|
from pathlib import Path |
|
import shutil |
|
from datasets import load_dataset |
|
from transformers import TrainingArguments |
|
from span_marker import SpanMarkerModel, Trainer, SpanMarkerModelCardData |
|
|
|
import os |
|
|
|
os.environ["CODECARBON_LOG_LEVEL"] = "error" |
|
|
|
|
|
def main() -> None: |
|
|
|
dataset_name = "Acronym Identification" |
|
dataset_id = "acronym_identification" |
|
dataset = load_dataset(dataset_id).rename_column("labels", "ner_tags") |
|
labels = dataset["train"].features["ner_tags"].feature.names |
|
|
|
|
|
encoder_id = "bert-base-uncased" |
|
model_id = f"tomaarsen/span-marker-{encoder_id}-acronyms-2" |
|
model = SpanMarkerModel.from_pretrained( |
|
encoder_id, |
|
labels=labels, |
|
|
|
model_max_length=256, |
|
marker_max_length=128, |
|
entity_max_length=8, |
|
|
|
model_card_data=SpanMarkerModelCardData( |
|
model_id=model_id, |
|
encoder_id=encoder_id, |
|
dataset_name=dataset_name, |
|
dataset_id=dataset_id, |
|
license="apache-2.0", |
|
language="en", |
|
), |
|
) |
|
|
|
|
|
output_dir = Path("models") / model_id |
|
args = TrainingArguments( |
|
output_dir=output_dir, |
|
run_name=model_id, |
|
|
|
learning_rate=5e-5, |
|
per_device_train_batch_size=32, |
|
per_device_eval_batch_size=32, |
|
num_train_epochs=2, |
|
weight_decay=0.01, |
|
warmup_ratio=0.1, |
|
bf16=True, |
|
|
|
logging_first_step=True, |
|
logging_steps=50, |
|
evaluation_strategy="steps", |
|
save_strategy="steps", |
|
eval_steps=200, |
|
save_total_limit=2, |
|
dataloader_num_workers=2, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=args, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["validation"], |
|
) |
|
trainer.train() |
|
|
|
|
|
metrics = trainer.evaluate() |
|
trainer.save_metrics("validation", metrics) |
|
|
|
trainer.save_model(output_dir / "checkpoint-final") |
|
shutil.copy2(__file__, output_dir / "checkpoint-final" / "train.py") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|