State-of-the-Art NER models - Acronyms
Collection
2 items
•
Updated
This is a SpanMarker model trained on the Acronym Identification dataset that can be used for Named Entity Recognition. This SpanMarker model uses bert-base-uncased as the underlying encoder. See train.py for the training script.
Is your data always capitalized correctly? Then consider using the cased variant of this model instead for better performance: tomaarsen/span-marker-bert-base-acronyms.
Label | Examples |
---|---|
long | "successive convex approximation", "controlled natural language", "Conversational Question Answering" |
short | "SODA", "CNL", "CoQA" |
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.9339 | 0.9063 | 0.9199 |
long | 0.9314 | 0.8845 | 0.9074 |
short | 0.9352 | 0.9174 | 0.9262 |
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-acronyms")
# Run inference
entities = model.predict("compression algorithms like principal component analysis (pca) can reduce noise and complexity.")
You can finetune this model on your own dataset.
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-acronyms")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-uncased-acronyms-finetuned")
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 4 | 32.3372 | 170 |
Entities per sentence | 0 | 2.6775 | 24 |
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
0.3120 | 200 | 0.0097 | 0.8999 | 0.8731 | 0.8863 | 0.9718 |
0.6240 | 400 | 0.0075 | 0.9163 | 0.8995 | 0.9078 | 0.9769 |
0.9360 | 600 | 0.0076 | 0.9079 | 0.9153 | 0.9116 | 0.9773 |
1.2480 | 800 | 0.0069 | 0.9267 | 0.9006 | 0.9135 | 0.9778 |
1.5601 | 1000 | 0.0065 | 0.9268 | 0.9044 | 0.9154 | 0.9782 |
1.8721 | 1200 | 0.0065 | 0.9279 | 0.9061 | 0.9168 | 0.9787 |
Carbon emissions were measured using CodeCarbon.
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Base model
google-bert/bert-base-uncased