test_model_dir / README.md
sixcarben's picture
End of training
6a3e13c verified
|
raw
history blame
4.29 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - minds14
metrics:
  - accuracy
model-index:
  - name: test_model_dir
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: minds14
          type: minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.035398230088495575

test_model_dir

This model is a fine-tuned version of facebook/wav2vec2-base on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7409
  • Accuracy: 0.0354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 3 2.6436 0.0619
No log 1.8667 7 2.6432 0.0619
2.6369 2.9333 11 2.6476 0.0442
2.6369 4.0 15 2.6537 0.0708
2.6369 4.8 18 2.6607 0.0708
2.6202 5.8667 22 2.6715 0.0708
2.6202 6.9333 26 2.6795 0.0531
2.6072 8.0 30 2.6857 0.0531
2.6072 8.8 33 2.6839 0.0531
2.6072 9.8667 37 2.6861 0.0619
2.5931 10.9333 41 2.6896 0.0531
2.5931 12.0 45 2.6916 0.0442
2.5931 12.8 48 2.6958 0.0531
2.5709 13.8667 52 2.7015 0.0531
2.5709 14.9333 56 2.7040 0.0442
2.5539 16.0 60 2.7116 0.0531
2.5539 16.8 63 2.7192 0.0354
2.5539 17.8667 67 2.7237 0.0265
2.5413 18.9333 71 2.7218 0.0354
2.5413 20.0 75 2.7317 0.0265
2.5413 20.8 78 2.7224 0.0354
2.516 21.8667 82 2.7218 0.0265
2.516 22.9333 86 2.7273 0.0265
2.5084 24.0 90 2.7202 0.0442
2.5084 24.8 93 2.7282 0.0265
2.5084 25.8667 97 2.7359 0.0265
2.4734 26.9333 101 2.7279 0.0265
2.4734 28.0 105 2.7302 0.0265
2.4734 28.8 108 2.7367 0.0442
2.4653 29.8667 112 2.7411 0.0265
2.4653 30.9333 116 2.7394 0.0354
2.4439 32.0 120 2.7451 0.0354
2.4439 32.8 123 2.7397 0.0265
2.4439 33.8667 127 2.7356 0.0265
2.4314 34.9333 131 2.7414 0.0354
2.4314 36.0 135 2.7484 0.0265
2.4314 36.8 138 2.7482 0.0265
2.4165 37.8667 142 2.7449 0.0354
2.4165 38.9333 146 2.7414 0.0354
2.4129 40.0 150 2.7409 0.0354

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1