|
--- |
|
base_model: google/pegasus-x-large |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: pegasus-x-large-finetuned-samsum1000 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: validation |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 46.6996 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pegasus-x-large-finetuned-samsum1000 |
|
|
|
This model is a fine-tuned version of [google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4802 |
|
- Rouge1: 46.6996 |
|
- Rouge2: 21.5586 |
|
- Rougel: 38.1002 |
|
- Rougelsum: 41.42 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 1.7681 | 1.0 | 500 | 1.4689 | 47.1766 | 21.8869 | 38.8854 | 42.9534 | |
|
| 1.4626 | 2.0 | 1000 | 1.4781 | 46.6978 | 20.786 | 37.764 | 41.2028 | |
|
| 1.3591 | 3.0 | 1500 | 1.4804 | 47.1756 | 21.8821 | 38.2072 | 41.6812 | |
|
| 1.3466 | 4.0 | 2000 | 1.4804 | 46.9411 | 21.5169 | 38.18 | 41.471 | |
|
| 1.3464 | 5.0 | 2500 | 1.4803 | 46.8083 | 21.5333 | 38.1539 | 41.4872 | |
|
| 1.3353 | 6.0 | 3000 | 1.4804 | 46.6675 | 21.1336 | 37.7059 | 41.0869 | |
|
| 1.3483 | 7.0 | 3500 | 1.4803 | 46.6768 | 21.1916 | 37.7642 | 41.1696 | |
|
| 1.3536 | 8.0 | 4000 | 1.4804 | 46.7311 | 21.5169 | 38.057 | 41.42 | |
|
| 1.3533 | 9.0 | 4500 | 1.4802 | 46.6403 | 21.529 | 37.9922 | 41.3437 | |
|
| 1.3469 | 10.0 | 5000 | 1.4802 | 46.6996 | 21.5586 | 38.1002 | 41.42 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|