zakerous's picture
Training complete
f62957f verified
metadata
base_model: google/pegasus-x-large
tags:
  - summarization
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: pegasus-x-large-finetuned-samsum1000
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: validation
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 46.6996

pegasus-x-large-finetuned-samsum1000

This model is a fine-tuned version of google/pegasus-x-large on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4802
  • Rouge1: 46.6996
  • Rouge2: 21.5586
  • Rougel: 38.1002
  • Rougelsum: 41.42

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.7681 1.0 500 1.4689 47.1766 21.8869 38.8854 42.9534
1.4626 2.0 1000 1.4781 46.6978 20.786 37.764 41.2028
1.3591 3.0 1500 1.4804 47.1756 21.8821 38.2072 41.6812
1.3466 4.0 2000 1.4804 46.9411 21.5169 38.18 41.471
1.3464 5.0 2500 1.4803 46.8083 21.5333 38.1539 41.4872
1.3353 6.0 3000 1.4804 46.6675 21.1336 37.7059 41.0869
1.3483 7.0 3500 1.4803 46.6768 21.1916 37.7642 41.1696
1.3536 8.0 4000 1.4804 46.7311 21.5169 38.057 41.42
1.3533 9.0 4500 1.4802 46.6403 21.529 37.9922 41.3437
1.3469 10.0 5000 1.4802 46.6996 21.5586 38.1002 41.42

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1