Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# SEGA-large model
|
2 |
|
3 |
SEGA: SkEtch-based Generative Augmentation
|
|
|
4 |
SEGA is a general text augmentation model that can be used for data augmentation for various NLP tasks (including sentiment analysis, topic classification, NER, and QA). SEGA uses an encoder-decoder structure (based on the BART architecture) and is pre-trained on the C4-realnewslike corpus.
|
5 |
|
6 |
- Paper: [this paper](to_be_added)
|
@@ -15,12 +25,12 @@ SEGA is a general text augmentation model that can be used for data augmentation
|
|
15 |
|
16 |
| Model | #params | Language |
|
17 |
|------------------------|--------------------------------|-------|
|
18 |
-
| [`sega-large`](
|
19 |
-
| [`sega-base`](
|
20 |
-
| [`sega-small`](
|
21 |
-
| [`sega-large-chinese`](
|
22 |
-
| [`sega-base-chinese`](
|
23 |
-
| [`sega-small-chinese`](
|
24 |
|
25 |
|
26 |
## Intended uses & limitations
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- augmentation
|
5 |
+
license: apache-2.0
|
6 |
+
datasets:
|
7 |
+
- C4
|
8 |
+
---
|
9 |
+
|
10 |
# SEGA-large model
|
11 |
|
12 |
SEGA: SkEtch-based Generative Augmentation
|
13 |
+
|
14 |
SEGA is a general text augmentation model that can be used for data augmentation for various NLP tasks (including sentiment analysis, topic classification, NER, and QA). SEGA uses an encoder-decoder structure (based on the BART architecture) and is pre-trained on the C4-realnewslike corpus.
|
15 |
|
16 |
- Paper: [this paper](to_be_added)
|
|
|
25 |
|
26 |
| Model | #params | Language |
|
27 |
|------------------------|--------------------------------|-------|
|
28 |
+
| [`sega-large`]() | xM | English |
|
29 |
+
| [`sega-base`]() | xM | English |
|
30 |
+
| [`sega-small`]() | xM | English |
|
31 |
+
| [`sega-large-chinese`]() | xM | Chinese |
|
32 |
+
| [`sega-base-chinese`]() | xM | Chinese |
|
33 |
+
| [`sega-small-chinese`]() | xM | Chinese |
|
34 |
|
35 |
|
36 |
## Intended uses & limitations
|