|
--- |
|
license: mit |
|
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: NHS-BiomedNLP-BiomedBERT-hypop |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NHS-BiomedNLP-BiomedBERT-hypop |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4277 |
|
- Accuracy: 0.8293 |
|
- Precision: 0.8301 |
|
- Recall: 0.8375 |
|
- F1: 0.8285 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.0264 | 1.0 | 397 | 0.4689 | 0.7950 | 0.7974 | 0.8017 | 0.7946 | |
|
| 0.5258 | 2.0 | 794 | 0.5543 | 0.7779 | 0.7745 | 0.7743 | 0.7744 | |
|
| 3.0689 | 3.0 | 1191 | 0.6701 | 0.8050 | 0.8068 | 0.7957 | 0.7990 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.2+cpu |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|