File size: 20,109 Bytes
d581bb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:100K<n<1M
- loss:MSELoss
base_model: w601sxs/b1ade-embed
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- negative_mse
widget:
- source_sentence: A man is jumping.
  sentences:
  - The man is jumping off something.
  - Two people are posing for a photograph.
  - two women sing opera
- source_sentence: The wave is huge.
  sentences:
  - A person is surfing on a large wave.
  - People are competing in figure skating.
  - Cats are sleeping inside the room.
- source_sentence: The man is short.
  sentences:
  - There is a man vaucuming
  - The man did a self portrait of himself.
  - The boys are asleep in their beds.
- source_sentence: A boy is bowling.
  sentences:
  - A boy is rolling a ball in a hotel hallway.
  - PHS enrolls approximately 750 students.
  - The older men are talking about their wives.
- source_sentence: A man is walking
  sentences:
  - The man is going for a walk.
  - The station opened on 1 December 1896.
  - The woman is alone and asleep in the car on the moon.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on w601sxs/b1ade-embed
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.6737565660591995
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7346594963661589
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.700631080294873
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7089388326911368
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7016605503100202
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7101559719602629
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7336031520397918
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7509506568007358
      name: Spearman Dot
    - type: pearson_max
      value: 0.7336031520397918
      name: Pearson Max
    - type: spearman_max
      value: 0.7509506568007358
      name: Spearman Max
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: negative_mse
      value: -21.545076370239258
      name: Negative Mse
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.677225151823628
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7310810412009605
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7076654744568199
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7120808159972457
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7070890827522099
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7115055158750536
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7026111016442886
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6949199269988278
      name: Spearman Dot
    - type: pearson_max
      value: 0.7076654744568199
      name: Pearson Max
    - type: spearman_max
      value: 0.7310810412009605
      name: Spearman Max
---

# SentenceTransformer based on w601sxs/b1ade-embed

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [w601sxs/b1ade-embed](https://huggingface.co/w601sxs/b1ade-embed) on the [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [w601sxs/b1ade-embed](https://huggingface.co/w601sxs/b1ade-embed) <!-- at revision fbe0925144487193887d384372a3e99bdf043596 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("w601sxs/b1ade-embed-distilled-from-gte-large-en-v1.5")
# Run inference
sentences = [
    'A man is walking',
    'The man is going for a walk.',
    'The station opened on 1 December 1896.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6738     |
| **spearman_cosine** | **0.7347** |
| pearson_manhattan   | 0.7006     |
| spearman_manhattan  | 0.7089     |
| pearson_euclidean   | 0.7017     |
| spearman_euclidean  | 0.7102     |
| pearson_dot         | 0.7336     |
| spearman_dot        | 0.751      |
| pearson_max         | 0.7336     |
| spearman_max        | 0.751      |

#### Knowledge Distillation

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)

| Metric           | Value        |
|:-----------------|:-------------|
| **negative_mse** | **-21.5451** |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6772     |
| **spearman_cosine** | **0.7311** |
| pearson_manhattan   | 0.7077     |
| spearman_manhattan  | 0.7121     |
| pearson_euclidean   | 0.7071     |
| spearman_euclidean  | 0.7115     |
| pearson_dot         | 0.7026     |
| spearman_dot        | 0.6949     |
| pearson_max         | 0.7077     |
| spearman_max        | 0.7311     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/wikipedia-en-sentences

* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 200,000 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence                                                                          | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | list                                  |
  | details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | sentence                                                                   | label                                                                                                                       |
  |:---------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>[-0.5300068259239197, 0.07807248830795288, 0.304331511259079, 0.3473575711250305, 0.3993019461631775, ...]</code>     |
  | <code>Children smiling and waving at camera</code>                         | <code>[-0.3918086886405945, 0.514893114566803, 0.38178062438964844, -0.29475438594818115, -0.07984668761491776, ...]</code> |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-0.7029106020927429, 0.08336036652326584, 0.7830113768577576, -0.7898964285850525, 0.27573251724243164, ...]</code>  |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Evaluation Dataset

#### sentence-transformers/wikipedia-en-sentences

* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 10,000 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence                                                                          | label                                 |
  |:--------|:----------------------------------------------------------------------------------|:--------------------------------------|
  | type    | string                                                                            | list                                  |
  | details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 1024 elements</li></ul> |
* Samples:
  | sentence                                                                                                                                                                       | label                                                                                                                       |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>[-0.5707114338874817, -0.5041555762290955, -1.3100334405899048, 0.5848354697227478, -0.3452240526676178, ...]</code>  |
  | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[-0.4810343384742737, 0.034435614943504333, -0.669406533241272, -0.16233624517917633, 0.5214978456497192, ...]</code> |
  | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>[-0.2572114169597626, 0.19592943787574768, -0.6243088841438293, -0.4749126136302948, -0.6737443804740906, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | loss       | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:----------:|:-------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
| 0.1279     | 100     | 0.4302        | -          | -            | -                       | -                        |
| 0.2558     | 200     | 0.2398        | -          | -            | -                       | -                        |
| 0.3836     | 300     | 0.1918        | -          | -            | -                       | -                        |
| 0.5115     | 400     | 0.1683        | -          | -            | -                       | -                        |
| **0.6394** | **500** | **0.1539**    | **0.2155** | **-21.5451** | **0.7347**              | **-**                    |
| 0.7673     | 600     | 0.1456        | -          | -            | -                       | -                        |
| 0.8951     | 700     | 0.1393        | -          | -            | -                       | -                        |
| 1.0        | 782     | -             | -          | -            | -                       | 0.7311                   |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->