File size: 2,479 Bytes
293a4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749315e
293a4eb
 
 
 
 
 
 
 
 
749315e
 
 
 
 
293a4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749315e
 
293a4eb
 
 
 
 
 
 
749315e
 
 
 
 
 
 
 
 
 
293a4eb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
datasets:
- xlsum
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-summary
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: xlsum
      type: xlsum
      config: french
      split: validation
      args: french
    metrics:
    - name: Rouge1
      type: rouge
      value: 21.6196
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-summary

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1466
- Rouge1: 21.6196
- Rouge2: 7.7979
- Rougel: 17.5683
- Rougelsum: 17.6757

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 3.9629        | 1.0   | 2170  | 2.3132          | 20.7316 | 7.3431 | 16.9157 | 17.0149   |
| 2.9704        | 2.0   | 4340  | 2.2299          | 21.3148 | 7.8529 | 17.2968 | 17.3873   |
| 2.8026        | 3.0   | 6510  | 2.2092          | 21.3313 | 7.8526 | 17.3679 | 17.4773   |
| 2.7054        | 4.0   | 8680  | 2.1876          | 21.6909 | 7.9841 | 17.6881 | 17.7839   |
| 2.6453        | 5.0   | 10850 | 2.1743          | 21.7372 | 7.7546 | 17.6551 | 17.7575   |
| 2.5925        | 6.0   | 13020 | 2.1602          | 21.5715 | 7.7879 | 17.5943 | 17.6994   |
| 2.5619        | 7.0   | 15190 | 2.1482          | 21.5888 | 7.8789 | 17.6519 | 17.752    |
| 2.5415        | 8.0   | 17360 | 2.1466          | 21.6196 | 7.7979 | 17.5683 | 17.6757   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0