|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:665 |
|
- loss:CoSENTLoss |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Is there a free return policy? |
|
sentences: |
|
- general query |
|
- faq query |
|
- product query |
|
- source_sentence: Quiero reservar un vuelo a Madrid |
|
sentences: |
|
- faq query |
|
- general query |
|
- product query |
|
- source_sentence: Bestell mir einen Bluetooth-Lautsprecher |
|
sentences: |
|
- faq query |
|
- general query |
|
- general query |
|
- source_sentence: Kann ich meinen Account auf Premium upgraden? |
|
sentences: |
|
- faq query |
|
- product query |
|
- faq query |
|
- source_sentence: Was kostet der Versand nach Kanada? |
|
sentences: |
|
- product query |
|
- faq query |
|
- faq query |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: MiniLM dev |
|
type: MiniLM-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7060858093148971 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7122657953703283 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.5850353380261794 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6010204119883696 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.5997691394008732 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6079117189235353 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7251159526734934 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.732939716175825 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7251159526734934 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.732939716175825 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: MiniLM test |
|
type: MiniLM-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8232712880664017 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.822196399839697 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7831863345453927 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8000293400400974 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.792921493930252 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.80506730817637 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.8011854727667188 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8151432444489153 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8232712880664017 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.822196399839697 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small") |
|
# Run inference |
|
sentences = [ |
|
'Was kostet der Versand nach Kanada?', |
|
'faq query', |
|
'product query', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `MiniLM-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7061 | |
|
| **spearman_cosine** | **0.7123** | |
|
| pearson_manhattan | 0.585 | |
|
| spearman_manhattan | 0.601 | |
|
| pearson_euclidean | 0.5998 | |
|
| spearman_euclidean | 0.6079 | |
|
| pearson_dot | 0.7251 | |
|
| spearman_dot | 0.7329 | |
|
| pearson_max | 0.7251 | |
|
| spearman_max | 0.7329 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `MiniLM-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8233 | |
|
| **spearman_cosine** | **0.8222** | |
|
| pearson_manhattan | 0.7832 | |
|
| spearman_manhattan | 0.8 | |
|
| pearson_euclidean | 0.7929 | |
|
| spearman_euclidean | 0.8051 | |
|
| pearson_dot | 0.8012 | |
|
| spearman_dot | 0.8151 | |
|
| pearson_max | 0.8233 | |
|
| spearman_max | 0.8222 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 665 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 11.29 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.31 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:---------------------------------------------------------------------|:---------------------------|:-----------------| |
|
| <code>Send me deals on gaming accessories</code> | <code>product query</code> | <code>1.0</code> | |
|
| <code>Aidez-moi à synchroniser mes contacts sur mon téléphone</code> | <code>faq query</code> | <code>0.0</code> | |
|
| <code>Какие у вас есть предложения по ноутбукам?</code> | <code>faq query</code> | <code>0.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 84 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 11.32 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.42 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.46</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------------------------|:---------------------------|:-----------------| |
|
| <code>كيف يمكنني تتبع شحنتي؟</code> | <code>support query</code> | <code>0.0</code> | |
|
| <code>Aidez-moi à configurer une nouvelle adresse e-mail</code> | <code>support query</code> | <code>1.0</code> | |
|
| <code>Envoyez-moi les dernières promotions sur les montres connectées</code> | <code>product query</code> | <code>1.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 8 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 8 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | MiniLM-dev_spearman_cosine | MiniLM-test_spearman_cosine | |
|
|:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:| |
|
| 0.4762 | 10 | 1.3639 | 0.8946 | 0.0665 | - | |
|
| 0.9524 | 20 | 0.8488 | 0.7608 | 0.2318 | - | |
|
| 1.4286 | 30 | 0.6629 | 1.0463 | 0.3736 | - | |
|
| 1.9048 | 40 | 1.1413 | 1.1547 | 0.4159 | - | |
|
| 2.3810 | 50 | 1.8156 | 1.2059 | 0.4760 | - | |
|
| 2.8571 | 60 | 2.0179 | 0.8129 | 0.5794 | - | |
|
| 3.3333 | 70 | 0.3202 | 0.6236 | 0.6217 | - | |
|
| 3.8095 | 80 | 0.1437 | 0.6061 | 0.6404 | - | |
|
| 4.2857 | 90 | 1.1623 | 0.7312 | 0.6424 | - | |
|
| 4.7619 | 100 | 0.4376 | 0.5987 | 0.6621 | - | |
|
| 5.2381 | 110 | 0.5832 | 0.4848 | 0.6837 | - | |
|
| 5.7143 | 120 | 0.1749 | 0.3367 | 0.6896 | - | |
|
| 6.1905 | 130 | 0.0192 | 0.2607 | 0.6936 | - | |
|
| 6.6667 | 140 | 0.2047 | 0.2564 | 0.6995 | - | |
|
| 7.1429 | 150 | 0.404 | 0.2747 | 0.7103 | - | |
|
| 7.6190 | 160 | 0.0008 | 0.2764 | 0.7123 | - | |
|
| 8.0 | 168 | - | - | - | 0.8222 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |