File size: 4,286 Bytes
1aebcf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3e13c
1aebcf4
 
 
 
 
 
 
 
 
6a3e13c
 
1aebcf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3e13c
1aebcf4
 
 
6a3e13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aebcf4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- accuracy
model-index:
- name: test_model_dir
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: minds14
      type: minds14
      config: en-US
      split: train
      args: en-US
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.035398230088495575
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test_model_dir

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7409
- Accuracy: 0.0354

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log        | 0.8     | 3    | 2.6436          | 0.0619   |
| No log        | 1.8667  | 7    | 2.6432          | 0.0619   |
| 2.6369        | 2.9333  | 11   | 2.6476          | 0.0442   |
| 2.6369        | 4.0     | 15   | 2.6537          | 0.0708   |
| 2.6369        | 4.8     | 18   | 2.6607          | 0.0708   |
| 2.6202        | 5.8667  | 22   | 2.6715          | 0.0708   |
| 2.6202        | 6.9333  | 26   | 2.6795          | 0.0531   |
| 2.6072        | 8.0     | 30   | 2.6857          | 0.0531   |
| 2.6072        | 8.8     | 33   | 2.6839          | 0.0531   |
| 2.6072        | 9.8667  | 37   | 2.6861          | 0.0619   |
| 2.5931        | 10.9333 | 41   | 2.6896          | 0.0531   |
| 2.5931        | 12.0    | 45   | 2.6916          | 0.0442   |
| 2.5931        | 12.8    | 48   | 2.6958          | 0.0531   |
| 2.5709        | 13.8667 | 52   | 2.7015          | 0.0531   |
| 2.5709        | 14.9333 | 56   | 2.7040          | 0.0442   |
| 2.5539        | 16.0    | 60   | 2.7116          | 0.0531   |
| 2.5539        | 16.8    | 63   | 2.7192          | 0.0354   |
| 2.5539        | 17.8667 | 67   | 2.7237          | 0.0265   |
| 2.5413        | 18.9333 | 71   | 2.7218          | 0.0354   |
| 2.5413        | 20.0    | 75   | 2.7317          | 0.0265   |
| 2.5413        | 20.8    | 78   | 2.7224          | 0.0354   |
| 2.516         | 21.8667 | 82   | 2.7218          | 0.0265   |
| 2.516         | 22.9333 | 86   | 2.7273          | 0.0265   |
| 2.5084        | 24.0    | 90   | 2.7202          | 0.0442   |
| 2.5084        | 24.8    | 93   | 2.7282          | 0.0265   |
| 2.5084        | 25.8667 | 97   | 2.7359          | 0.0265   |
| 2.4734        | 26.9333 | 101  | 2.7279          | 0.0265   |
| 2.4734        | 28.0    | 105  | 2.7302          | 0.0265   |
| 2.4734        | 28.8    | 108  | 2.7367          | 0.0442   |
| 2.4653        | 29.8667 | 112  | 2.7411          | 0.0265   |
| 2.4653        | 30.9333 | 116  | 2.7394          | 0.0354   |
| 2.4439        | 32.0    | 120  | 2.7451          | 0.0354   |
| 2.4439        | 32.8    | 123  | 2.7397          | 0.0265   |
| 2.4439        | 33.8667 | 127  | 2.7356          | 0.0265   |
| 2.4314        | 34.9333 | 131  | 2.7414          | 0.0354   |
| 2.4314        | 36.0    | 135  | 2.7484          | 0.0265   |
| 2.4314        | 36.8    | 138  | 2.7482          | 0.0265   |
| 2.4165        | 37.8667 | 142  | 2.7449          | 0.0354   |
| 2.4165        | 38.9333 | 146  | 2.7414          | 0.0354   |
| 2.4129        | 40.0    | 150  | 2.7409          | 0.0354   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1