--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-small-finetuned-summary results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum config: french split: validation args: french metrics: - name: Rouge1 type: rouge value: 21.6196 --- # mt5-small-finetuned-summary This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.1466 - Rouge1: 21.6196 - Rouge2: 7.7979 - Rougel: 17.5683 - Rougelsum: 17.6757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.9629 | 1.0 | 2170 | 2.3132 | 20.7316 | 7.3431 | 16.9157 | 17.0149 | | 2.9704 | 2.0 | 4340 | 2.2299 | 21.3148 | 7.8529 | 17.2968 | 17.3873 | | 2.8026 | 3.0 | 6510 | 2.2092 | 21.3313 | 7.8526 | 17.3679 | 17.4773 | | 2.7054 | 4.0 | 8680 | 2.1876 | 21.6909 | 7.9841 | 17.6881 | 17.7839 | | 2.6453 | 5.0 | 10850 | 2.1743 | 21.7372 | 7.7546 | 17.6551 | 17.7575 | | 2.5925 | 6.0 | 13020 | 2.1602 | 21.5715 | 7.7879 | 17.5943 | 17.6994 | | 2.5619 | 7.0 | 15190 | 2.1482 | 21.5888 | 7.8789 | 17.6519 | 17.752 | | 2.5415 | 8.0 | 17360 | 2.1466 | 21.6196 | 7.7979 | 17.5683 | 17.6757 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0