|
--- |
|
base_model: openai/whisper-large-v3 |
|
datasets: |
|
- google/fleurs |
|
language: |
|
- hi |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Whisper Large-v3 Hindi -megha sharma |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Google Fleurs |
|
type: google/fleurs |
|
config: hi_in |
|
split: None |
|
args: 'config: hi, split: test' |
|
metrics: |
|
- type: wer |
|
value: 18.4303006638032 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large-v3 Hindi -megha sharma |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Google Fleurs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1607 |
|
- Wer: 18.4303 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- training_steps: 20000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:-------:| |
|
| 0.1781 | 6.7797 | 2000 | 0.1785 | 21.1734 | |
|
| 0.1519 | 13.5593 | 4000 | 0.1621 | 19.2405 | |
|
| 0.1286 | 20.3390 | 6000 | 0.1577 | 18.7427 | |
|
| 0.1259 | 27.1186 | 8000 | 0.1564 | 18.2058 | |
|
| 0.111 | 33.8983 | 10000 | 0.1568 | 17.9032 | |
|
| 0.1067 | 40.6780 | 12000 | 0.1582 | 17.8153 | |
|
| 0.1034 | 47.4576 | 14000 | 0.1591 | 18.8403 | |
|
| 0.0995 | 54.2373 | 16000 | 0.1603 | 18.8598 | |
|
| 0.0929 | 61.0169 | 18000 | 0.1607 | 18.4303 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.1.dev0 |
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |