File size: 3,339 Bytes
a0cc83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base

This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7474
- Rouge1: 15.6258
- Rouge2: 5.8684
- Rougel: 13.5135
- Rougelsum: 14.5266
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.3424        | 0.27  | 500  | 2.0519          | 13.8547 | 4.8819 | 12.0331 | 12.8514   | 19.0    |
| 2.1616        | 0.53  | 1000 | 1.9535          | 14.7848 | 5.382  | 12.8365 | 13.6475   | 19.0    |
| 2.0723        | 0.8   | 1500 | 1.9142          | 14.6906 | 5.434  | 12.8341 | 13.6491   | 19.0    |
| 2.0202        | 1.07  | 2000 | 1.8883          | 14.8456 | 5.5148 | 12.7977 | 13.7626   | 19.0    |
| 1.9921        | 1.33  | 2500 | 1.8473          | 14.8381 | 5.555  | 12.791  | 13.6959   | 19.0    |
| 1.9539        | 1.6   | 3000 | 1.8293          | 15.2161 | 5.7276 | 13.1915 | 14.1315   | 19.0    |
| 1.9455        | 1.87  | 3500 | 1.8166          | 15.2705 | 5.6751 | 13.2908 | 14.2064   | 19.0    |
| 1.9266        | 2.13  | 4000 | 1.8018          | 15.303  | 5.7225 | 13.2318 | 14.1942   | 19.0    |
| 1.8949        | 2.4   | 4500 | 1.7904          | 15.7181 | 6.0653 | 13.6993 | 14.5572   | 19.0    |
| 1.906         | 2.67  | 5000 | 1.7814          | 15.7143 | 5.9897 | 13.6178 | 14.5986   | 19.0    |
| 1.8737        | 2.93  | 5500 | 1.7706          | 15.4469 | 5.8011 | 13.3005 | 14.3128   | 19.0    |
| 1.8779        | 3.2   | 6000 | 1.7668          | 15.6243 | 5.9534 | 13.5025 | 14.5397   | 19.0    |
| 1.8638        | 3.47  | 6500 | 1.7629          | 15.3433 | 5.6495 | 13.251  | 14.3      | 19.0    |
| 1.8644        | 3.73  | 7000 | 1.7559          | 15.4275 | 5.6924 | 13.2484 | 14.3135   | 19.0    |
| 1.8389        | 4.0   | 7500 | 1.7522          | 15.5374 | 5.8713 | 13.4588 | 14.4702   | 19.0    |
| 1.8467        | 4.27  | 8000 | 1.7507          | 15.47   | 5.7876 | 13.3985 | 14.4401   | 19.0    |
| 1.8287        | 4.53  | 8500 | 1.7502          | 15.4761 | 5.7342 | 13.3502 | 14.4118   | 19.0    |
| 1.8439        | 4.8   | 9000 | 1.7474          | 15.6258 | 5.8684 | 13.5135 | 14.5266   | 19.0    |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2