philipp-zettl
commited on
Commit
•
3822642
1
Parent(s):
594a251
Add new SentenceTransformer model.
Browse files- README.md +98 -93
- model.safetensors +1 -1
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- sentence-similarity
|
7 |
- feature-extraction
|
8 |
- generated_from_trainer
|
9 |
-
- dataset_size:
|
10 |
- loss:CoSENTLoss
|
11 |
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
12 |
datasets: []
|
@@ -22,31 +22,31 @@ metrics:
|
|
22 |
- pearson_max
|
23 |
- spearman_max
|
24 |
widget:
|
25 |
-
- source_sentence:
|
26 |
sentences:
|
27 |
-
-
|
|
|
28 |
- faq query
|
29 |
-
|
30 |
-
- source_sentence: Quiero reservar un vuelo a Madrid
|
31 |
sentences:
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
- source_sentence:
|
36 |
sentences:
|
37 |
-
-
|
38 |
-
-
|
39 |
-
-
|
40 |
-
- source_sentence:
|
41 |
sentences:
|
42 |
-
-
|
43 |
- product query
|
44 |
-
-
|
45 |
-
- source_sentence:
|
46 |
sentences:
|
47 |
- product query
|
48 |
-
-
|
49 |
-
-
|
50 |
pipeline_tag: sentence-similarity
|
51 |
model-index:
|
52 |
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
@@ -59,34 +59,34 @@ model-index:
|
|
59 |
type: MiniLM-dev
|
60 |
metrics:
|
61 |
- type: pearson_cosine
|
62 |
-
value: 0.
|
63 |
name: Pearson Cosine
|
64 |
- type: spearman_cosine
|
65 |
-
value: 0.
|
66 |
name: Spearman Cosine
|
67 |
- type: pearson_manhattan
|
68 |
-
value: 0.
|
69 |
name: Pearson Manhattan
|
70 |
- type: spearman_manhattan
|
71 |
-
value: 0.
|
72 |
name: Spearman Manhattan
|
73 |
- type: pearson_euclidean
|
74 |
-
value: 0.
|
75 |
name: Pearson Euclidean
|
76 |
- type: spearman_euclidean
|
77 |
-
value: 0.
|
78 |
name: Spearman Euclidean
|
79 |
- type: pearson_dot
|
80 |
-
value: 0.
|
81 |
name: Pearson Dot
|
82 |
- type: spearman_dot
|
83 |
-
value: 0.
|
84 |
name: Spearman Dot
|
85 |
- type: pearson_max
|
86 |
-
value: 0.
|
87 |
name: Pearson Max
|
88 |
- type: spearman_max
|
89 |
-
value: 0.
|
90 |
name: Spearman Max
|
91 |
- task:
|
92 |
type: semantic-similarity
|
@@ -96,34 +96,34 @@ model-index:
|
|
96 |
type: MiniLM-test
|
97 |
metrics:
|
98 |
- type: pearson_cosine
|
99 |
-
value: 0.
|
100 |
name: Pearson Cosine
|
101 |
- type: spearman_cosine
|
102 |
-
value: 0.
|
103 |
name: Spearman Cosine
|
104 |
- type: pearson_manhattan
|
105 |
-
value: 0.
|
106 |
name: Pearson Manhattan
|
107 |
- type: spearman_manhattan
|
108 |
-
value: 0.
|
109 |
name: Spearman Manhattan
|
110 |
- type: pearson_euclidean
|
111 |
-
value: 0.
|
112 |
name: Pearson Euclidean
|
113 |
- type: spearman_euclidean
|
114 |
-
value: 0.
|
115 |
name: Spearman Euclidean
|
116 |
- type: pearson_dot
|
117 |
-
value: 0.
|
118 |
name: Pearson Dot
|
119 |
- type: spearman_dot
|
120 |
-
value: 0.
|
121 |
name: Spearman Dot
|
122 |
- type: pearson_max
|
123 |
-
value: 0.
