File size: 1,881 Bytes
b0f631c 13296e3 b0f631c 13296e3 b77717c b0f631c 145cd18 13296e3 0b2cbcc f5ced79 2d73f34 f5ced79 2d73f34 f5ced79 2d73f34 f518bb2 b0f631c 113d7c4 a063fd3 b0f631c 81194fb 5b59934 9799eb8 eb4b8d2 9799eb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
language:
- en
- zh
tags:
- GENIUS
- conditional text generation
- sketch-based text generation
- data augmentation
license: apache-2.0
datasets:
- c4
- beyond/chinese_clean_passages_80m
widget:
- text: "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
example_title: "Example 1"
- text: "<mask> machine learning <mask> my research interest <mask> data science <mask>"
example_title: "Example 2"
- text: "<mask> play basketball <mask> a strong team <mask> Shanghai University of Finance and Economics <mask> last Sunday <mask>"
example_title: "Example 3"
- text: "Good news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>"
example_title: "Example with a prompt 1"
- text: "Bad news: <mask> the European Union <mask> month by EU <mask> Farm Commissioner Franz <mask>"
example_title: "Example with a prompt 2"
inference:
parameters:
max_length: 200
num_beams: 3
do_sample: True
---
# GENIUS: generating text using sketches!
- **Paper: [GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation](https://arxiv.org/abs/2211.10330)**
- **GitHub: [GENIUS, Pre-training/Data Augmentation Tutorial](https://github.com/beyondguo/genius)**
You can use this model directly with a pipeline for masked language modeling:
```python
from transformers import pipeline
# 1. load the model with the huggingface `pipeline`
genius = pipeline("text2text-generation", model='beyond/genius-large', device=0)
# 2. provide a sketch (joint by <mask> tokens)
sketch = "<mask> Conference on Empirical Methods <mask> submission of research papers <mask> Deep Learning <mask>"
# 3. here we go!
generated_text = genius(sketch, num_beams=3, do_sample=True, max_length=200)[0]['generated_text']
print(generated_text)
``` |