beyond commited on
Commit
113d7c4
1 Parent(s): 89c995c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -5
README.md CHANGED
@@ -31,12 +31,25 @@ inference:
31
  num_beams: 3
32
  do_sample: True
33
  ---
 
34
  # 💡GENIUS – generating text using sketches!
35
 
 
 
36
  - **Paper: [GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation](https://github.com/beyondguo/genius/blob/master/GENIUS_gby_arxiv.pdf)**
37
- - **GitHub: [GENIUS project, GENIUS pre-training, GeniusAug for data augmentation](https://github.com/beyondguo/genius)**
38
 
39
- 💡**GENIUS** is a powerful conditional text generation model using sketches as input, which can fill in the missing contexts for a given **sketch** (key information consisting of textual spans, phrases, or words, concatenated by mask tokens). GENIUS is pre-trained on a large-scale textual corpus with a novel *reconstruction from sketch* objective using an *extreme and selective masking* strategy, enabling it to generate diverse and high-quality texts given sketches.
 
 
 
 
 
 
 
 
 
 
 
40
 
41
 
42
  **GENIUS** can also be used as a general textual **data augmentation tool** for **various NLP tasks** (including sentiment analysis, topic classification, NER, and QA).
@@ -45,6 +58,7 @@ inference:
45
  ![image-20221119164544165](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/hi-genius.png)
46
 
47
 
 
48
  - Models hosted in 🤗 Huggingface:
49
 
50
  **Model variations:**
@@ -57,7 +71,14 @@ inference:
57
  | [`genius-base-ps`](https://huggingface.co/beyond/genius-base) | 139M | English | pre-trained both in paragraphs and short sentences |
58
  | [`genius-base-chinese`](https://huggingface.co/beyond/genius-base-chinese) | 116M | 中文 | 在一千万纯净中文段落上预训练|
59
 
60
- ---
 
 
 
 
 
 
 
61
 
62
  ## Usage
63
 
@@ -67,13 +88,12 @@ First, what is a **sketch**? As defined in our paper, a sketch is "key informati
67
 
68
  The sketch which can be composed of:
69
 
70
- - keywords /key-phrases, like "`__NLP__AI__computer__science__`"
71
  - spans, like `Conference on Empirical Methods__submission of research papers__`
72
  - sentences, like `I really like machine learning__I work at Google since last year__`
73
  - or a mixup!
74
 
75
 
76
-
77
  ### How to use the model
78
  #### 1. If you already have a sketch in mind, and want to get a paragraph based on it...
79
  ```python
 
31
  num_beams: 3
32
  do_sample: True
33
  ---
34
+
35
  # 💡GENIUS – generating text using sketches!
36
 
37
+ **基于草稿的文本生成模型**
38
+
39
  - **Paper: [GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation](https://github.com/beyondguo/genius/blob/master/GENIUS_gby_arxiv.pdf)**
 
40
 
41
+ 💡**GENIUS** is a powerful conditional text generation model using sketches as input, which can fill in the missing contexts for a given **sketch** (key information consisting of textual spans, phrases, or words, concatenated by mask tokens). GENIUS is pre-trained on a large- scale textual corpus with a novel *reconstruction from sketch* objective using an *extreme and selective masking* strategy, enabling it to generate diverse and high-quality texts given sketches.
42
+
43
+ **Example 1:**
44
+
45
+ - sketch: `__ machine learning __ my research interest __ data science __`
46
+ - **GENIUS**: `I am a Ph.D. student in machine learning, and my research interest is in data science. I am interested in understanding how humans and machines interact and how we can improve the quality of life for people around the world.`
47
+
48
+ **Example 2:**
49
+
50
+ - sketch: `自然语言处理__谷歌__通用人工智能__`
51
+ - **GENIUS**: `自然语言处理是谷歌在通用人工智能领域的一个重要研究方向,其目的是为了促进人类智能的发展。 `
52
+
53
 
54
 
55
  **GENIUS** can also be used as a general textual **data augmentation tool** for **various NLP tasks** (including sentiment analysis, topic classification, NER, and QA).
 
58
  ![image-20221119164544165](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/hi-genius.png)
59
 
60
 
61
+
62
  - Models hosted in 🤗 Huggingface:
63
 
64
  **Model variations:**
 
71
  | [`genius-base-ps`](https://huggingface.co/beyond/genius-base) | 139M | English | pre-trained both in paragraphs and short sentences |
72
  | [`genius-base-chinese`](https://huggingface.co/beyond/genius-base-chinese) | 116M | 中文 | 在一千万纯净中文段落上预训练|
73
 
74
+ ![image-20221119191940969](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/202211191919005.png)
75
+
76
+
77
+
78
+
79
+ More Examples:
80
+
81
+ ![image-20221119184950762](https://cdn.jsdelivr.net/gh/beyondguo/mdnice_pictures/typora/202211191849815.png)
82
 
83
  ## Usage
84
 
 
88
 
89
  The sketch which can be composed of:
90
 
91
+ - keywords /key-phrases, like `__NLP__AI__computer__science__`
92
  - spans, like `Conference on Empirical Methods__submission of research papers__`
93
  - sentences, like `I really like machine learning__I work at Google since last year__`
94
  - or a mixup!
95
 
96
 
 
97
  ### How to use the model
98
  #### 1. If you already have a sketch in mind, and want to get a paragraph based on it...
99
  ```python