|
--- |
|
base_model: ylacombe/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_16_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-fine-tune-test-no-ws2 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_16_0 |
|
type: common_voice_16_0 |
|
config: tr |
|
split: test |
|
args: tr |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.11088339984899148 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-fine-tune-test-no-ws2 |
|
|
|
This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co/ylacombe/w2v-bert-2.0) on the common_voice_16_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1513 |
|
- Wer: 0.1109 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 2.192 | 0.22 | 300 | 0.2797 | 0.2985 | |
|
| 0.2226 | 0.44 | 600 | 0.2989 | 0.3491 | |
|
| 0.1941 | 0.66 | 900 | 0.2558 | 0.2451 | |
|
| 0.1659 | 0.88 | 1200 | 0.2320 | 0.2289 | |
|
| 0.1332 | 1.1 | 1500 | 0.2063 | 0.1971 | |
|
| 0.1129 | 1.31 | 1800 | 0.1873 | 0.2029 | |
|
| 0.1044 | 1.53 | 2100 | 0.1765 | 0.1856 | |
|
| 0.1026 | 1.75 | 2400 | 0.1719 | 0.1752 | |
|
| 0.0982 | 1.97 | 2700 | 0.1927 | 0.2023 | |
|
| 0.0769 | 2.19 | 3000 | 0.1776 | 0.1671 | |
|
| 0.0715 | 2.41 | 3300 | 0.1626 | 0.1634 | |
|
| 0.0695 | 2.63 | 3600 | 0.1666 | 0.1654 | |
|
| 0.0612 | 2.85 | 3900 | 0.1760 | 0.1609 | |
|
| 0.0614 | 3.07 | 4200 | 0.1645 | 0.1593 | |
|
| 0.0476 | 3.29 | 4500 | 0.1685 | 0.1593 | |
|
| 0.048 | 3.51 | 4800 | 0.1790 | 0.1583 | |
|
| 0.0489 | 3.73 | 5100 | 0.1578 | 0.1535 | |
|
| 0.0456 | 3.94 | 5400 | 0.1610 | 0.1617 | |
|
| 0.041 | 4.16 | 5700 | 0.1559 | 0.1439 | |
|
| 0.0367 | 4.38 | 6000 | 0.1536 | 0.1436 | |
|
| 0.0321 | 4.6 | 6300 | 0.1591 | 0.1449 | |
|
| 0.0349 | 4.82 | 6600 | 0.1616 | 0.1419 | |
|
| 0.0308 | 5.04 | 6900 | 0.1501 | 0.1401 | |
|
| 0.0233 | 5.26 | 7200 | 0.1588 | 0.1394 | |
|
| 0.0253 | 5.48 | 7500 | 0.1633 | 0.1356 | |
|
| 0.0254 | 5.7 | 7800 | 0.1522 | 0.1339 | |
|
| 0.0245 | 5.92 | 8100 | 0.1598 | 0.1371 | |
|
| 0.0189 | 6.14 | 8400 | 0.1497 | 0.1324 | |
|
| 0.0174 | 6.36 | 8700 | 0.1487 | 0.1270 | |
|
| 0.0178 | 6.57 | 9000 | 0.1397 | 0.1286 | |
|
| 0.0173 | 6.79 | 9300 | 0.1495 | 0.1281 | |
|
| 0.0178 | 7.01 | 9600 | 0.1462 | 0.1222 | |
|
| 0.0124 | 7.23 | 9900 | 0.1516 | 0.1225 | |
|
| 0.0121 | 7.45 | 10200 | 0.1554 | 0.1190 | |
|
| 0.0128 | 7.67 | 10500 | 0.1453 | 0.1228 | |
|
| 0.0113 | 7.89 | 10800 | 0.1468 | 0.1178 | |
|
| 0.0086 | 8.11 | 11100 | 0.1556 | 0.1186 | |
|
| 0.0085 | 8.33 | 11400 | 0.1507 | 0.1154 | |
|
| 0.0073 | 8.55 | 11700 | 0.1494 | 0.1169 | |
|
| 0.0079 | 8.77 | 12000 | 0.1507 | 0.1152 | |
|
| 0.0089 | 8.98 | 12300 | 0.1456 | 0.1137 | |
|
| 0.0062 | 9.2 | 12600 | 0.1518 | 0.1127 | |
|
| 0.005 | 9.42 | 12900 | 0.1534 | 0.1115 | |
|
| 0.005 | 9.64 | 13200 | 0.1514 | 0.1110 | |
|
| 0.0048 | 9.86 | 13500 | 0.1513 | 0.1109 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|