Thienpkae's picture
End of training
c0d6f77 verified
|
raw
history blame
2.51 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-vi-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: vi
          split: test[:50%]
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 1

wav2vec2-large-xls-r-vi-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4884
  • Wer: 1.0
  • Cer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.1
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
9.4752 7.1111 160 4.4992 1.0 1.0
4.2035 14.2222 320 3.9228 1.0 1.0
3.7611 21.3333 480 3.6584 1.0 1.0
3.5825 28.4444 640 3.5584 1.0 1.0
3.5044 35.5556 800 3.5285 1.0 1.0
3.4669 42.6667 960 3.5226 1.0 1.0
3.4382 49.7778 1120 3.5093 1.0 1.0
3.4183 56.8889 1280 3.4942 1.0 1.0
3.4002 64.0 1440 3.4957 1.0 1.0
3.3871 71.1111 1600 3.4896 1.0 1.0
3.382 78.2222 1760 3.4884 1.0 1.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1