--- license: other base_model: stabilityai/stablelm-2-1_6b tags: - generated_from_trainer model-index: - name: stablelm_1-6b_ContextSplitter results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: stabilityai/stablelm-2-1_6b base_model_config: stabilityai/stablelm-2-1_6b model_type: StableLMEpochForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /run/media/username/Storage/datasets/repo/alpaca/context-aware-splits-english_new.json type: alpaca dataset_prepared_path: stablelm_1-6b_ContextSplitter_data val_set_size: 0.02 output_dir: ./stablelm_1-6b_ContextSplitter sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: stablelm_1-6b_ContextSplitter wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true warmup_steps: 100 evals_per_epoch: 30 eval_table_size: saves_per_epoch: 4 debug: deepspeed: #deepspeed_configs/zero2.json # multi-gpu only weight_decay: 0.1 fsdp: fsdp_config: special_tokens: ```

# stablelm_1-6b_ContextSplitter This model is a fine-tuned version of [stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1781 | 0.0 | 1 | 0.2283 | | 0.0709 | 0.03 | 248 | 0.0589 | | 0.0274 | 0.07 | 496 | 0.0512 | | 0.0614 | 0.1 | 744 | 0.0480 | | 0.0266 | 0.13 | 992 | 0.0466 | | 0.0471 | 0.17 | 1240 | 0.0440 | | 0.0425 | 0.2 | 1488 | 0.0435 | | 0.1172 | 0.23 | 1736 | 0.0423 | | 0.0322 | 0.27 | 1984 | 0.0415 | | 0.0529 | 0.3 | 2232 | 0.0413 | | 0.0296 | 0.33 | 2480 | 0.0409 | | 0.0357 | 0.37 | 2728 | 0.0398 | | 0.0242 | 0.4 | 2976 | 0.0394 | | 0.0266 | 0.43 | 3224 | 0.0391 | | 0.0292 | 0.47 | 3472 | 0.0386 | | 0.0261 | 0.5 | 3720 | 0.0386 | | 0.0382 | 0.53 | 3968 | 0.0383 | | 0.0378 | 0.57 | 4216 | 0.0383 | | 0.0345 | 0.6 | 4464 | 0.0379 | | 0.0467 | 0.64 | 4712 | 0.0379 | | 0.0542 | 0.67 | 4960 | 0.0378 | | 0.0317 | 0.7 | 5208 | 0.0378 | | 0.0363 | 0.74 | 5456 | 0.0377 | | 0.054 | 0.77 | 5704 | 0.0377 | | 0.0207 | 0.8 | 5952 | 0.0377 | | 0.0302 | 0.84 | 6200 | 0.0377 | | 0.0427 | 0.87 | 6448 | 0.0377 | | 0.0278 | 0.9 | 6696 | 0.0377 | | 0.0648 | 0.94 | 6944 | 0.0377 | | 0.0497 | 0.97 | 7192 | 0.0377 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0