SPLADE_DistilMSE / README.md
yzong12138's picture
Add model
2e4ed76
|
raw
history blame
1.18 kB
metadata
library_name: xpmir

SPLADE_DistilMSE: SPLADEv2 trained with the distillated triplets

Training data from: https://github.com/sebastian-hofstaetter/neural-ranking-kd From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective (Thibault Formal, Carlos Lassance, Benjamin Piwowarski, Stéphane Clinchant). 2022. https://arxiv.org/abs/2205.04733

Using the model)

The model can be loaded with experimaestro IR

from xpmir.models import AutoModel

# Model that can be re-used in experiments
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE")

# Use this if you want to actually use the model
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE", as_instance=True)
model.initialize()
model.rsv("walgreens store sales average", "The average Walgreens salary ranges...")

Results

Dataset AP P@20 RR RR@10 nDCG nDCG@10 nDCG@20
trec2019 0.5102 0.7360 0.9612 0.9612 0.7407 0.7300 0.7097
msmarco_dev 0.3623 0.0384 0.3673 0.3560 0.4870 0.4207 0.4451