File size: 8,143 Bytes
6e969ba
 
 
 
 
acc0c63
a88d27d
bf65701
9f0de14
6cf2d04
 
6e969ba
 
9103f91
 
9f0de14
6cf2d04
5d39a3e
6e969ba
6cf2d04
e12378e
 
6cf2d04
 
988a5cb
29b3073
bf65701
5e39c57
6cf2d04
29b3073
 
6cf2d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10369ed
29b3073
 
 
 
 
 
 
 
 
6e969ba
9f0de14
 
 
 
 
 
5d39a3e
 
 
 
 
a260e6a
5d39a3e
 
 
 
 
 
 
a260e6a
5d39a3e
 
 
4c38937
9103f91
 
 
 
4c38937
d3f3e34
34128f5
f8850ff
 
 
a88d27d
f8850ff
 
a06050e
9103f91
 
db9b250
8d8fc5c
a88d27d
 
 
 
f8850ff
 
 
 
 
 
6cf2d04
 
 
 
 
 
 
 
 
9f0de14
 
a260e6a
 
 
9f0de14
 
 
6cf2d04
 
 
 
 
 
9f0de14
 
 
 
 
 
6cf2d04
9f0de14
 
 
 
6cf2d04
 
 
a260e6a
55c04e3
6cf2d04
9f0de14
a260e6a
 
5751846
a260e6a
 
 
9f0de14
6cf2d04
 
 
 
29b3073
6cf2d04
9337711
 
6cf2d04
 
9337711
 
6cf2d04
6e969ba
9f0de14
6cf2d04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import streamlit as st
import openai
import os
import base64
import glob
import json
import mistune
import pytz
import math
import requests

from datetime import datetime
from openai import ChatCompletion
from xml.etree import ElementTree as ET
from bs4 import BeautifulSoup
from collections import deque
from audio_recorder_streamlit import audio_recorder

openai.api_key = os.getenv('OPENAI_KEY')
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide")

menu = ["txt", "htm", "md", "py"]
choice = st.sidebar.selectbox("Output File Type:", menu)
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%I%M")  
    safe_prompt = "".join(x for x in prompt if x.isalnum())[:45]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def chat_with_model(prompt, document_section):
    model = model_choice
    conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
    conversation.append({'role': 'user', 'content': prompt})
    conversation.append({'role': 'assistant', 'content': document_section})
    response = openai.ChatCompletion.create(model=model, messages=conversation)
    return response['choices'][0]['message']['content']

def transcribe_audio(openai_key, file_path, model):
    OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
    headers = {
        "Authorization": f"Bearer {openai_key}",
    }
    with open(file_path, 'rb') as f:
        data = {'file': f}
        response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
    if response.status_code == 200:
        st.write(response.json())
        response2 = chat_with_model(response.json().get('text'), '')
        st.write('Responses:')
        #st.write(response)
        st.write(response2)
        return response.json().get('text')
    else:
        st.write(response.json())
        st.error("Error in API call.")
        return None

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder()
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

filename = save_and_play_audio(audio_recorder)
if filename is not None:
    if st.button("Transcribe"):
        transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
        st.write(transcription)
        chat_with_model(transcription, '') # push transcript through as prompt

def create_file(filename, prompt, response):
    if filename.endswith(".txt"):
        with open(filename, 'w') as file:
            file.write(f"Prompt:\n{prompt}\nResponse:\n{response}")
    elif filename.endswith(".htm"):
        with open(filename, 'w') as file:
            file.write(f"<h1>Prompt:</h1> <p>{prompt}</p> <h1>Response:</h1> <p>{response}</p>")
    elif filename.endswith(".md"):
        with open(filename, 'w') as file:
            file.write(f"# Prompt:\n{prompt}\n# Response:\n{response}")

def truncate_document(document, length):
    return document[:length]

def divide_document(document, max_length):
    return [document[i:i+max_length] for i in range(0, len(document), max_length)]

def get_table_download_link(file_path):
    with open(file_path, 'r') as file:
        data = file.read()
    b64 = base64.b64encode(data.encode()).decode()  
    file_name = os.path.basename(file_path)
    ext = os.path.splitext(file_name)[1]  # get the file extension
    if ext == '.txt':
        mime_type = 'text/plain'
    elif ext == '.htm':
        mime_type = 'text/html'
    elif ext == '.md':
        mime_type = 'text/markdown'
    else:
        mime_type = 'application/octet-stream'  # general binary data type
    href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
    return href

def CompressXML(xml_text):
    root = ET.fromstring(xml_text)
    for elem in list(root.iter()):
        if isinstance(elem.tag, str) and 'Comment' in elem.tag:
            elem.parent.remove(elem)
    return ET.tostring(root, encoding='unicode', method="xml")
    
def read_file_content(file,max_length):
    if file.type == "application/json":
        content = json.load(file)
        return str(content)
    elif file.type == "text/html" or file.type == "text/htm":
        content = BeautifulSoup(file, "html.parser")
        return content.text
    elif file.type == "application/xml" or file.type == "text/xml":
        tree = ET.parse(file)
        root = tree.getroot()
        xml = CompressXML(ET.tostring(root, encoding='unicode'))
        return xml
    elif file.type == "text/markdown" or file.type == "text/md":
        md = mistune.create_markdown()
        content = md(file.read().decode())
        return content
    elif file.type == "text/plain":
        return file.getvalue().decode()
    else:
        return ""

def main():
    user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)

    collength, colupload = st.columns([2,3])  # adjust the ratio as needed
    with collength:
        #max_length = 12000 - optimal for gpt35 turbo. 2x=24000 for gpt4.  8x=96000 for gpt4-32k.
        max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
    with colupload:
        uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "html", "htm", "md", "txt"])
    
    document_sections = deque()
    document_responses = {}

    if uploaded_file is not None:
        file_content = read_file_content(uploaded_file, max_length)
        document_sections.extend(divide_document(file_content, max_length))

    if len(document_sections) > 0:
        
        if st.button("πŸ‘οΈ View Upload"):
            st.markdown("**Sections of the uploaded file:**")
            for i, section in enumerate(list(document_sections)):
                st.markdown(f"**Section {i+1}**\n{section}")
        
        st.markdown("**Chat with the model:**")
        for i, section in enumerate(list(document_sections)):
            if i in document_responses:
                st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
            else:
                if st.button(f"Chat about Section {i+1}"):
                    st.write('Reasoning with your inputs...')
                    response = chat_with_model(user_prompt, section)
                    st.write('Response:')
                    st.write(response)
                    document_responses[i] = response
                    filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
                    create_file(filename, user_prompt, response)
                    st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    if st.button('πŸ’¬ Chat'):
        st.write('Reasoning with your inputs...')
        response = chat_with_model(user_prompt, ''.join(list(document_sections)))
        st.write('Response:')
        st.write(response)
        
        filename = generate_filename(user_prompt, choice)
        create_file(filename, user_prompt, response)
        st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)

    all_files = glob.glob("*.*")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by file type and file name in descending order
    
    for file in all_files:
        col1, col3 = st.sidebar.columns([5,1])  # adjust the ratio as needed
        with col1:
            st.markdown(get_table_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ—‘", key="delete_"+file):
                os.remove(file)
                st.experimental_rerun()
            
if __name__ == "__main__":
    main()