File size: 2,509 Bytes
413622f
c0d6f77
f669db4
c0d6f77
 
f669db4
 
 
 
e0efb69
 
f669db4
 
7ac8664
c0d6f77
f669db4
 
 
 
 
 
 
c0d6f77
 
 
413622f
 
e0efb69
 
413622f
e0efb69
413622f
f669db4
1cf7d1e
c0d6f77
 
 
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
413622f
e0efb69
c0d6f77
 
e0efb69
 
f669db4
c0d6f77
e0efb69
 
c0d6f77
 
e0efb69
413622f
e0efb69
413622f
c0d6f77
 
 
 
 
 
 
 
 
 
 
 
 
413622f
 
e0efb69
413622f
e0efb69
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-vi-colab
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_13_0
      type: common_voice_13_0
      config: vi
      split: test[:50%]
      args: vi
    metrics:
    - name: Wer
      type: wer
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-vi-colab

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4884
- Wer: 1.0
- Cer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.1
- num_epochs: 80
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:---:|:---:|
| 9.4752        | 7.1111  | 160  | 4.4992          | 1.0 | 1.0 |
| 4.2035        | 14.2222 | 320  | 3.9228          | 1.0 | 1.0 |
| 3.7611        | 21.3333 | 480  | 3.6584          | 1.0 | 1.0 |
| 3.5825        | 28.4444 | 640  | 3.5584          | 1.0 | 1.0 |
| 3.5044        | 35.5556 | 800  | 3.5285          | 1.0 | 1.0 |
| 3.4669        | 42.6667 | 960  | 3.5226          | 1.0 | 1.0 |
| 3.4382        | 49.7778 | 1120 | 3.5093          | 1.0 | 1.0 |
| 3.4183        | 56.8889 | 1280 | 3.4942          | 1.0 | 1.0 |
| 3.4002        | 64.0    | 1440 | 3.4957          | 1.0 | 1.0 |
| 3.3871        | 71.1111 | 1600 | 3.4896          | 1.0 | 1.0 |
| 3.382         | 78.2222 | 1760 | 3.4884          | 1.0 | 1.0 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1