philipp-zettl's picture
Add new SentenceTransformer model.
3822642 verified
|
raw
history blame
19.5 kB
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:844
  - loss:CoSENTLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: Hilf mir, das Software-Update durchzuführen
    sentences:
      - order query
      - support query
      - faq query
  - source_sentence: 马上给我提供这个商品的跟踪信息
    sentences:
      - payment query
      - technical support query
      - support query
  - source_sentence: Downgrade my subscription plan
    sentences:
      - support query
      - product query
      - product query
  - source_sentence: Help resolve issues with my operating system
    sentences:
      - technical support query
      - product query
      - product query
  - source_sentence: Ayúdame a solucionar problemas de red
    sentences:
      - product query
      - support query
      - product query
pipeline_tag: sentence-similarity
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: MiniLM dev
          type: MiniLM-dev
        metrics:
          - type: pearson_cosine
            value: 0.7960441122484267
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8189711310679958
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6824455970208276
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.701004701178111
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6821384996384094
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7065633287645454
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7871337514786776
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7979718712970215
            name: Spearman Dot
          - type: pearson_max
            value: 0.7960441122484267
            name: Pearson Max
          - type: spearman_max
            value: 0.8189711310679958
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: MiniLM test
          type: MiniLM-test
        metrics:
          - type: pearson_cosine
            value: 0.7614418952584415
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7585961676423125
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.620319727073133
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6192118311486844
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6116132687052156
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6124276377795256
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7670292333817905
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7764817683428225
            name: Spearman Dot
          - type: pearson_max
            value: 0.7670292333817905
            name: Pearson Max
          - type: spearman_max
            value: 0.7764817683428225
            name: Spearman Max

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small")
# Run inference
sentences = [
    'Ayúdame a solucionar problemas de red',
    'support query',
    'product query',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.796
spearman_cosine 0.819
pearson_manhattan 0.6824
spearman_manhattan 0.701
pearson_euclidean 0.6821
spearman_euclidean 0.7066
pearson_dot 0.7871
spearman_dot 0.798
pearson_max 0.796
spearman_max 0.819

Semantic Similarity

Metric Value
pearson_cosine 0.7614
spearman_cosine 0.7586
pearson_manhattan 0.6203
spearman_manhattan 0.6192
pearson_euclidean 0.6116
spearman_euclidean 0.6124
pearson_dot 0.767
spearman_dot 0.7765
pearson_max 0.767
spearman_max 0.7765

Training Details

Training Dataset

Unnamed Dataset

  • Size: 844 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 10.83 tokens
    • max: 19 tokens
    • min: 4 tokens
    • mean: 5.34 tokens
    • max: 6 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Покажите мне доступные гостиницы в Москве product query 1.0
    أرني العروض المتاحة على الهواتف الذكية product query 1.0
    Tengo problemas con el micrófono, ¿puedes ayudarme? product query 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 106 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 10.63 tokens
    • max: 17 tokens
    • min: 4 tokens
    • mean: 5.32 tokens
    • max: 6 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Help me with device driver installation product query 0.0
    Check the status of my account verification product query 0.0
    我怎样重置我的密码? product query 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 8
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 8
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss MiniLM-dev_spearman_cosine MiniLM-test_spearman_cosine
0.3704 10 5.613 1.4994 0.2761 -
0.7407 20 4.8872 1.3690 0.3483 -
1.1111 30 3.2993 1.0579 0.4657 -
1.4815 40 2.1968 0.6858 0.5935 -
1.8519 50 0.7306 0.5191 0.6528 -
2.2222 60 0.9746 0.3735 0.6998 -
2.5926 70 0.3889 0.3532 0.7393 -
2.9630 80 0.1857 0.3598 0.7554 -
3.3333 90 0.2923 0.2795 0.7714 -
3.7037 100 0.6776 0.2881 0.7825 -
4.0741 110 0.2404 0.2679 0.7887 -
4.4444 120 0.0168 0.2583 0.7918 -
4.8148 130 0.0179 0.2273 0.7980 -
5.1852 140 0.0006 0.2196 0.8023 -
5.5556 150 0.0276 0.2068 0.8066 -
5.9259 160 0.061 0.2063 0.8103 -
6.2963 170 0.0265 0.2259 0.8103 -
6.6667 180 0.0105 0.2236 0.8165 -
7.0370 190 0.0008 0.2208 0.8177 -
7.4074 200 0.361 0.2340 0.8171 -
7.7778 210 0.0 0.2345 0.8190 -
8.0 216 - - - 0.7586

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}