--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-vi-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: vi split: test[:50%] args: vi metrics: - name: Wer type: wer value: 1.0 --- # wav2vec2-large-xls-r-vi-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 3.4884 - Wer: 1.0 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.1 - num_epochs: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:---:|:---:| | 9.4752 | 7.1111 | 160 | 4.4992 | 1.0 | 1.0 | | 4.2035 | 14.2222 | 320 | 3.9228 | 1.0 | 1.0 | | 3.7611 | 21.3333 | 480 | 3.6584 | 1.0 | 1.0 | | 3.5825 | 28.4444 | 640 | 3.5584 | 1.0 | 1.0 | | 3.5044 | 35.5556 | 800 | 3.5285 | 1.0 | 1.0 | | 3.4669 | 42.6667 | 960 | 3.5226 | 1.0 | 1.0 | | 3.4382 | 49.7778 | 1120 | 3.5093 | 1.0 | 1.0 | | 3.4183 | 56.8889 | 1280 | 3.4942 | 1.0 | 1.0 | | 3.4002 | 64.0 | 1440 | 3.4957 | 1.0 | 1.0 | | 3.3871 | 71.1111 | 1600 | 3.4896 | 1.0 | 1.0 | | 3.382 | 78.2222 | 1760 | 3.4884 | 1.0 | 1.0 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1