File size: 1,828 Bytes
c46dc8a 5c46f0f c46dc8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: NHS-BiomedNLP-BiomedBERT-hypop
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NHS-BiomedNLP-BiomedBERT-hypop
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4277
- Accuracy: 0.8293
- Precision: 0.8301
- Recall: 0.8375
- F1: 0.8285
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0264 | 1.0 | 397 | 0.4689 | 0.7950 | 0.7974 | 0.8017 | 0.7946 |
| 0.5258 | 2.0 | 794 | 0.5543 | 0.7779 | 0.7745 | 0.7743 | 0.7744 |
| 3.0689 | 3.0 | 1191 | 0.6701 | 0.8050 | 0.8068 | 0.7957 | 0.7990 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.2+cpu
- Datasets 2.18.0
- Tokenizers 0.15.2
|