rhaymison's picture
End of training
a0cc83b verified
|
raw
history blame
3.34 kB
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: flan-t5-base
    results: []

flan-t5-base

This model is a fine-tuned version of google/flan-t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7474
  • Rouge1: 15.6258
  • Rouge2: 5.8684
  • Rougel: 13.5135
  • Rougelsum: 14.5266
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.3424 0.27 500 2.0519 13.8547 4.8819 12.0331 12.8514 19.0
2.1616 0.53 1000 1.9535 14.7848 5.382 12.8365 13.6475 19.0
2.0723 0.8 1500 1.9142 14.6906 5.434 12.8341 13.6491 19.0
2.0202 1.07 2000 1.8883 14.8456 5.5148 12.7977 13.7626 19.0
1.9921 1.33 2500 1.8473 14.8381 5.555 12.791 13.6959 19.0
1.9539 1.6 3000 1.8293 15.2161 5.7276 13.1915 14.1315 19.0
1.9455 1.87 3500 1.8166 15.2705 5.6751 13.2908 14.2064 19.0
1.9266 2.13 4000 1.8018 15.303 5.7225 13.2318 14.1942 19.0
1.8949 2.4 4500 1.7904 15.7181 6.0653 13.6993 14.5572 19.0
1.906 2.67 5000 1.7814 15.7143 5.9897 13.6178 14.5986 19.0
1.8737 2.93 5500 1.7706 15.4469 5.8011 13.3005 14.3128 19.0
1.8779 3.2 6000 1.7668 15.6243 5.9534 13.5025 14.5397 19.0
1.8638 3.47 6500 1.7629 15.3433 5.6495 13.251 14.3 19.0
1.8644 3.73 7000 1.7559 15.4275 5.6924 13.2484 14.3135 19.0
1.8389 4.0 7500 1.7522 15.5374 5.8713 13.4588 14.4702 19.0
1.8467 4.27 8000 1.7507 15.47 5.7876 13.3985 14.4401 19.0
1.8287 4.53 8500 1.7502 15.4761 5.7342 13.3502 14.4118 19.0
1.8439 4.8 9000 1.7474 15.6258 5.8684 13.5135 14.5266 19.0

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2