|
124 |
name: Pearson Max
|
125 |
- type: spearman_max
|
126 |
-
value: 0.
|
127 |
name: Spearman Max
|
128 |
---
|
129 |
|
@@ -176,8 +176,8 @@ from sentence_transformers import SentenceTransformer
|
|
176 |
model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small")
|
177 |
# Run inference
|
178 |
sentences = [
|
179 |
-
'
|
180 |
-
'
|
181 |
'product query',
|
182 |
]
|
183 |
embeddings = model.encode(sentences)
|
@@ -222,18 +222,18 @@ You can finetune this model on your own dataset.
|
|
222 |
* Dataset: `MiniLM-dev`
|
223 |
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
224 |
|
225 |
-
| Metric | Value
|
226 |
-
|
227 |
-
| pearson_cosine | 0.
|
228 |
-
| **spearman_cosine** | **0.
|
229 |
-
| pearson_manhattan | 0.
|
230 |
-
| spearman_manhattan | 0.
|
231 |
-
| pearson_euclidean | 0.
|
232 |
-
| spearman_euclidean | 0.
|
233 |
-
| pearson_dot | 0.
|
234 |
-
| spearman_dot | 0.
|
235 |
-
| pearson_max | 0.
|
236 |
-
| spearman_max | 0.
|
237 |
|
238 |
#### Semantic Similarity
|
239 |
* Dataset: `MiniLM-test`
|
@@ -241,16 +241,16 @@ You can finetune this model on your own dataset.
|
|
241 |
|
242 |
| Metric | Value |
|
243 |
|:--------------------|:-----------|
|
244 |
-
| pearson_cosine | 0.
|
245 |
-
| **spearman_cosine** | **0.
|
246 |
-
| pearson_manhattan | 0.
|
247 |
-
| spearman_manhattan | 0.
|
248 |
-
| pearson_euclidean | 0.
|
249 |
-
| spearman_euclidean | 0.
|
250 |
-
| pearson_dot | 0.
|
251 |
-
| spearman_dot | 0.
|
252 |
-
| pearson_max | 0.
|
253 |
-
| spearman_max | 0.
|
254 |
|
255 |
<!--
|
256 |
## Bias, Risks and Limitations
|
@@ -271,19 +271,19 @@ You can finetune this model on your own dataset.
|
|
271 |
#### Unnamed Dataset
|
272 |
|
273 |
|
274 |
-
* Size:
|
275 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
276 |
* Approximate statistics based on the first 1000 samples:
|
277 |
| | sentence1 | sentence2 | score |
|
278 |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
279 |
| type | string | string | float |
|
280 |
-
| details | <ul><li>min:
|
281 |
* Samples:
|
282 |
-
| sentence1
|
283 |
-
|
284 |
-
| <code
|
285 |
-
| <code
|
286 |
-
| <code
|
287 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
288 |
```json
|
289 |
{
|
@@ -297,19 +297,19 @@ You can finetune this model on your own dataset.
|
|
297 |
#### Unnamed Dataset
|
298 |
|
299 |
|
300 |
-
* Size:
|
301 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
302 |
* Approximate statistics based on the first 1000 samples:
|
303 |
| | sentence1 | sentence2 | score |
|
304 |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
305 |
| type | string | string | float |
|
306 |
-
| details | <ul><li>min: 7 tokens</li><li>mean:
|
307 |
* Samples:
|
308 |
-
| sentence1
|
309 |
-
|
310 |
-
| <code
|
311 |
-
| <code>
|
312 |
-
| <code
|
313 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
314 |
```json
|
315 |
{
|
@@ -447,23 +447,28 @@ You can finetune this model on your own dataset.
|
|
447 |
### Training Logs
|
448 |
| Epoch | Step | Training Loss | loss | MiniLM-dev_spearman_cosine | MiniLM-test_spearman_cosine |
|
449 |
|:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:|
|
450 |
-
| 0.
|
451 |
-
| 0.
|
452 |
-
| 1.
|
453 |
-
| 1.
|
454 |
-
|
|
455 |
-
| 2.
|
456 |
-
|
|
457 |
-
|
|
458 |
-
|
|
459 |
-
|
|
460 |
-
|
|
461 |
-
|
|
462 |
-
|
|
463 |
-
|
|
464 |
-
|
|
465 |
-
|
|
466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
467 |
|
468 |
|
469 |
### Framework Versions
|
|
|
6 |
- sentence-similarity
|
7 |
- feature-extraction
|
8 |
- generated_from_trainer
|
9 |
+
- dataset_size:844
|
10 |
- loss:CoSENTLoss
|
11 |
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
12 |
datasets: []
|
|
|
22 |
- pearson_max
|
23 |
- spearman_max
|
24 |
widget:
|
25 |
+
- source_sentence: Hilf mir, das Software-Update durchzuführen
|
26 |
sentences:
|
27 |
+
- order query
|
28 |
+
- support query
|
29 |
- faq query
|
30 |
+
- source_sentence: 马上给我提供这个商品的跟踪信息
|
|
|
31 |
sentences:
|
32 |
+
- payment query
|
33 |
+
- technical support query
|
34 |
+
- support query
|
35 |
+
- source_sentence: Downgrade my subscription plan
|
36 |
sentences:
|
37 |
+
- support query
|
38 |
+
- product query
|
39 |
+
- product query
|
40 |
+
- source_sentence: Help resolve issues with my operating system
|
41 |
sentences:
|
42 |
+
- technical support query
|
43 |
- product query
|
44 |
+
- product query
|
45 |
+
- source_sentence: Ayúdame a solucionar problemas de red
|
46 |
sentences:
|
47 |
- product query
|
48 |
+
- support query
|
49 |
+
- product query
|
50 |
pipeline_tag: sentence-similarity
|
51 |
model-index:
|
52 |
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
|
|
59 |
type: MiniLM-dev
|
60 |
metrics:
|
61 |
- type: pearson_cosine
|
62 |
+
value: 0.7960441122484267
|
63 |
name: Pearson Cosine
|
64 |
- type: spearman_cosine
|
65 |
+
value: 0.8189711310679958
|
66 |
name: Spearman Cosine
|
67 |
- type: pearson_manhattan
|
68 |
+
value: 0.6824455970208276
|
69 |
name: Pearson Manhattan
|
70 |
- type: spearman_manhattan
|
71 |
+
value: 0.701004701178111
|
72 |
name: Spearman Manhattan
|
73 |
- type: pearson_euclidean
|
74 |
+
value: 0.6821384996384094
|
75 |
name: Pearson Euclidean
|
76 |
- type: spearman_euclidean
|
77 |
+
value: 0.7065633287645454
|
78 |
name: Spearman Euclidean
|
79 |
- type: pearson_dot
|
80 |
+
value: 0.7871337514786776
|
81 |
name: Pearson Dot
|
82 |
- type: spearman_dot
|
83 |
+
value: 0.7979718712970215
|
84 |
name: Spearman Dot
|
85 |
- type: pearson_max
|
86 |
+
value: 0.7960441122484267
|
87 |
name: Pearson Max
|
88 |
- type: spearman_max
|
89 |
+
value: 0.8189711310679958
|
90 |
name: Spearman Max
|
91 |
- task:
|
92 |
type: semantic-similarity
|
|
|
96 |
type: MiniLM-test
|
97 |
metrics:
|
98 |
- type: pearson_cosine
|
99 |
+
value: 0.7614418952584415
|
100 |
name: Pearson Cosine
|
101 |
- type: spearman_cosine
|
102 |
+
value: 0.7585961676423125
|
103 |
name: Spearman Cosine
|
104 |
- type: pearson_manhattan
|
105 |
+
value: 0.620319727073133
|
106 |
name: Pearson Manhattan
|
107 |
- type: spearman_manhattan
|
108 |
+
value: 0.6192118311486844
|
109 |
name: Spearman Manhattan
|
110 |
- type: pearson_euclidean
|
111 |
+
value: 0.6116132687052156
|
112 |
name: Pearson Euclidean
|
113 |
- type: spearman_euclidean
|
114 |
+
value: 0.6124276377795256
|
115 |
name: Spearman Euclidean
|
116 |
- type: pearson_dot
|
117 |
+
value: 0.7670292333817905
|
118 |
name: Pearson Dot
|
119 |
- type: spearman_dot
|
120 |
+
value: 0.7764817683428225
|
121 |
name: Spearman Dot
|
122 |
- type: pearson_max
|
123 |
+
value: 0.7670292333817905
|
124 |
name: Pearson Max
|
125 |
- type: spearman_max
|
126 |
+
value: 0.7764817683428225
|
127 |
name: Spearman Max
|
128 |
---
|
129 |
|
|
|
176 |
model = SentenceTransformer("philipp-zettl/MiniLM-similarity-small")
|
177 |
# Run inference
|
178 |
sentences = [
|
179 |
+
'Ayúdame a solucionar problemas de red',
|
180 |
+
'support query',
|
181 |
'product query',
|
182 |
]
|
183 |
embeddings = model.encode(sentences)
|
|
|
222 |
* Dataset: `MiniLM-dev`
|
223 |
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
224 |
|
225 |
+
| Metric | Value |
|
226 |
+
|:--------------------|:----------|
|
227 |
+
| pearson_cosine | 0.796 |
|
228 |
+
| **spearman_cosine** | **0.819** |
|
229 |
+
| pearson_manhattan | 0.6824 |
|
230 |
+
| spearman_manhattan | 0.701 |
|
231 |
+
| pearson_euclidean | 0.6821 |
|
232 |
+
| spearman_euclidean | 0.7066 |
|
233 |
+
| pearson_dot | 0.7871 |
|
234 |
+
| spearman_dot | 0.798 |
|
235 |
+
| pearson_max | 0.796 |
|
236 |
+
| spearman_max | 0.819 |
|
237 |
|
238 |
#### Semantic Similarity
|
239 |
* Dataset: `MiniLM-test`
|
|
|
241 |
|
242 |
| Metric | Value |
|
243 |
|:--------------------|:-----------|
|
244 |
+
| pearson_cosine | 0.7614 |
|
245 |
+
| **spearman_cosine** | **0.7586** |
|
246 |
+
| pearson_manhattan | 0.6203 |
|
247 |
+
| spearman_manhattan | 0.6192 |
|
248 |
+
| pearson_euclidean | 0.6116 |
|
249 |
+
| spearman_euclidean | 0.6124 |
|
250 |
+
| pearson_dot | 0.767 |
|
251 |
+
| spearman_dot | 0.7765 |
|
252 |
+
| pearson_max | 0.767 |
|
253 |
+
| spearman_max | 0.7765 |
|
254 |
|
255 |
<!--
|
256 |
## Bias, Risks and Limitations
|
|
|
271 |
#### Unnamed Dataset
|
272 |
|
273 |
|
274 |
+
* Size: 844 training samples
|
275 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
276 |
* Approximate statistics based on the first 1000 samples:
|
277 |
| | sentence1 | sentence2 | score |
|
278 |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
279 |
| type | string | string | float |
|
280 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 10.83 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 5.34 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
|
281 |
* Samples:
|
282 |
+
| sentence1 | sentence2 | score |
|
283 |
+
|:-----------------------------------------------------------------|:---------------------------|:-----------------|
|
284 |
+
| <code>Покажите мне доступные гостиницы в Москве</code> | <code>product query</code> | <code>1.0</code> |
|
285 |
+
| <code>أرني العروض المتاحة على الهواتف الذكية</code> | <code>product query</code> | <code>1.0</code> |
|
286 |
+
| <code>Tengo problemas con el micrófono, ¿puedes ayudarme?</code> | <code>product query</code> | <code>0.0</code> |
|
287 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
288 |
```json
|
289 |
{
|
|
|
297 |
#### Unnamed Dataset
|
298 |
|
299 |
|
300 |
+
* Size: 106 evaluation samples
|
301 |
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
302 |
* Approximate statistics based on the first 1000 samples:
|
303 |
| | sentence1 | sentence2 | score |
|
304 |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
305 |
| type | string | string | float |
|
306 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 10.63 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 5.32 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
307 |
* Samples:
|
308 |
+
| sentence1 | sentence2 | score |
|
309 |
+
|:---------------------------------------------------------|:---------------------------|:-----------------|
|
310 |
+
| <code>Help me with device driver installation</code> | <code>product query</code> | <code>0.0</code> |
|
311 |
+
| <code>Check the status of my account verification</code> | <code>product query</code> | <code>0.0</code> |
|
312 |
+
| <code>我怎样重置我的密码?</code> | <code>product query</code> | <code>0.0</code> |
|
313 |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
314 |
```json
|
315 |
{
|
|
|
447 |
### Training Logs
|
448 |
| Epoch | Step | Training Loss | loss | MiniLM-dev_spearman_cosine | MiniLM-test_spearman_cosine |
|
449 |
|:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:|
|
450 |
+
| 0.3704 | 10 | 5.613 | 1.4994 | 0.2761 | - |
|
451 |
+
| 0.7407 | 20 | 4.8872 | 1.3690 | 0.3483 | - |
|
452 |
+
| 1.1111 | 30 | 3.2993 | 1.0579 | 0.4657 | - |
|
453 |
+
| 1.4815 | 40 | 2.1968 | 0.6858 | 0.5935 | - |
|
454 |
+
| 1.8519 | 50 | 0.7306 | 0.5191 | 0.6528 | - |
|
455 |
+
| 2.2222 | 60 | 0.9746 | 0.3735 | 0.6998 | - |
|
456 |
+
| 2.5926 | 70 | 0.3889 | 0.3532 | 0.7393 | - |
|
457 |
+
| 2.9630 | 80 | 0.1857 | 0.3598 | 0.7554 | - |
|
458 |
+
| 3.3333 | 90 | 0.2923 | 0.2795 | 0.7714 | - |
|
459 |
+
| 3.7037 | 100 | 0.6776 | 0.2881 | 0.7825 | - |
|
460 |
+
| 4.0741 | 110 | 0.2404 | 0.2679 | 0.7887 | - |
|
461 |
+
| 4.4444 | 120 | 0.0168 | 0.2583 | 0.7918 | - |
|
462 |
+
| 4.8148 | 130 | 0.0179 | 0.2273 | 0.7980 | - |
|
463 |
+
| 5.1852 | 140 | 0.0006 | 0.2196 | 0.8023 | - |
|
464 |
+
| 5.5556 | 150 | 0.0276 | 0.2068 | 0.8066 | - |
|
465 |
+
| 5.9259 | 160 | 0.061 | 0.2063 | 0.8103 | - |
|
466 |
+
| 6.2963 | 170 | 0.0265 | 0.2259 | 0.8103 | - |
|
467 |
+
| 6.6667 | 180 | 0.0105 | 0.2236 | 0.8165 | - |
|
468 |
+
| 7.0370 | 190 | 0.0008 | 0.2208 | 0.8177 | - |
|
469 |
+
| 7.4074 | 200 | 0.361 | 0.2340 | 0.8171 | - |
|
470 |
+
| 7.7778 | 210 | 0.0 | 0.2345 | 0.8190 | - |
|
471 |
+
| 8.0 | 216 | - | - | - | 0.7586 |
|
472 |
|
473 |
|
474 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 470637416
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f39ac4242378e0521f1f13befca327f07a17029f5b7262ca4a7f5dcd050d435
|
3 |
size 470637416
|