import streamlit as st import openai import os import base64 import glob import json import mistune import pytz import math import requests from datetime import datetime from openai import ChatCompletion from xml.etree import ElementTree as ET from bs4 import BeautifulSoup from collections import deque from audio_recorder_streamlit import audio_recorder openai.api_key = os.getenv('OPENAI_KEY') st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide") menu = ["txt", "htm", "md", "py"] choice = st.sidebar.selectbox("Output File Type:", menu) model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%I%M") safe_prompt = "".join(x for x in prompt if x.isalnum())[:45] return f"{safe_date_time}_{safe_prompt}.{file_type}" def chat_with_model(prompt, document_section): model = model_choice conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] conversation.append({'role': 'user', 'content': prompt}) conversation.append({'role': 'assistant', 'content': document_section}) response = openai.ChatCompletion.create(model=model, messages=conversation) return response['choices'][0]['message']['content'] def transcribe_audio(openai_key, file_path, model): OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" headers = { "Authorization": f"Bearer {openai_key}", } with open(file_path, 'rb') as f: data = {'file': f} response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) if response.status_code == 200: st.write(response.json()) response2 = chat_with_model(response.json().get('text'), '') st.write('Responses:') #st.write(response) st.write(response2) return response.json().get('text') else: st.write(response.json()) st.error("Error in API call.") return None def save_and_play_audio(audio_recorder): audio_bytes = audio_recorder() if audio_bytes: filename = generate_filename("Recording", "wav") with open(filename, 'wb') as f: f.write(audio_bytes) st.audio(audio_bytes, format="audio/wav") return filename return None filename = save_and_play_audio(audio_recorder) if filename is not None: if st.button("Transcribe"): transcription = transcribe_audio(openai.api_key, filename, "whisper-1") st.write(transcription) chat_with_model(transcription, '') # push transcript through as prompt def create_file(filename, prompt, response): if filename.endswith(".txt"): with open(filename, 'w') as file: file.write(f"Prompt:\n{prompt}\nResponse:\n{response}") elif filename.endswith(".htm"): with open(filename, 'w') as file: file.write(f"

Prompt:

{prompt}

Response:

{response}

") elif filename.endswith(".md"): with open(filename, 'w') as file: file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}") def truncate_document(document, length): return document[:length] def divide_document(document, max_length): return [document[i:i+max_length] for i in range(0, len(document), max_length)] def get_table_download_link(file_path): with open(file_path, 'r') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] # get the file extension if ext == '.txt': mime_type = 'text/plain' elif ext == '.htm': mime_type = 'text/html' elif ext == '.md': mime_type = 'text/markdown' else: mime_type = 'application/octet-stream' # general binary data type href = f'{file_name}' return href def CompressXML(xml_text): root = ET.fromstring(xml_text) for elem in list(root.iter()): if isinstance(elem.tag, str) and 'Comment' in elem.tag: elem.parent.remove(elem) return ET.tostring(root, encoding='unicode', method="xml") def read_file_content(file,max_length): if file.type == "application/json": content = json.load(file) return str(content) elif file.type == "text/html" or file.type == "text/htm": content = BeautifulSoup(file, "html.parser") return content.text elif file.type == "application/xml" or file.type == "text/xml": tree = ET.parse(file) root = tree.getroot() xml = CompressXML(ET.tostring(root, encoding='unicode')) return xml elif file.type == "text/markdown" or file.type == "text/md": md = mistune.create_markdown() content = md(file.read().decode()) return content elif file.type == "text/plain": return file.getvalue().decode() else: return "" def main(): user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) collength, colupload = st.columns([2,3]) # adjust the ratio as needed with collength: #max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4. 8x=96000 for gpt4-32k. max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) with colupload: uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"]) document_sections = deque() document_responses = {} if uploaded_file is not None: file_content = read_file_content(uploaded_file, max_length) document_sections.extend(divide_document(file_content, max_length)) if len(document_sections) > 0: if st.button("👁️ View Upload"): st.markdown("**Sections of the uploaded file:**") for i, section in enumerate(list(document_sections)): st.markdown(f"**Section {i+1}**\n{section}") st.markdown("**Chat with the model:**") for i, section in enumerate(list(document_sections)): if i in document_responses: st.markdown(f"**Section {i+1}**\n{document_responses[i]}") else: if st.button(f"Chat about Section {i+1}"): st.write('Reasoning with your inputs...') response = chat_with_model(user_prompt, section) st.write('Response:') st.write(response) document_responses[i] = response filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) create_file(filename, user_prompt, response) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) if st.button('💬 Chat'): st.write('Reasoning with your inputs...') response = chat_with_model(user_prompt, ''.join(list(document_sections))) st.write('Response:') st.write(response) filename = generate_filename(user_prompt, choice) create_file(filename, user_prompt, response) st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) all_files = glob.glob("*.*") all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order for file in all_files: col1, col3 = st.sidebar.columns([5,1]) # adjust the ratio as needed with col1: st.markdown(get_table_download_link(file), unsafe_allow_html=True) with col3: if st.button("🗑", key="delete_"+file): os.remove(file) st.experimental_rerun() if __name__ == "__main__": main()