File size: 1,881 Bytes
b0f631c
13296e3
 
 
b0f631c
13296e3
 
 
b77717c
b0f631c
 
145cd18
13296e3
0b2cbcc
 
f5ced79
 
2d73f34
f5ced79
2d73f34
f5ced79
 
 
 
 
2d73f34
 
 
f518bb2
 
 
b0f631c
113d7c4
a063fd3
 
b0f631c
81194fb
 
 
 
 
5b59934
 
 
9799eb8
eb4b8d2
9799eb8
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
language: 
- en
- zh
tags:
- GENIUS
- conditional text generation
- sketch-based text generation
- data augmentation
license: apache-2.0
datasets:
- c4
- beyond/chinese_clean_passages_80m

widget:
- text: "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
  example_title: "Example 1"
- text: "<mask> machine learning <mask> my research interest <mask> data science <mask>"
  example_title: "Example 2"
- text: "<mask> play basketball <mask> a strong team <mask> Shanghai University of Finance and Economics <mask> last Sunday <mask>"
  example_title: "Example 3"
- text: "Good news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>"
  example_title: "Example with a prompt 1"
- text: "Bad news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>"
  example_title: "Example with a prompt 2"

inference:
  parameters:
    max_length: 200
    num_beams: 3
    do_sample: True
---

# GENIUS: generating text using sketches!


- **Paper: [GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation](https://arxiv.org/abs/2211.10330)**
- **GitHub: [GENIUS, Pre-training/Data Augmentation Tutorial](https://github.com/beyondguo/genius)**





You can use this model directly with a pipeline for masked language modeling:

```python
from transformers import pipeline
# 1. load the model with the huggingface `pipeline`
genius = pipeline("text2text-generation", model='beyond/genius-large', device=0)
# 2. provide a sketch (joint by <mask> tokens)
sketch = "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
# 3. here we go!
generated_text = genius(sketch, num_beams=3, do_sample=True, max_length=200)[0]['generated_text']
print(generated_text)
```