Spaces:
Runtime error
Runtime error
import streamlit as st | |
import openai | |
import os | |
import base64 | |
import glob | |
import json | |
import mistune | |
import pytz | |
import math | |
import requests | |
from datetime import datetime | |
from openai import ChatCompletion | |
from xml.etree import ElementTree as ET | |
from bs4 import BeautifulSoup | |
from collections import deque | |
from audio_recorder_streamlit import audio_recorder | |
openai.api_key = os.getenv('OPENAI_KEY') | |
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide") | |
menu = ["txt", "htm", "md", "py"] | |
choice = st.sidebar.selectbox("Output File Type:", menu) | |
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) | |
def generate_filename(prompt, file_type): | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.now(central).strftime("%m%d_%I%M") | |
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45] | |
return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
def chat_with_model(prompt, document_section): | |
model = model_choice | |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] | |
conversation.append({'role': 'user', 'content': prompt}) | |
conversation.append({'role': 'assistant', 'content': document_section}) | |
response = openai.ChatCompletion.create(model=model, messages=conversation) | |
return response['choices'][0]['message']['content'] | |
def transcribe_audio(openai_key, file_path, model): | |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" | |
headers = { | |
"Authorization": f"Bearer {openai_key}", | |
} | |
with open(file_path, 'rb') as f: | |
data = {'file': f} | |
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) | |
if response.status_code == 200: | |
st.write(response.json()) | |
response2 = chat_with_model(response.json().get('text'), '') | |
st.write('Responses:') | |
#st.write(response) | |
st.write(response2) | |
return response.json().get('text') | |
else: | |
st.write(response.json()) | |
st.error("Error in API call.") | |
return None | |
def save_and_play_audio(audio_recorder): | |
audio_bytes = audio_recorder() | |
if audio_bytes: | |
filename = generate_filename("Recording", "wav") | |
with open(filename, 'wb') as f: | |
f.write(audio_bytes) | |
st.audio(audio_bytes, format="audio/wav") | |
return filename | |
return None | |
filename = save_and_play_audio(audio_recorder) | |
if filename is not None: | |
if st.button("Transcribe"): | |
transcription = transcribe_audio(openai.api_key, filename, "whisper-1") | |
st.write(transcription) | |
chat_with_model(transcription, '') # push transcript through as prompt | |
def create_file(filename, prompt, response): | |
if filename.endswith(".txt"): | |
with open(filename, 'w') as file: | |
file.write(f"Prompt:\n{prompt}\nResponse:\n{response}") | |
elif filename.endswith(".htm"): | |
with open(filename, 'w') as file: | |
file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>") | |
elif filename.endswith(".md"): | |
with open(filename, 'w') as file: | |
file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}") | |
def truncate_document(document, length): | |
return document[:length] | |
def divide_document(document, max_length): | |
return [document[i:i+max_length] for i in range(0, len(document), max_length)] | |
def get_table_download_link(file_path): | |
with open(file_path, 'r') as file: | |
data = file.read() | |
b64 = base64.b64encode(data.encode()).decode() | |
file_name = os.path.basename(file_path) | |
ext = os.path.splitext(file_name)[1] # get the file extension | |
if ext == '.txt': | |
mime_type = 'text/plain' | |
elif ext == '.htm': | |
mime_type = 'text/html' | |
elif ext == '.md': | |
mime_type = 'text/markdown' | |
else: | |
mime_type = 'application/octet-stream' # general binary data type | |
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' | |
return href | |
def CompressXML(xml_text): | |
root = ET.fromstring(xml_text) | |
for elem in list(root.iter()): | |
if isinstance(elem.tag, str) and 'Comment' in elem.tag: | |
elem.parent.remove(elem) | |
return ET.tostring(root, encoding='unicode', method="xml") | |
def read_file_content(file,max_length): | |
if file.type == "application/json": | |
content = json.load(file) | |
return str(content) | |
elif file.type == "text/html" or file.type == "text/htm": | |
content = BeautifulSoup(file, "html.parser") | |
return content.text | |
elif file.type == "application/xml" or file.type == "text/xml": | |
tree = ET.parse(file) | |
root = tree.getroot() | |
xml = CompressXML(ET.tostring(root, encoding='unicode')) | |
return xml | |
elif file.type == "text/markdown" or file.type == "text/md": | |
md = mistune.create_markdown() | |
content = md(file.read().decode()) | |
return content | |
elif file.type == "text/plain": | |
return file.getvalue().decode() | |
else: | |
return "" | |
def main(): | |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) | |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed | |
with collength: | |
#max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4. 8x=96000 for gpt4-32k. | |
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) | |
with colupload: | |
uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"]) | |
document_sections = deque() | |
document_responses = {} | |
if uploaded_file is not None: | |
file_content = read_file_content(uploaded_file, max_length) | |
document_sections.extend(divide_document(file_content, max_length)) | |
if len(document_sections) > 0: | |
if st.button("ποΈ View Upload"): | |
st.markdown("**Sections of the uploaded file:**") | |
for i, section in enumerate(list(document_sections)): | |
st.markdown(f"**Section {i+1}**\n{section}") | |
st.markdown("**Chat with the model:**") | |
for i, section in enumerate(list(document_sections)): | |
if i in document_responses: | |
st.markdown(f"**Section {i+1}**\n{document_responses[i]}") | |
else: | |
if st.button(f"Chat about Section {i+1}"): | |
st.write('Reasoning with your inputs...') | |
response = chat_with_model(user_prompt, section) | |
st.write('Response:') | |
st.write(response) | |
document_responses[i] = response | |
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) | |
create_file(filename, user_prompt, response) | |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) | |
if st.button('π¬ Chat'): | |
st.write('Reasoning with your inputs...') | |
response = chat_with_model(user_prompt, ''.join(list(document_sections))) | |
st.write('Response:') | |
st.write(response) | |
filename = generate_filename(user_prompt, choice) | |
create_file(filename, user_prompt, response) | |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) | |
all_files = glob.glob("*.*") | |
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names | |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order | |
for file in all_files: | |
col1, col3 = st.sidebar.columns([5,1]) # adjust the ratio as needed | |
with col1: | |
st.markdown(get_table_download_link(file), unsafe_allow_html=True) | |
with col3: | |
if st.button("π", key="delete_"+file): | |
os.remove(file) | |
st.experimental_rerun() | |
if __name__ == "__main__": | |
main() | |