File size: 1,175 Bytes
aff456e
 
 
2e4ed76
aff456e
2e4ed76
 
 
 
aff456e
 
 
 
 
 
 
 
 
 
 
 
2e4ed76
 
aff456e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
---
library_name: xpmir
---
# SPLADE_DistilMSE: SPLADEv2 trained with the distillated triplets

Training data from: https://github.com/sebastian-hofstaetter/neural-ranking-kd
From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models
More Effective (Thibault Formal, Carlos Lassance, Benjamin Piwowarski,
Stéphane Clinchant). 2022. https://arxiv.org/abs/2205.04733

## Using the model)
The model can be loaded with [experimaestro IR](https://experimaestro-ir.readthedocs.io/en/latest/)

```py
from xpmir.models import AutoModel

# Model that can be re-used in experiments
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE")

# Use this if you want to actually use the model
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE", as_instance=True)
model.initialize()
model.rsv("walgreens store sales average", "The average Walgreens salary ranges...")
```

## Results
| Dataset  | AP | P@20 | RR | RR@10 | nDCG | nDCG@10 | nDCG@20  |
|----| ---|------|------|------|------|------|------|
| trec2019 | 0.5102 | 0.7360 | 0.9612 | 0.9612 | 0.7407 | 0.7300 | 0.7097 |
| msmarco_dev | 0.3623 | 0.0384 | 0.3673 | 0.3560 | 0.4870 | 0.4207 | 0.4451 |