=False) conn_filter = sqlite3.connect(self.fname_filter) import_gtfs(self.gtfs_source_dir_filter_test, conn_filter, preserve_connection=True, print_progress=False) self.G = GTFS(conn) self.G_filter_test = GTFS(conn_filter) self.hash_orig = hashlib.md5(open(self.fname, 'rb').read()).hexdigest() def _remove_temporary_files(self): for fn in [self.fname, self.fname_copy, self.fname_filter]: if os.path.exists(fn) and os.path.isfile(fn): os.remove(fn) def tearDown(self): self._remove_temporary_files() def test_copy(self): # do a simple copy FilterExtract(self.G, self.fname_copy, update_metadata=False).create_filtered_copy() # check that the copying has been properly performed: hash_copy = hashlib.md5(open(self.fname_copy, 'rb').read()).hexdigest() self.assertTrue(os.path.exists(self.fname_copy)) self.assertEqual(self.hash_orig, hash_copy) def test_filter_change_metadata(self): # A simple test that changing update_metadata to True, does update some stuff: FilterExtract(self.G, self.fname_copy, update_metadata=True).create_filtered_copy() # check that the copying has been properly performed: hash_orig = hashlib.md5(open(self.fname, 'rb').read()).hexdigest() hash_copy = hashlib.md5(open(self.fname_copy, 'rb').read()).hexdigest() self.assertTrue(os.path.exists(self.fname_copy)) self.assertNotEqual(hash_orig, hash_copy) os.remove(self.fname_copy) def test_filter_by_agency(self): FilterExtract(self.G, self.fname_copy, agency_ids_to_preserve=['DTA']).create_filtered_copy() hash_copy = hashlib.md5(open(self.fname_copy, 'rb').read()).hexdigest() self.assertNotEqual(self.hash_orig, hash_copy) G_copy = GTFS(self.fname_copy) agency_table = G_copy.get_table("agencies") assert "EXA" not in agency_table['agency_id'].values, "EXA agency should not be preserved" assert "DTA" in agency_table['agency_id'].values, "DTA agency should be preserved" routes_table = G_copy.get_table("routes") assert "EXR1" not in routes_table['route_id'].values, "EXR1 route_id should not be preserved" assert "AB" in routes_table['route_id'].values, "AB route_id should be preserved" trips_table = G_copy.get_table("trips") assert "EXT1" not in trips_table['trip_id'].values, "EXR1 route_id should not be preserved" assert "AB1" in trips_table['trip_id'].values, "AB1 route_id should be preserved" calendar_table = G_copy.get_table("calendar") assert "FULLW" in calendar_table['service_id'].values, "FULLW service_id should be preserved" # stop_times stop_times_table = G_copy.get_table("stop_times") # 01:23:45 corresponds to 3600 + (32 * 60) + 45 [in day seconds] assert 3600 + (32 * 60) + 45 not in stop_times_table['arr_time'] os.remove(self.fname_copy) def test_filter_by_start_and_end_full_range(self): # untested tables with filtering: stops, shapes # test filtering by start and end time, copy full range FilterExtract(self.G, self.fname_copy, start_date=u"2007-01-01", end_date=u"2011-01-01", update_metadata=False).create_filtered_copy() G_copy = GTFS(self.fname_copy) dsut_end = G_copy.get_day_start_ut("2010-12-31") dsut_to_trip_I = G_copy.get_tripIs_within_range_by_dsut(dsut_end, dsut_end + 24 * 3600) self.assertGreater(len(dsut_to_trip_I), 0) os.remove(self.fname_copy) def test_filter_end_date_not_included(self): # the end date should not be included: FilterExtract(self.G, self.fname_copy, start_date="2007-01-02", end_date="2010-12-31").create_filtered_copy() hash_copy = hashlib.md5(open(self.fname_copy, 'rb').read()).hexdigest() self.assertNotEqual(self.hash_orig, hash_copy) G_copy = GTFS(self.fname_copy) dsut_end = G_copy.get_day_start_ut("2010-12-31") dsut_to_trip_I = G_copy.get_tripIs_within_range_by_dsut(dsut_end, dsut_end + 24 * 3600) self.assertEqual(len(dsut_to_trip_I), 0) calendar_copy = G_copy.get_table("calendar") max_date_calendar = max([datetime.datetime.strptime(el, "%Y-%m-%d") for el in calendar_copy["end_date"].values]) min_date_calendar = max([datetime.datetime.strptime(el, "%Y-%m-%d") for el in calendar_copy["start_date"].values]) end_date_not_included = datetime.datetime.strptime("2010-12-31", "%Y-%m-%d") start_date_not_included = datetime.datetime.strptime("2007-01-01", "%Y-%m-%d") self.assertLess(max_date_calendar, end_date_not_included, msg="the last date should not be included in calendar") self.assertLess(start_date_not_included, min_date_calendar) os.remove(self.fname_copy) def test_filter_spatially(self): # test that the db is split by a given spatial boundary FilterExtract(self.G, self.fname_copy, buffer_lat=36.914893, buffer_lon=-116.76821, buffer_distance_km=50).create_filtered_copy() G_copy = GTFS(self.fname_copy) stops_table = G_copy.get_table("stops") self.assertNotIn("FUR_CREEK_RES", stops_table['stop_id'].values) self.assertIn("AMV", stops_table['stop_id'].values) self.assertEqual(len(stops_table['stop_id'].values), 8) conn_copy = sqlite3.connect(self.fname_copy) stop_ids_df = pandas.read_sql('SELECT stop_id from stop_times ' 'left join stops ' 'on stops.stop_I = stop_times.stop_I', conn_copy) stop_ids = stop_ids_df["stop_id"].values self.assertNotIn("FUR_CREEK_RES", stop_ids) self.assertIn("AMV", stop_ids) trips_table = G_copy.get_table("trips") self.assertNotIn("BFC1", trips_table['trip_id'].values) routes_table = G_copy.get_table("routes") self.assertNotIn("BFC", routes_table['route_id'].values) # cases: # whole trip excluded # whole route excluded # whole agency excluded # part of trip excluded # part of route excluded # part of agency excluded # not removing stops from a trip that returns into area # test higher-order removals # stop A preserved # -> stop B preserved # -> stop C preserved def test_filter_spatially_2(self): n_rows_before = { "routes": 4, "stop_times": 14, "trips": 4, "stops": 6, "shapes": 4 } n_rows_after_1000 = { # within "soft buffer" in the feed data "routes": 1, "stop_times": 2, "trips": 1, "stops": 2, "shapes": 0 } n_rows_after_3000 = { # within "hard buffer" in the feed data "routes": len(["t1", "t3", "t4"]), "stop_times": 11, "trips": 4, "stops": len({"P", "H", "V", "L", "B"}), # for some reason, the first "shapes": 4 } paris_lat = 48.832781 paris_lon = 2.360734 SELECT_MIN_MAX_SHAPE_BREAKS_BY_TRIP_I_SQL = \ "SELECT trips.trip_I, shape_id, min(shape_break) as min_shape_break, max(shape_break) as max_shape_break FROM trips, stop_times WHERE trips.trip_I=stop_times.trip_I GROUP BY trips.trip_I" trip_min_max_shape_seqs = pandas.read_sql(SELECT_MIN_MAX_SHAPE_BREAKS_BY_TRIP_I_SQL, self.G_filter_test.conn) for distance_km, n_rows_after in zip([1000, 3000], [n_rows_after_1000, n_rows_after_3000]): try: os.remove(self.fname_copy) except FileNotFoundError: pass FilterExtract(self.G_filter_test, self.fname_copy, buffer_lat=paris_lat, buffer_lon=paris_lon, buffer_distance_km=distance_km).create_filtered_copy() for table_name, n_rows in n_rows_before.items(): self.assertEqual(len(self.G_filter_test.get_table(table_name)), n_rows, "Row counts before differ in " + table_name + ", distance: " + str(distance_km)) G_copy = GTFS(self.fname_copy) for table_name, n_rows in n_rows_after.items(): table = G_copy.get_table(table_name) self.assertEqual(len(table), n_rows, "Row counts after differ in " + table_name + ", distance: " + str(distance_km) + "\n" + str(table)) # assert that stop_times are resequenced starting from one counts = pandas.read_sql("SELECT count(*) FROM stop_times GROUP BY trip_I ORDER BY trip_I", G_copy.conn) max_values = pandas.read_sql("SELECT max(seq) FROM stop_times GROUP BY trip_I ORDER BY trip_I", G_copy.conn) self.assertTrue((counts.values == max_values.values).all()) def test_remove_all_trips_fully_outside_buffer(self): stops = self.G.stops() stop_1 = stops[stops['stop_I'] == 1] n_trips_before = len(self.G.get_table("trips")) remove_all_trips_fully_outside_buffer(self.G.conn, float(stop_1.lat), float(stop_1.lon), 100000) self.assertEqual(len(self.G.get_table("trips")), n_trips_before) # 0.002 (=max 2 meters from the stop), rounding errors can take place... remove_all_trips_fully_outside_buffer(self.G.conn, float(stop_1.lat), float(stop_1.lon), 0.002) self.assertEqual(len(self.G.get_table("trips")), 2) # value "2" comes from the data
python
#!/usr/bin/python3 # # Elliptic Curve test code # # Copyright (c) 2018 Alexei A. Smekalkine <[email protected]> # # SPDX-License-Identifier: BSD-2-Clause # import time import ec, ec_swj, ecdsa, ecgost from field import Fp count = 100 rounds = 0 test_ecdsa = True test_ecgost = True test_swj = True o = ecgost.group ('ecgost-test-a') d = 0x7A929ADE789BB9BE10ED359DD39A72C11B60961F49397EEE1D19CE9891EC3B28 e = 0x2DFBC1B372D89A1188C09C52E0EEC61FCE52032AB1022E8E67ECE6672B043EE5 k = 0x77105C9B20BCD3122823C8CF6FCC7B956DE33814E95B7FE64FED924594DCEAB3 def test (name, d, P): start = time.clock () for i in range (count): Q = d * P delta = (time.clock () - start) / count * 1000 print ('{}: {:.2f} ms'.format (name, delta)) for i in range (rounds): P = ec.Point (o.curve, o.x, o.y) test ('swa ', d, P) P = ec.SecurePoint (o.curve, o.x, o.y) test ('swa-sec', d, P) P = ec_swj.Point (o.curve, o.x, o.y) test ('swj ', d, P) P = ec_swj.SecurePoint (o.curve, o.x, o.y) test ('swj-sec', d, P) print () if test_ecdsa: ecdsa.test () # GOST R 34.10-2012 if test_ecgost: ecgost.test () if test_swj: P = ec_swj.SecurePoint (o.curve, o.x, o.y) Q = d * P C = k * P print ('P =', P) print ('qP =', o.q * P) print ('Q = dP =', Q) print ('C = kP =', C)
python
from django.urls import path from departamento.views import IndexView, DetalleDepartamentoView, Register, ExitoRegistro from django.contrib.auth.decorators import login_required app_name="departamento" urlpatterns=[ path("",login_required(IndexView.as_view()),name="index_departamento"), path("crear/",login_required(Register.as_view()),name="crear_departamento"), path("editar/<pk>/",login_required(DetalleDepartamentoView.as_view()),name="editar_departamento") ]
python
import hashlib # https://en.wikipedia.org/wiki/Linear_congruential_generator class lcg(object): def __init__(self, seed=1): self.state = seed def _random(self): self.state = (self.state * 1103515245 + 12345) & 0x7FFFFFFF return self.state def random(self): return self._random() / 2147483647. # 0x7FFFFFFF in decimal def randint(self, a, b): rng = self._random() % (b - a + 1) return rng + a def choice(self, seq): return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty def shuffle(self, seq): for i in reversed(range(1, len(seq))): # pick an element in x[:i+1] with which to exchange x[i] j = int(self.random() * (i+1)) seq[i], seq[j] = seq[j], seq[i] def serialize(self): return self.state def deserialize(self, seed): self.state = seed class StaticRandom(object): def __init__(self, seed=0): self.set_seed(seed) def set_seed(self, seed): print('Setting Seed %d' % seed) self.seed = seed self.combat_random = lcg(seed) self.growth_random = lcg(seed + 1) self.other_random = lcg(seed + 2) r = StaticRandom() def strhash(s: str) -> int: """ Converts a string to a corresponding integer """ h = hashlib.md5(s.encode('utf-8')) h = int(h.hexdigest(), base=16) return h def set_seed(seed): r.set_seed(seed) def get_combat(): return r.combat_random.randint(0, 99) def get_growth(): return r.growth_random.randint(0, 99) def get_levelup(u_id, lvl): superseed = strhash(u_id) + lvl + r.seed return lcg(superseed) def get_combat_random_state(): return r.combat_random.state def set_combat_random_state(state): r.combat_random.state = state def shuffle(lst): r.other_random.shuffle(lst) return lst def get_other(a, b): return r.other_random.randint(a, b) def get_other_random_state(): return r.other_random.state def set_other_random_state(state): r.other_random.state = state # === Returns the index of a weighted list def weighted_choice(choices, generator=None): if generator: rn = generator.randint(0, sum(choices) - 1) else: rn = r.growth_random.randint(0, sum(choices) - 1) upto = 0 for index, w in enumerate(choices): upto += w if upto > rn: return index assert False, "Shouldn't get here" if __name__ == '__main__': print(get_combat()) state = r.combat_random.serialize() print(get_combat()) print(get_combat()) r.combat_random.deserialize(state) print(get_combat()) print(get_combat()) l = [1, 2, 3, 4, 5, 6, 7] print(l) shuffle(l) print(l) l = [1, 2, 3, 4, 5, 6, 7] print(shuffle(l)) l = [1, 2, 3, 4, 5, 6, 7] print(shuffle(l)) l = [1, 2, 3, 4, 5, 6, 7] print(shuffle(l))
