bertrand-fournel's picture
Training complete
749315e
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - summarization
  - generated_from_trainer
datasets:
  - xlsum
metrics:
  - rouge
model-index:
  - name: mt5-small-finetuned-summary
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xlsum
          type: xlsum
          config: french
          split: validation
          args: french
        metrics:
          - name: Rouge1
            type: rouge
            value: 21.6196

mt5-small-finetuned-summary

This model is a fine-tuned version of google/mt5-small on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1466
  • Rouge1: 21.6196
  • Rouge2: 7.7979
  • Rougel: 17.5683
  • Rougelsum: 17.6757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.9629 1.0 2170 2.3132 20.7316 7.3431 16.9157 17.0149
2.9704 2.0 4340 2.2299 21.3148 7.8529 17.2968 17.3873
2.8026 3.0 6510 2.2092 21.3313 7.8526 17.3679 17.4773
2.7054 4.0 8680 2.1876 21.6909 7.9841 17.6881 17.7839
2.6453 5.0 10850 2.1743 21.7372 7.7546 17.6551 17.7575
2.5925 6.0 13020 2.1602 21.5715 7.7879 17.5943 17.6994
2.5619 7.0 15190 2.1482 21.5888 7.8789 17.6519 17.752
2.5415 8.0 17360 2.1466 21.6196 7.7979 17.5683 17.6757

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0