metadata
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:MSELoss
base_model: w601sxs/b1ade-embed
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- negative_mse
widget:
- source_sentence: A man is jumping.
sentences:
- The man is jumping off something.
- Two people are posing for a photograph.
- two women sing opera
- source_sentence: The wave is huge.
sentences:
- A person is surfing on a large wave.
- People are competing in figure skating.
- Cats are sleeping inside the room.
- source_sentence: The man is short.
sentences:
- There is a man vaucuming
- The man did a self portrait of himself.
- The boys are asleep in their beds.
- source_sentence: A boy is bowling.
sentences:
- A boy is rolling a ball in a hotel hallway.
- PHS enrolls approximately 750 students.
- The older men are talking about their wives.
- source_sentence: A man is walking
sentences:
- The man is going for a walk.
- The station opened on 1 December 1896.
- The woman is alone and asleep in the car on the moon.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on w601sxs/b1ade-embed
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.6737565660591995
name: Pearson Cosine
- type: spearman_cosine
value: 0.7346594963661589
name: Spearman Cosine
- type: pearson_manhattan
value: 0.700631080294873
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7089388326911368
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7016605503100202
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7101559719602629
name: Spearman Euclidean
- type: pearson_dot
value: 0.7336031520397918
name: Pearson Dot
- type: spearman_dot
value: 0.7509506568007358
name: Spearman Dot
- type: pearson_max
value: 0.7336031520397918
name: Pearson Max
- type: spearman_max
value: 0.7509506568007358
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: Unknown
type: unknown
metrics:
- type: negative_mse
value: -21.545076370239258
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.677225151823628
name: Pearson Cosine
- type: spearman_cosine
value: 0.7310810412009605
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7076654744568199
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7120808159972457
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7070890827522099
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7115055158750536
name: Spearman Euclidean
- type: pearson_dot
value: 0.7026111016442886
name: Pearson Dot
- type: spearman_dot
value: 0.6949199269988278
name: Spearman Dot
- type: pearson_max
value: 0.7076654744568199
name: Pearson Max
- type: spearman_max
value: 0.7310810412009605
name: Spearman Max
SentenceTransformer based on w601sxs/b1ade-embed
This is a sentence-transformers model finetuned from w601sxs/b1ade-embed on the sentence-transformers/wikipedia-en-sentences dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: w601sxs/b1ade-embed
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("w601sxs/b1ade-embed-distilled-from-gte-large-en-v1.5")
# Run inference
sentences = [
'A man is walking',
'The man is going for a walk.',
'The station opened on 1 December 1896.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6738 |
spearman_cosine | 0.7347 |
pearson_manhattan | 0.7006 |
spearman_manhattan | 0.7089 |
pearson_euclidean | 0.7017 |
spearman_euclidean | 0.7102 |
pearson_dot | 0.7336 |
spearman_dot | 0.751 |
pearson_max | 0.7336 |
spearman_max | 0.751 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -21.5451 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6772 |
spearman_cosine | 0.7311 |
pearson_manhattan | 0.7077 |
spearman_manhattan | 0.7121 |
pearson_euclidean | 0.7071 |
spearman_euclidean | 0.7115 |
pearson_dot | 0.7026 |
spearman_dot | 0.6949 |
pearson_max | 0.7077 |
spearman_max | 0.7311 |
Training Details
Training Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 200,000 training samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 4 tokens
- mean: 12.24 tokens
- max: 52 tokens
- size: 1024 elements
- Samples:
sentence label A person on a horse jumps over a broken down airplane.
[-0.5300068259239197, 0.07807248830795288, 0.304331511259079, 0.3473575711250305, 0.3993019461631775, ...]
Children smiling and waving at camera
[-0.3918086886405945, 0.514893114566803, 0.38178062438964844, -0.29475438594818115, -0.07984668761491776, ...]
A boy is jumping on skateboard in the middle of a red bridge.
[-0.7029106020927429, 0.08336036652326584, 0.7830113768577576, -0.7898964285850525, 0.27573251724243164, ...]
- Loss:
MSELoss
Evaluation Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 10,000 evaluation samples
- Columns:
sentence
andlabel
- Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 13.23 tokens
- max: 57 tokens
- size: 1024 elements
- Samples:
sentence label Two women are embracing while holding to go packages.
[-0.5707114338874817, -0.5041555762290955, -1.3100334405899048, 0.5848354697227478, -0.3452240526676178, ...]
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
[-0.4810343384742737, 0.034435614943504333, -0.669406533241272, -0.16233624517917633, 0.5214978456497192, ...]
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
[-0.2572114169597626, 0.19592943787574768, -0.6243088841438293, -0.4749126136302948, -0.6737443804740906, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 0.0001num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|---|
0.1279 | 100 | 0.4302 | - | - | - | - |
0.2558 | 200 | 0.2398 | - | - | - | - |
0.3836 | 300 | 0.1918 | - | - | - | - |
0.5115 | 400 | 0.1683 | - | - | - | - |
0.6394 | 500 | 0.1539 | 0.2155 | -21.5451 | 0.7347 | - |
0.7673 | 600 | 0.1456 | - | - | - | - |
0.8951 | 700 | 0.1393 | - | - | - | - |
1.0 | 782 | - | - | - | - | 0.7311 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}