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 1 23:01:34 2017 @author: kt12 """ # Reversed """ If there is no __reversed__ function, Python will call __len__ and __getitem__ which are used to define a sequence """ normal_list = [1,2,3,4,5] class CustomSequence(): def __len__(self): return 5 def __getitem__(self, index): return "x{0}".format(index) class FunkyBackwards(): def __reversed__(self): return "BACKWARDS!" for seq in normal_list, CustomSequence(), FunkyBackwards(): print("\n{}: ".format(seq.__class__.__name__), end="") for item in reversed(seq): print(item, end=", ") # Enumerate import sys filename = sys.argv[1] with open(filename) as file: for index, line in enumerate(file): print("{0}: {1}".format(index+1, line), end='') # Context manager """ __enter__ and __exit__ turn file object into a context manager """ class StringJoiner(list): def __enter__(self): return self def __exit__(self, type, value, tb): self.result = ''.join(self) import random, string with StringJoiner() as joiner: for i in range(15): joiner.append(random.choice(string.ascii_letters)) print(joiner.result) # Default arguments """ Default arguments are evaluated when the function is first interpreted, not when it is called""" number = 5 def funky_function(number=number): print(number) number = 6 funky_function(8) funky_function() print(number) """ Default arguments are tricky with empty containers such as lists etc """ def hello(b=[]): b.append('a') print(b) # Variable argument lists def get_pages(*links): for link in links: # download the link with urllib print(link) # kwargs are frequently used in configuration setups class Options: default_options = { 'port': 21, 'host': 'localhost', 'username': None, 'password': None, 'debug': False, } def __init__(self, **kwargs): self.options = dict(Options.default_options) self.options.update(kwargs) def __getitem__(self, key): return self.options[key] options = Options(username='dusty', pasword='drowssap', debug=True) options['debug'] options['port'] options['username'] import shutil import os.path def augmented_move(target_folder, *filenames, verbose=False, **specific): """Move all filenames into the target_folder, allowing specific treatment of certain files.""" def print_verbose(message, filename): """print the mesage only if verbose is enabled""" if verbose: print(message.fomat(filename)) for filename in filenames: target_path = os.path.join(target_folder, filename) if filename in specific: if specific[filename] == 'ignore': print_verbose("Ignoring {0}", filename) elif specific[filename] == 'copy': print_verbose("Copying {0}", filename) shutil.copyfile(filename, target_path) else: print_verbose("Moving {0}", filename) shutil.move(filename, target_path) # Unpacking arguments def show_args(arg1, arg2, arg3="THREE"): print(arg1, arg2, arg3) some_args = range(3) more_args = { "arg1": "ONE", "arg2": "TWO"} print("Unpacking a sequence:", end=" ") show_args(*some_args) print("Unpacking a dict:", end=" ") show_args(**more_args) # Functions are objects too def my_function(): print("The Function Was Called") my_function.description = 'A silly function' def second_function(): print("The second was called") second_function.description = "A sillier function." def another_function(function): print("The description:", end=" ") print(function.description) print("The name:", end=" ") print(function.__name__) print("The class:", end=" ") print(function.