File size: 4,445 Bytes
5a92b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
base_model: ylacombe/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: w2v-fine-tune-test-no-ws2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_0
      type: common_voice_16_0
      config: tr
      split: test
      args: tr
    metrics:
    - name: Wer
      type: wer
      value: 0.11088339984899148
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-fine-tune-test-no-ws2

This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co/ylacombe/w2v-bert-2.0) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1513
- Wer: 0.1109

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 2.192         | 0.22  | 300   | 0.2797          | 0.2985 |
| 0.2226        | 0.44  | 600   | 0.2989          | 0.3491 |
| 0.1941        | 0.66  | 900   | 0.2558          | 0.2451 |
| 0.1659        | 0.88  | 1200  | 0.2320          | 0.2289 |
| 0.1332        | 1.1   | 1500  | 0.2063          | 0.1971 |
| 0.1129        | 1.31  | 1800  | 0.1873          | 0.2029 |
| 0.1044        | 1.53  | 2100  | 0.1765          | 0.1856 |
| 0.1026        | 1.75  | 2400  | 0.1719          | 0.1752 |
| 0.0982        | 1.97  | 2700  | 0.1927          | 0.2023 |
| 0.0769        | 2.19  | 3000  | 0.1776          | 0.1671 |
| 0.0715        | 2.41  | 3300  | 0.1626          | 0.1634 |
| 0.0695        | 2.63  | 3600  | 0.1666          | 0.1654 |
| 0.0612        | 2.85  | 3900  | 0.1760          | 0.1609 |
| 0.0614        | 3.07  | 4200  | 0.1645          | 0.1593 |
| 0.0476        | 3.29  | 4500  | 0.1685          | 0.1593 |
| 0.048         | 3.51  | 4800  | 0.1790          | 0.1583 |
| 0.0489        | 3.73  | 5100  | 0.1578          | 0.1535 |
| 0.0456        | 3.94  | 5400  | 0.1610          | 0.1617 |
| 0.041         | 4.16  | 5700  | 0.1559          | 0.1439 |
| 0.0367        | 4.38  | 6000  | 0.1536          | 0.1436 |
| 0.0321        | 4.6   | 6300  | 0.1591          | 0.1449 |
| 0.0349        | 4.82  | 6600  | 0.1616          | 0.1419 |
| 0.0308        | 5.04  | 6900  | 0.1501          | 0.1401 |
| 0.0233        | 5.26  | 7200  | 0.1588          | 0.1394 |
| 0.0253        | 5.48  | 7500  | 0.1633          | 0.1356 |
| 0.0254        | 5.7   | 7800  | 0.1522          | 0.1339 |
| 0.0245        | 5.92  | 8100  | 0.1598          | 0.1371 |
| 0.0189        | 6.14  | 8400  | 0.1497          | 0.1324 |
| 0.0174        | 6.36  | 8700  | 0.1487          | 0.1270 |
| 0.0178        | 6.57  | 9000  | 0.1397          | 0.1286 |
| 0.0173        | 6.79  | 9300  | 0.1495          | 0.1281 |
| 0.0178        | 7.01  | 9600  | 0.1462          | 0.1222 |
| 0.0124        | 7.23  | 9900  | 0.1516          | 0.1225 |
| 0.0121        | 7.45  | 10200 | 0.1554          | 0.1190 |
| 0.0128        | 7.67  | 10500 | 0.1453          | 0.1228 |
| 0.0113        | 7.89  | 10800 | 0.1468          | 0.1178 |
| 0.0086        | 8.11  | 11100 | 0.1556          | 0.1186 |
| 0.0085        | 8.33  | 11400 | 0.1507          | 0.1154 |
| 0.0073        | 8.55  | 11700 | 0.1494          | 0.1169 |
| 0.0079        | 8.77  | 12000 | 0.1507          | 0.1152 |
| 0.0089        | 8.98  | 12300 | 0.1456          | 0.1137 |
| 0.0062        | 9.2   | 12600 | 0.1518          | 0.1127 |
| 0.005         | 9.42  | 12900 | 0.1534          | 0.1115 |
| 0.005         | 9.64  | 13200 | 0.1514          | 0.1110 |
| 0.0048        | 9.86  | 13500 | 0.1513          | 0.1109 |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1