File size: 4,595 Bytes
f7f2036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: other
base_model: stabilityai/stablelm-2-1_6b
tags:
- generated_from_trainer
model-index:
- name: stablelm_1-6b_ContextSplitter
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: stabilityai/stablelm-2-1_6b
base_model_config: stabilityai/stablelm-2-1_6b
model_type: StableLMEpochForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /run/media/username/Storage/datasets/repo/alpaca/context-aware-splits-english_new.json
type: alpaca
dataset_prepared_path: stablelm_1-6b_ContextSplitter_data
val_set_size: 0.02
output_dir: ./stablelm_1-6b_ContextSplitter
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: stablelm_1-6b_ContextSplitter
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 30
eval_table_size:
saves_per_epoch: 4
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# stablelm_1-6b_ContextSplitter
This model is a fine-tuned version of [stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0377
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1781 | 0.0 | 1 | 0.2283 |
| 0.0709 | 0.03 | 248 | 0.0589 |
| 0.0274 | 0.07 | 496 | 0.0512 |
| 0.0614 | 0.1 | 744 | 0.0480 |
| 0.0266 | 0.13 | 992 | 0.0466 |
| 0.0471 | 0.17 | 1240 | 0.0440 |
| 0.0425 | 0.2 | 1488 | 0.0435 |
| 0.1172 | 0.23 | 1736 | 0.0423 |
| 0.0322 | 0.27 | 1984 | 0.0415 |
| 0.0529 | 0.3 | 2232 | 0.0413 |
| 0.0296 | 0.33 | 2480 | 0.0409 |
| 0.0357 | 0.37 | 2728 | 0.0398 |
| 0.0242 | 0.4 | 2976 | 0.0394 |
| 0.0266 | 0.43 | 3224 | 0.0391 |
| 0.0292 | 0.47 | 3472 | 0.0386 |
| 0.0261 | 0.5 | 3720 | 0.0386 |
| 0.0382 | 0.53 | 3968 | 0.0383 |
| 0.0378 | 0.57 | 4216 | 0.0383 |
| 0.0345 | 0.6 | 4464 | 0.0379 |
| 0.0467 | 0.64 | 4712 | 0.0379 |
| 0.0542 | 0.67 | 4960 | 0.0378 |
| 0.0317 | 0.7 | 5208 | 0.0378 |
| 0.0363 | 0.74 | 5456 | 0.0377 |
| 0.054 | 0.77 | 5704 | 0.0377 |
| 0.0207 | 0.8 | 5952 | 0.0377 |
| 0.0302 | 0.84 | 6200 | 0.0377 |
| 0.0427 | 0.87 | 6448 | 0.0377 |
| 0.0278 | 0.9 | 6696 | 0.0377 |
| 0.0648 | 0.94 | 6944 | 0.0377 |
| 0.0497 | 0.97 | 7192 | 0.0377 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0
|