metadata
license: other
base_model: stabilityai/stablelm-2-1_6b
tags:
- generated_from_trainer
model-index:
- name: stablelm_1-6b_ContextSplitter
results: []
See axolotl config
axolotl version: 0.4.0
base_model: stabilityai/stablelm-2-1_6b
base_model_config: stabilityai/stablelm-2-1_6b
model_type: StableLMEpochForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /run/media/username/Storage/datasets/repo/alpaca/context-aware-splits-english_new.json
type: alpaca
dataset_prepared_path: stablelm_1-6b_ContextSplitter_data
val_set_size: 0.02
output_dir: ./stablelm_1-6b_ContextSplitter
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: stablelm_1-6b_ContextSplitter
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 30
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
stablelm_1-6b_ContextSplitter
This model is a fine-tuned version of stabilityai/stablelm-2-1_6b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0377
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1781 | 0.0 | 1 | 0.2283 |
0.0709 | 0.03 | 248 | 0.0589 |
0.0274 | 0.07 | 496 | 0.0512 |
0.0614 | 0.1 | 744 | 0.0480 |
0.0266 | 0.13 | 992 | 0.0466 |
0.0471 | 0.17 | 1240 | 0.0440 |
0.0425 | 0.2 | 1488 | 0.0435 |
0.1172 | 0.23 | 1736 | 0.0423 |
0.0322 | 0.27 | 1984 | 0.0415 |
0.0529 | 0.3 | 2232 | 0.0413 |
0.0296 | 0.33 | 2480 | 0.0409 |
0.0357 | 0.37 | 2728 | 0.0398 |
0.0242 | 0.4 | 2976 | 0.0394 |
0.0266 | 0.43 | 3224 | 0.0391 |
0.0292 | 0.47 | 3472 | 0.0386 |
0.0261 | 0.5 | 3720 | 0.0386 |
0.0382 | 0.53 | 3968 | 0.0383 |
0.0378 | 0.57 | 4216 | 0.0383 |
0.0345 | 0.6 | 4464 | 0.0379 |
0.0467 | 0.64 | 4712 | 0.0379 |
0.0542 | 0.67 | 4960 | 0.0378 |
0.0317 | 0.7 | 5208 | 0.0378 |
0.0363 | 0.74 | 5456 | 0.0377 |
0.054 | 0.77 | 5704 | 0.0377 |
0.0207 | 0.8 | 5952 | 0.0377 |
0.0302 | 0.84 | 6200 | 0.0377 |
0.0427 | 0.87 | 6448 | 0.0377 |
0.0278 | 0.9 | 6696 | 0.0377 |
0.0648 | 0.94 | 6944 | 0.0377 |
0.0497 | 0.97 | 7192 | 0.0377 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0