__class__) print("Now I'll call the function passed in") function() another_function(my_function) another_function(second_function) # Event driven timer import datetime import time class TimedEvent: def __init__(self, endtime, callback): self.endtime = endtime self.callback = callback def ready(self): return self.endtime <= datetime.datetime.now() class Timer: def __init__(self): self.events = [] def call_after(self, delay, callback): end_time = datetime.datetime.now() + \ datetime.timedelta(seconds=delay) self.events.append(TimedEvent(end_time, callback)) def run(self): while True: ready_events = (e for e in self.events if e.ready()) for event in ready_events: event.callback(self) self.events.remove(event) time.sleep(0.5) # Set of callbacks to test the timer # Need to be in the correct directory to use timer.py from timer import Timer import datetime def format_time(message, *args): now = datetime.datetime.now().strftime("%I:%M:%S") print(message.format(*args, now=now)) def one(timer): format_time("{now}: Called One") def two(timer): format_time("{now}: Called Two") def three(timer): format_time("{now}: Called Three") class Repeater: def __init__(self): self.count = 0 def repeater(self, timer): format_time("{now}: repeat {0}", self.count) self.count += 1 timer.call_after(5, self.repeater) timer = Timer() timer.call_after(1, one) timer.call_after(2, one) timer.call_after(2, two) timer.call_after(4, two) timer.call_after(3, three) timer.call_after(6, three) repeater = Repeater() timer.call_after(5, repeater.repeater) format_time("{now}: Starting") timer.run() # Using functions as attributes # Make Repeater callable """ Only implement the __call__ function on an object if the object is meant to be treated like a function """ class Repeater: def __init__(self): self.count = 0 def __call__(self, timer): format_time("{now}: repeat {0}", self.count) self.count += 1 timer.call_after(5, self) timer = Timer() timer.call_after(5, Repeater()) format_time("{now}: Starting") timer.run() # Mailing list manager import smtplib from email.mime.text import MIMEText def send_email(subject, message, from_addr, *to_addrs, host='localhost', port=1025, headers=None): headers = {} if headers is None else headers email = MIMEText(message) email['Subject'] = subject email['From'] = from_addr for header, value in headers.items(): email[header] = value sender = smtplib.SMTP(host, port) for addr in to_addrs: del email['To'] email['To'] = addr sender.sendmail(from_addr, addr, email.as_string()) sender.quit() send_email("A model subject", "The message contents", "[email protected]", "[email protected]", "[email protected]") # Email gropu mgmt system # Store email addresses in a set container from collections import defaultdict class MailingList: '''Manage groups of email addresses for sending emails''' def __init__(self, data_file): self.email_map = defaultdict(set) self.data_file = data_file def add_to_group(self, email, group): self.email_map[email].add(group) def emails_in_group(self, *groups): groups = set(groups) emails = set() for e, g in self.email_map.items(): if g & groups: # short for g.intersection(groups) emalis.add(e) return emails def send_mailing(self, subject, message, from_addr, *groups, headers=None): emails = self.emails_in_group(*groups) send_email(subject, message, from_addr, *emails, headers=headers) # Save emails to data def save(self): with open(self.data_file, 'w') as file: for email, groups in self.email_map.items(): file.write( '{} {}\n'.format(email, ','.join(groups)) ) def load(self): self.email_map = defaultdict(set) try: with open(self.data_file) as file: for line in file: email, groups = line.strip().split(' ') groups = set(groups.split(',')) self.email_map[email] = groups except IOError: pass # Support context manager def __enter__(self): self.load() return self def __exit__(self): self.save()
python
def mkdir_p(path): """Make directories for the full path, like mkdir -p.""" import os import errno try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise mkdir_p('my_dir/hi/test') print('Run, check via: find my_dir')
python
