--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: NHS-BiomedNLP-BiomedBERT-hypop results: [] --- # NHS-BiomedNLP-BiomedBERT-hypop This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4277 - Accuracy: 0.8293 - Precision: 0.8301 - Recall: 0.8375 - F1: 0.8285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0264 | 1.0 | 397 | 0.4689 | 0.7950 | 0.7974 | 0.8017 | 0.7946 | | 0.5258 | 2.0 | 794 | 0.5543 | 0.7779 | 0.7745 | 0.7743 | 0.7744 | | 3.0689 | 3.0 | 1191 | 0.6701 | 0.8050 | 0.8068 | 0.7957 | 0.7990 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.2+cpu - Datasets 2.18.0 - Tokenizers 0.15.2