--- base_model: openai/whisper-large-v3 datasets: - google/fleurs language: - hi library_name: peft license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Large-v3 Hindi -megha sharma results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: hi_in split: None args: 'config: hi, split: test' metrics: - type: wer value: 18.4303006638032 name: Wer --- # Whisper Large-v3 Hindi -megha sharma This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1607 - Wer: 18.4303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.1781 | 6.7797 | 2000 | 0.1785 | 21.1734 | | 0.1519 | 13.5593 | 4000 | 0.1621 | 19.2405 | | 0.1286 | 20.3390 | 6000 | 0.1577 | 18.7427 | | 0.1259 | 27.1186 | 8000 | 0.1564 | 18.2058 | | 0.111 | 33.8983 | 10000 | 0.1568 | 17.9032 | | 0.1067 | 40.6780 | 12000 | 0.1582 | 17.8153 | | 0.1034 | 47.4576 | 14000 | 0.1591 | 18.8403 | | 0.0995 | 54.2373 | 16000 | 0.1603 | 18.8598 | | 0.0929 | 61.0169 | 18000 | 0.1607 | 18.4303 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1