#!/usr/bin/env python """ patser_annotate_genome.py search all chromosomes in a genome sequence file for specified matrix. Annotate hits as rows in sqlite table """ import sys import sqlite3 import fasta_subseq_2 import patser_tools #from multiprocessing import Pool #from pprint import pprint as pp class searchObj(object): def __init__(self, chrObj=None, seq_name = None, matrix=None, matrix_name=None, annotation=None): self.chrObj = chrObj self.seq = None self.seq_name = seq_name if chrObj: self.seq = chrObj['sequence'][0:(chrObj['sequence'].length - 1)] self.matrix = matrix self.matrix_name = matrix_name self.annotation = annotation print "created %s object" % chrObj['ID'] def patSearch(self): annot=None try: annot = patser_tools.makePatserAnnotation(sequence=self.seq,matrix=self.matrix) except Exception: print "warning: Exception for seq %s" % (self.seq) annot = None self.annotation = annot def search(s): print "starting search %s..." % s.chrObj["ID"] s.patSearch() if s.annotation: print "search complete: %s" % s.chrObj["ID"] return s else: print "search failed: %s!" % s.chrObj["ID"] return None def _main(args): if len(args) != 4: print "usage: patser_annotate_genome_noxgrid.py <machi_db> <genome_seq> <matrix_file> <matrix_name>" sys.exit(0) #processes = int(args[4]) # setup database conn = sqlite3.connect(args[0]) conn.row_factory = sqlite3.Row cur = conn.cursor() cur.execute("""CREATE TABLE IF NOT EXISTS matrix (matrix_key INTEGER PRIMARY KEY, name TEXT, file TEXT)""") cur.execute("""CREATE TABLE IF NOT EXISTS patser_hit (patser_hit_key INTEGER PRIMARY KEY, chr TEXT, start INT, end INT, strand INT, score FLOAT, pval FLOAT, matrix_key INT)""") cur.execute("""SELECT * FROM matrix WHERE file = ?""",(args[2],)) matrix_exists = cur.fetchall() mtx_id = None if not matrix_exists: cur.execute("""INSERT INTO matrix VALUES (NULL,?,?)""", (args[3],args[2])) mtx_id = cur.lastrowid else: mtx_id = matrix_exists[0]["matrix_key"] # open fasta fasta = fasta_subseq_2.FastaDB() fasta.openFastaFile(args[1]) jobs = [] for (name,chr) in fasta.items(): srch = searchObj(chrObj=chr, seq_name = name, matrix=args[2], matrix_name=args[3]) print srch jobs.append(srch) print jobs #pool = Pool(processes) #results = pool.imap(search,jobs) for j in jobs: s = search(j) print "inserting %s, %i tags" % (s.seq_name, len(s.annotation.getAllFeatures())) for feature in s.annotation.getAllFeatures(): print >> sys.stderr, feature cur.execute("INSERT INTO patser_hit VALUES (NULL,?,?,?,?,?,?,?)", (s.seq_name,feature.start,feature.end,feature.tags["strand"],feature.tags["score"],feature.tags["pval"],mtx_id)) conn.commit() conn.close() if __name__ == "__main__": _main(sys.argv[1:])
python
acesso=2502 while True: senha=int(input('digite sua senha')) if senha== acesso: print('acesso permitido') break else: print('acesso negado')
python
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: POGOProtos/Settings/Master/Pokemon/CameraAttributes.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='POGOProtos/Settings/Master/Pokemon/CameraAttributes.proto', package='POGOProtos.Settings.Master.Pokemon', syntax='proto3', serialized_pb=_b('\n9POGOProtos/Settings/Master/Pokemon/CameraAttributes.proto\x12\"POGOProtos.Settings.Master.Pokemon\"\x97\x01\n\x10\x43\x61meraAttributes\x12\x15\n\rdisk_radius_m\x18\x01 \x01(\x02\x12\x19\n\x11\x63ylinder_radius_m\x18\x02 \x01(\x02\x12\x19\n\x11\x63ylinder_height_m\x18\x03 \x01(\x02\x12\x19\n\x11\x63ylinder_ground_m\x18\x04 \x01(\x02\x12\x1b\n\x13shoulder_mode_scale\x18\x05 \x01(\x02\x62\x06proto3') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _CAMERAATTRIBUTES = _descriptor.Descriptor( name='CameraAttributes', full_name='POGOProtos.Settings.Master.Pokemon.CameraAttributes', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='disk_radius_m', full_name='POGOProtos.Settings.Master.Pokemon.CameraAttributes.disk_radius_m', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cylinder_radius_m', full_name='POGOProtos.Settings.Master.Pokemon.CameraAttributes.cylinder_radius_m', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cylinder_height_m', full_name='POGOProtos.Settings.Master.Pokemon.CameraAttributes.cylinder_height_m', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cylinder_ground_m', full_name='POGOProtos.Settings.Master.Pokemon.CameraAttributes.cylinder_ground_m', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='shoulder_mode_scale', full_name='POGOProtos.Settings.Master.Pokemon.CameraAttributes.shoulder_mode_scale', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=98, serialized_end=249, ) DESCRIPTOR.message_types_by_name['CameraAttributes'] = _CAMERAATTRIBUTES CameraAttributes = _reflection.GeneratedProtocolMessageType('CameraAttributes', (_message.Message,), dict( DESCRIPTOR = _CAMERAATTRIBUTES, __module__ = 'POGOProtos.Settings.Master.Pokemon.CameraAttributes_pb2' # @@protoc_insertion_point(class_scope:POGOProtos.Settings.Master.Pokemon.CameraAttributes) )) _sym_db.RegisterMessage(CameraAttributes) # @@protoc_insertion_point(module_scope)
python
import os import sys import platform import pandas as pd import easygui as eg mtst_programs = pd.read_csv('mtst_programs.csv') current_os = platform.system() # change default file open directory depending on operating system if current_os == 'Windows': default_dir = "C:\\Users\\%USERNAME%\\Documents\\{}*.xlsx" elif current_os == 'Linux': current_user = os.getlogin() default_dir = "/home/"+current_user+"/Documents/{}*.xlsx" else: default_dir = "Documents/{}*.xlsx" def program_select(): """ buttonbox for selecting whether you are creating applications for MTST or PHAS """ msg = """Select a graduate program...""" title = 'Program Selection' choices = ['MTST', 'PHAS', 'Cancel'] reply = eg.buttonbox(choices=choices, title=title, msg=msg) if reply in ['MTST', 'PHAS']: return reply else: # if 'Cancel' is selected raise RuntimeError def get_spreadsheet(program: str) -> str: """ Accepts the program name as a string and searches for the corresponding Excel workbook """ filetypes = [[".xls", ".xlsx", "Microsoft Excel workbooks"]] if program == 'PHAS': file = eg.fileopenbox( default=default_dir.format(program), filetypes=filetypes ) if file: return file else: # if 'Cancel' is selected raise RuntimeError elif program == 'MTST': # select which MTST subprograms we are creating discussions for mult_choices = mtst_programs['Program Name'].to_list() msg = 'Choose the MTST programs for which you would like to generate D2L Discussions:' title = "Choose MTST Programs" subprograms = eg.multchoicebox(msg=msg, title=title, choices=mult_choices) def get_heading(df: pd.DataFrame, cols=None): """ Accepts a pandas DataFrame and list of columns and creates a new 'heading' column. :df: pandas DataFrame :cols: list of columns used to make the 'heading' :returns: df with 'heading' column added """ # change missing entries to empty strings df[cols] = df[cols].fillna('') df['heading'] = df[cols].agg('-'.join, axis=1) return df def make_discussions(path: str, program_name: str) -> int: """ Accepts a Microsoft Excel file path, builds pandas DataFrame with the 'heading' column, and creates the corresponding XML/HTML files for the D2L Discussions. """ df = pd.read_excel(path) if program_name == 'PHAS': cols = '' elif program_name == 'MTST': cols = '' df = get_heading(df, cols=cols) print(df['heading'].head()) # do the XML/HTML creation here return 0 def splash_box(): """ Uses a ccbox to proceed with the creation of Discussions for D2L applications """ msg = """ This tool will help you create the necessary XML/HTML files\n needed for uploading graduate applications as Discussions in\n D2L. To continue, you need to first select the graduate program\n for which you will upload applications. """ title = "Simple D2L MTST/PHAS Application Upload Helper" if eg.ccbox(msg, title): # show a Continue/Cancel dialog # user chose Continue grad_program = program_select() file_path = get_spreadsheet(grad_program) if file_path: return file_path else: sys.exit(0) else: # user chose Cancel sys.exit(0) def main_loop(): """ Create the GUI and guide the user through the creation of D2L Discussions """ while True: try: file_path = splash_box() return file_path except RuntimeError: # this happens when the user cancels the program_select dialog continue
python