---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:665
- loss:CoSENTLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Is there a free return policy?
sentences:
- general query
- faq query
- product query
- source_sentence: Quiero reservar un vuelo a Madrid
sentences:
- faq query
- general query
- product query
- source_sentence: Bestell mir einen Bluetooth-Lautsprecher
sentences:
- faq query
- general query
- general query
- source_sentence: Kann ich meinen Account auf Premium upgraden?
sentences:
- faq query
- product query
- faq query
- source_sentence: Was kostet der Versand nach Kanada?
sentences:
- product query
- faq query
- faq query
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: MiniLM dev
type: MiniLM-dev
metrics:
- type: pearson_cosine
value: 0.7060858093148971
name: Pearson Cosine
- type: spearman_cosine
value: 0.7122657953703283
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5850353380261794
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6010204119883696
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5997691394008732
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6079117189235353
name: Spearman Euclidean
- type: pearson_dot
value: 0.7251159526734934
name: Pearson Dot
- type: spearman_dot
value: 0.732939716175825
name: Spearman Dot
- type: pearson_max
value: 0.7251159526734934
name: Pearson Max
- type: spearman_max
value: 0.732939716175825
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: MiniLM test
type: MiniLM-test
metrics:
- type: pearson_cosine
value: 0.8232712880664017
name: Pearson Cosine
- type: spearman_cosine
value: 0.822196399839697
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7831863345453927
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8000293400400974
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.792921493930252
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.80506730817637
name: Spearman Euclidean
- type: pearson_dot
value: 0.8011854727667188
name: Pearson Dot
- type: spearman_dot
value: 0.8151432444489153
name: Spearman Dot
- type: pearson_max
value: 0.8232712880664017
name: Pearson Max
- type: spearman_max
value: 0.822196399839697
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small")
# Run inference
sentences = [
'Was kostet der Versand nach Kanada?',
'faq query',
'product query',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `MiniLM-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7061 |
| **spearman_cosine** | **0.7123** |
| pearson_manhattan | 0.585 |
| spearman_manhattan | 0.601 |
| pearson_euclidean | 0.5998 |
| spearman_euclidean | 0.6079 |
| pearson_dot | 0.7251 |
| spearman_dot | 0.7329 |
| pearson_max | 0.7251 |
| spearman_max | 0.7329 |
#### Semantic Similarity
* Dataset: `MiniLM-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8233 |
| **spearman_cosine** | **0.8222** |
| pearson_manhattan | 0.7832 |
| spearman_manhattan | 0.8 |
| pearson_euclidean | 0.7929 |
| spearman_euclidean | 0.8051 |
| pearson_dot | 0.8012 |
| spearman_dot | 0.8151 |
| pearson_max | 0.8233 |
| spearman_max | 0.8222 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 665 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
Send me deals on gaming accessories
| product query
| 1.0
|
| Aidez-moi à synchroniser mes contacts sur mon téléphone
| faq query
| 0.0
|
| Какие у вас есть предложения по ноутбукам?
| faq query
| 0.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 84 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | كيف يمكنني تتبع شحنتي؟
| support query
| 0.0
|
| Aidez-moi à configurer une nouvelle adresse e-mail
| support query
| 1.0
|
| Envoyez-moi les dernières promotions sur les montres connectées
| product query
| 1.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 8
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters