|
|
|
import math |
|
import warnings |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import (Conv2d, build_activation_layer, build_norm_layer, |
|
constant_init, normal_init, trunc_normal_init) |
|
from mmcv.cnn.bricks.drop import build_dropout |
|
from mmcv.cnn.bricks.transformer import MultiheadAttention |
|
from mmcv.cnn.utils.weight_init import trunc_normal_ |
|
from mmcv.runner import (BaseModule, ModuleList, Sequential, _load_checkpoint, |
|
load_state_dict) |
|
from torch.nn.modules.utils import _pair as to_2tuple |
|
|
|
from ...utils import get_root_logger |
|
from ..builder import BACKBONES |
|
from ..utils import PatchEmbed, nchw_to_nlc, nlc_to_nchw, pvt_convert |
|
|
|
|
|
class MixFFN(BaseModule): |
|
"""An implementation of MixFFN of PVT. |
|
|
|
The differences between MixFFN & FFN: |
|
1. Use 1X1 Conv to replace Linear layer. |
|
2. Introduce 3X3 Depth-wise Conv to encode positional information. |
|
|
|
Args: |
|
embed_dims (int): The feature dimension. Same as |
|
`MultiheadAttention`. |
|
feedforward_channels (int): The hidden dimension of FFNs. |
|
act_cfg (dict, optional): The activation config for FFNs. |
|
Default: dict(type='GELU'). |
|
ffn_drop (float, optional): Probability of an element to be |
|
zeroed in FFN. Default 0.0. |
|
dropout_layer (obj:`ConfigDict`): The dropout_layer used |
|
when adding the shortcut. |
|
Default: None. |
|
use_conv (bool): If True, add 3x3 DWConv between two Linear layers. |
|
Defaults: False. |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims, |
|
feedforward_channels, |
|
act_cfg=dict(type='GELU'), |
|
ffn_drop=0., |
|
dropout_layer=None, |
|
use_conv=False, |
|
init_cfg=None): |
|
super(MixFFN, self).__init__(init_cfg=init_cfg) |
|
|
|
self.embed_dims = embed_dims |
|
self.feedforward_channels = feedforward_channels |
|
self.act_cfg = act_cfg |
|
activate = build_activation_layer(act_cfg) |
|
|
|
in_channels = embed_dims |
|
fc1 = Conv2d( |
|
in_channels=in_channels, |
|
out_channels=feedforward_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias=True) |
|
if use_conv: |
|
|
|
dw_conv = Conv2d( |
|
in_channels=feedforward_channels, |
|
out_channels=feedforward_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=(3 - 1) // 2, |
|
bias=True, |
|
groups=feedforward_channels) |
|
fc2 = Conv2d( |
|
in_channels=feedforward_channels, |
|
out_channels=in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias=True) |
|
drop = nn.Dropout(ffn_drop) |
|
layers = [fc1, activate, drop, fc2, drop] |
|
if use_conv: |
|
layers.insert(1, dw_conv) |
|
self.layers = Sequential(*layers) |
|
self.dropout_layer = build_dropout( |
|
dropout_layer) if dropout_layer else torch.nn.Identity() |
|
|
|
def forward(self, x, hw_shape, identity=None): |
|
out = nlc_to_nchw(x, hw_shape) |
|
out = self.layers(out) |
|
out = nchw_to_nlc(out) |
|
if identity is None: |
|
identity = x |
|
return identity + self.dropout_layer(out) |
|
|
|
|
|
class SpatialReductionAttention(MultiheadAttention): |
|
"""An implementation of Spatial Reduction Attention of PVT. |
|
|
|
This module is modified from MultiheadAttention which is a module from |
|
mmcv.cnn.bricks.transformer. |
|
|
|
Args: |
|
embed_dims (int): The embedding dimension. |
|
num_heads (int): Parallel attention heads. |
|
attn_drop (float): A Dropout layer on attn_output_weights. |
|
Default: 0.0. |
|
proj_drop (float): A Dropout layer after `nn.MultiheadAttention`. |
|
Default: 0.0. |
|
dropout_layer (obj:`ConfigDict`): The dropout_layer used |
|
when adding the shortcut. Default: None. |
|
batch_first (bool): Key, Query and Value are shape of |
|
(batch, n, embed_dim) |
|
or (n, batch, embed_dim). Default: False. |
|
qkv_bias (bool): enable bias for qkv if True. Default: True. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN'). |
|
sr_ratio (int): The ratio of spatial reduction of Spatial Reduction |
|
Attention of PVT. Default: 1. |
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims, |
|
num_heads, |
|
attn_drop=0., |
|
proj_drop=0., |
|
dropout_layer=None, |
|
batch_first=True, |
|
qkv_bias=True, |
|
norm_cfg=dict(type='LN'), |
|
sr_ratio=1, |
|
init_cfg=None): |
|
super().__init__( |
|
embed_dims, |
|
num_heads, |
|
attn_drop, |
|
proj_drop, |
|
batch_first=batch_first, |
|
dropout_layer=dropout_layer, |
|
bias=qkv_bias, |
|
init_cfg=init_cfg) |
|
|
|
self.sr_ratio = sr_ratio |
|
if sr_ratio > 1: |
|
self.sr = Conv2d( |
|
in_channels=embed_dims, |
|
out_channels=embed_dims, |
|
kernel_size=sr_ratio, |
|
stride=sr_ratio) |
|
|
|
self.norm = build_norm_layer(norm_cfg, embed_dims)[1] |
|
|
|
|
|
from mmpose import digit_version, mmcv_version |
|
if mmcv_version < digit_version('1.3.17'): |
|
warnings.warn('The legacy version of forward function in' |
|
'SpatialReductionAttention is deprecated in' |
|
'mmcv>=1.3.17 and will no longer support in the' |
|
'future. Please upgrade your mmcv.') |
|
self.forward = self.legacy_forward |
|
|
|
def forward(self, x, hw_shape, identity=None): |
|
|
|
x_q = x |
|
if self.sr_ratio > 1: |
|
x_kv = nlc_to_nchw(x, hw_shape) |
|
x_kv = self.sr(x_kv) |
|
x_kv = nchw_to_nlc(x_kv) |
|
x_kv = self.norm(x_kv) |
|
else: |
|
x_kv = x |
|
|
|
if identity is None: |
|
identity = x_q |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.batch_first: |
|
x_q = x_q.transpose(0, 1) |
|
x_kv = x_kv.transpose(0, 1) |
|
|
|
out = self.attn(query=x_q, key=x_kv, value=x_kv)[0] |
|
|
|
if self.batch_first: |
|
out = out.transpose(0, 1) |
|
|
|
return identity + self.dropout_layer(self.proj_drop(out)) |
|
|
|
def legacy_forward(self, x, hw_shape, identity=None): |
|
"""multi head attention forward in mmcv version < 1.3.17.""" |
|
x_q = x |
|
if self.sr_ratio > 1: |
|
x_kv = nlc_to_nchw(x, hw_shape) |
|
x_kv = self.sr(x_kv) |
|
x_kv = nchw_to_nlc(x_kv) |
|
x_kv = self.norm(x_kv) |
|
else: |
|
x_kv = x |
|
|
|
if identity is None: |
|
identity = x_q |
|
|
|
out = self.attn(query=x_q, key=x_kv, value=x_kv)[0] |
|
|
|
return identity + self.dropout_layer(self.proj_drop(out)) |
|
|
|
|
|
class PVTEncoderLayer(BaseModule): |
|
"""Implements one encoder layer in PVT. |
|
|
|
Args: |
|
embed_dims (int): The feature dimension. |
|
num_heads (int): Parallel attention heads. |
|
feedforward_channels (int): The hidden dimension for FFNs. |
|
drop_rate (float): Probability of an element to be zeroed. |
|
after the feed forward layer. Default: 0.0. |
|
attn_drop_rate (float): The drop out rate for attention layer. |
|
Default: 0.0. |
|
drop_path_rate (float): stochastic depth rate. Default: 0.0. |
|
qkv_bias (bool): enable bias for qkv if True. |
|
Default: True. |
|
act_cfg (dict): The activation config for FFNs. |
|
Default: dict(type='GELU'). |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN'). |
|
sr_ratio (int): The ratio of spatial reduction of Spatial Reduction |
|
Attention of PVT. Default: 1. |
|
use_conv_ffn (bool): If True, use Convolutional FFN to replace FFN. |
|
Default: False. |
|
init_cfg (dict, optional): Initialization config dict. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
embed_dims, |
|
num_heads, |
|
feedforward_channels, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
qkv_bias=True, |
|
act_cfg=dict(type='GELU'), |
|
norm_cfg=dict(type='LN'), |
|
sr_ratio=1, |
|
use_conv_ffn=False, |
|
init_cfg=None): |
|
super(PVTEncoderLayer, self).__init__(init_cfg=init_cfg) |
|
|
|
|
|
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1] |
|
|
|
self.attn = SpatialReductionAttention( |
|
embed_dims=embed_dims, |
|
num_heads=num_heads, |
|
attn_drop=attn_drop_rate, |
|
proj_drop=drop_rate, |
|
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), |
|
qkv_bias=qkv_bias, |
|
norm_cfg=norm_cfg, |
|
sr_ratio=sr_ratio) |
|
|
|
|
|
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1] |
|
|
|
self.ffn = MixFFN( |
|
embed_dims=embed_dims, |
|
feedforward_channels=feedforward_channels, |
|
ffn_drop=drop_rate, |
|
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate), |
|
use_conv=use_conv_ffn, |
|
act_cfg=act_cfg) |
|
|
|
def forward(self, x, hw_shape): |
|
x = self.attn(self.norm1(x), hw_shape, identity=x) |
|
x = self.ffn(self.norm2(x), hw_shape, identity=x) |
|
|
|
return x |
|
|
|
|
|
class AbsolutePositionEmbedding(BaseModule): |
|
"""An implementation of the absolute position embedding in PVT. |
|
|
|
Args: |
|
pos_shape (int): The shape of the absolute position embedding. |
|
pos_dim (int): The dimension of the absolute position embedding. |
|
drop_rate (float): Probability of an element to be zeroed. |
|
Default: 0.0. |
|
""" |
|
|
|
def __init__(self, pos_shape, pos_dim, drop_rate=0., init_cfg=None): |
|
super().__init__(init_cfg=init_cfg) |
|
|
|
if isinstance(pos_shape, int): |
|
pos_shape = to_2tuple(pos_shape) |
|
elif isinstance(pos_shape, tuple): |
|
if len(pos_shape) == 1: |
|
pos_shape = to_2tuple(pos_shape[0]) |
|
assert len(pos_shape) == 2, \ |
|
f'The size of image should have length 1 or 2, ' \ |
|
f'but got {len(pos_shape)}' |
|
self.pos_shape = pos_shape |
|
self.pos_dim = pos_dim |
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.zeros(1, pos_shape[0] * pos_shape[1], pos_dim)) |
|
self.drop = nn.Dropout(p=drop_rate) |
|
|
|
def init_weights(self): |
|
trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
def resize_pos_embed(self, pos_embed, input_shape, mode='bilinear'): |
|
"""Resize pos_embed weights. |
|
|
|
Resize pos_embed using bilinear interpolate method. |
|
|
|
Args: |
|
pos_embed (torch.Tensor): Position embedding weights. |
|
input_shape (tuple): Tuple for (downsampled input image height, |
|
downsampled input image width). |
|
mode (str): Algorithm used for upsampling: |
|
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` | |
|
``'trilinear'``. Default: ``'bilinear'``. |
|
|
|
Return: |
|
torch.Tensor: The resized pos_embed of shape [B, L_new, C]. |
|
""" |
|
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]' |
|
pos_h, pos_w = self.pos_shape |
|
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):] |
|
pos_embed_weight = pos_embed_weight.reshape( |
|
1, pos_h, pos_w, self.pos_dim).permute(0, 3, 1, 2).contiguous() |
|
pos_embed_weight = F.interpolate( |
|
pos_embed_weight, size=input_shape, mode=mode) |
|
pos_embed_weight = torch.flatten(pos_embed_weight, |
|
2).transpose(1, 2).contiguous() |
|
pos_embed = pos_embed_weight |
|
|
|
return pos_embed |
|
|
|
def forward(self, x, hw_shape, mode='bilinear'): |
|
pos_embed = self.resize_pos_embed(self.pos_embed, hw_shape, mode) |
|
return self.drop(x + pos_embed) |
|
|
|
|
|
@BACKBONES.register_module() |
|
class PyramidVisionTransformer(BaseModule): |
|
"""Pyramid Vision Transformer (PVT) |
|
|
|
Implementation of `Pyramid Vision Transformer: A Versatile Backbone for |
|
Dense Prediction without Convolutions |
|
<https://arxiv.org/pdf/2102.12122.pdf>`_. |
|
|
|
Args: |
|
pretrain_img_size (int | tuple[int]): The size of input image when |
|
pretrain. Defaults: 224. |
|
in_channels (int): Number of input channels. Default: 3. |
|
embed_dims (int): Embedding dimension. Default: 64. |
|
num_stags (int): The num of stages. Default: 4. |
|
num_layers (Sequence[int]): The layer number of each transformer encode |
|
layer. Default: [3, 4, 6, 3]. |
|
num_heads (Sequence[int]): The attention heads of each transformer |
|
encode layer. Default: [1, 2, 5, 8]. |
|
patch_sizes (Sequence[int]): The patch_size of each patch embedding. |
|
Default: [4, 2, 2, 2]. |
|
strides (Sequence[int]): The stride of each patch embedding. |
|
Default: [4, 2, 2, 2]. |
|
paddings (Sequence[int]): The padding of each patch embedding. |
|
Default: [0, 0, 0, 0]. |
|
sr_ratios (Sequence[int]): The spatial reduction rate of each |
|
transformer encode layer. Default: [8, 4, 2, 1]. |
|
out_indices (Sequence[int] | int): Output from which stages. |
|
Default: (0, 1, 2, 3). |
|
mlp_ratios (Sequence[int]): The ratio of the mlp hidden dim to the |
|
embedding dim of each transformer encode layer. |
|
Default: [8, 8, 4, 4]. |
|
qkv_bias (bool): Enable bias for qkv if True. Default: True. |
|
drop_rate (float): Probability of an element to be zeroed. |
|
Default 0.0. |
|
attn_drop_rate (float): The drop out rate for attention layer. |
|
Default 0.0. |
|
drop_path_rate (float): stochastic depth rate. Default 0.1. |
|
use_abs_pos_embed (bool): If True, add absolute position embedding to |
|
the patch embedding. Defaults: True. |
|
use_conv_ffn (bool): If True, use Convolutional FFN to replace FFN. |
|
Default: False. |
|
act_cfg (dict): The activation config for FFNs. |
|
Default: dict(type='GELU'). |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='LN'). |
|
pretrained (str, optional): model pretrained path. Default: None. |
|
convert_weights (bool): The flag indicates whether the |
|
pre-trained model is from the original repo. We may need |
|
to convert some keys to make it compatible. |
|
Default: True. |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
pretrain_img_size=224, |
|
in_channels=3, |
|
embed_dims=64, |
|
num_stages=4, |
|
num_layers=[3, 4, 6, 3], |
|
num_heads=[1, 2, 5, 8], |
|
patch_sizes=[4, 2, 2, 2], |
|
strides=[4, 2, 2, 2], |
|
paddings=[0, 0, 0, 0], |
|
sr_ratios=[8, 4, 2, 1], |
|
out_indices=(0, 1, 2, 3), |
|
mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.1, |
|
use_abs_pos_embed=True, |
|
norm_after_stage=False, |
|
use_conv_ffn=False, |
|
act_cfg=dict(type='GELU'), |
|
norm_cfg=dict(type='LN', eps=1e-6), |
|
pretrained=None, |
|
convert_weights=True, |
|
init_cfg=None): |
|
super().__init__(init_cfg=init_cfg) |
|
|
|
self.convert_weights = convert_weights |
|
if isinstance(pretrain_img_size, int): |
|
pretrain_img_size = to_2tuple(pretrain_img_size) |
|
elif isinstance(pretrain_img_size, tuple): |
|
if len(pretrain_img_size) == 1: |
|
pretrain_img_size = to_2tuple(pretrain_img_size[0]) |
|
assert len(pretrain_img_size) == 2, \ |
|
f'The size of image should have length 1 or 2, ' \ |
|
f'but got {len(pretrain_img_size)}' |
|
|
|
assert not (init_cfg and pretrained), \ |
|
'init_cfg and pretrained cannot be setting at the same time' |
|
if isinstance(pretrained, str): |
|
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) |
|
elif pretrained is None: |
|
self.init_cfg = init_cfg |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
self.embed_dims = embed_dims |
|
|
|
self.num_stages = num_stages |
|
self.num_layers = num_layers |
|
self.num_heads = num_heads |
|
self.patch_sizes = patch_sizes |
|
self.strides = strides |
|
self.sr_ratios = sr_ratios |
|
assert num_stages == len(num_layers) == len(num_heads) \ |
|
== len(patch_sizes) == len(strides) == len(sr_ratios) |
|
|
|
self.out_indices = out_indices |
|
assert max(out_indices) < self.num_stages |
|
self.pretrained = pretrained |
|
|
|
|
|
dpr = [ |
|
x.item() |
|
for x in torch.linspace(0, drop_path_rate, sum(num_layers)) |
|
] |
|
|
|
cur = 0 |
|
self.layers = ModuleList() |
|
for i, num_layer in enumerate(num_layers): |
|
embed_dims_i = embed_dims * num_heads[i] |
|
patch_embed = PatchEmbed( |
|
in_channels=in_channels, |
|
embed_dims=embed_dims_i, |
|
kernel_size=patch_sizes[i], |
|
stride=strides[i], |
|
padding=paddings[i], |
|
bias=True, |
|
norm_cfg=norm_cfg) |
|
|
|
layers = ModuleList() |
|
if use_abs_pos_embed: |
|
pos_shape = pretrain_img_size // np.prod(patch_sizes[:i + 1]) |
|
pos_embed = AbsolutePositionEmbedding( |
|
pos_shape=pos_shape, |
|
pos_dim=embed_dims_i, |
|
drop_rate=drop_rate) |
|
layers.append(pos_embed) |
|
layers.extend([ |
|
PVTEncoderLayer( |
|
embed_dims=embed_dims_i, |
|
num_heads=num_heads[i], |
|
feedforward_channels=mlp_ratios[i] * embed_dims_i, |
|
drop_rate=drop_rate, |
|
attn_drop_rate=attn_drop_rate, |
|
drop_path_rate=dpr[cur + idx], |
|
qkv_bias=qkv_bias, |
|
act_cfg=act_cfg, |
|
norm_cfg=norm_cfg, |
|
sr_ratio=sr_ratios[i], |
|
use_conv_ffn=use_conv_ffn) for idx in range(num_layer) |
|
]) |
|
in_channels = embed_dims_i |
|
|
|
if norm_after_stage: |
|
norm = build_norm_layer(norm_cfg, embed_dims_i)[1] |
|
else: |
|
norm = nn.Identity() |
|
self.layers.append(ModuleList([patch_embed, layers, norm])) |
|
cur += num_layer |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) |
|
|
|
logger = get_root_logger() |
|
if self.init_cfg is None: |
|
logger.warn(f'No pre-trained weights for ' |
|
f'{self.__class__.__name__}, ' |
|
f'training start from scratch') |
|
for m in self.modules(): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_init(m, std=.02, bias=0.) |
|
elif isinstance(m, nn.LayerNorm): |
|
constant_init(m, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[ |
|
1] * m.out_channels |
|
fan_out //= m.groups |
|
normal_init(m, 0, math.sqrt(2.0 / fan_out)) |
|
elif isinstance(m, AbsolutePositionEmbedding): |
|
m.init_weights() |
|
else: |
|
assert 'checkpoint' in self.init_cfg, f'Only support ' \ |
|
f'specify `Pretrained` in ' \ |
|
f'`init_cfg` in ' \ |
|
f'{self.__class__.__name__} ' |
|
checkpoint = _load_checkpoint( |
|
self.init_cfg['checkpoint'], logger=logger, map_location='cpu') |
|
logger.warn(f'Load pre-trained model for ' |
|
f'{self.__class__.__name__} from original repo') |
|
if 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
elif 'model' in checkpoint: |
|
state_dict = checkpoint['model'] |
|
else: |
|
state_dict = checkpoint |
|
if self.convert_weights: |
|
|
|
|
|
|
|
state_dict = pvt_convert(state_dict) |
|
load_state_dict(self, state_dict, strict=False, logger=logger) |
|
|
|
def forward(self, x): |
|
outs = [] |
|
|
|
for i, layer in enumerate(self.layers): |
|
x, hw_shape = layer[0](x) |
|
|
|
for block in layer[1]: |
|
x = block(x, hw_shape) |
|
x = layer[2](x) |
|
x = nlc_to_nchw(x, hw_shape) |
|
if i in self.out_indices: |
|
outs.append(x) |
|
|
|
return outs |
|
|
|
|
|
@BACKBONES.register_module() |
|
class PyramidVisionTransformerV2(PyramidVisionTransformer): |
|
"""Implementation of `PVTv2: Improved Baselines with Pyramid Vision |
|
Transformer <https://arxiv.org/pdf/2106.13797.pdf>`_.""" |
|
|
|
def __init__(self, **kwargs): |
|
super(PyramidVisionTransformerV2, self).__init__( |
|
patch_sizes=[7, 3, 3, 3], |
|
paddings=[3, 1, 1, 1], |
|
use_abs_pos_embed=False, |
|
norm_after_stage=True, |
|
use_conv_ffn=True, |
|
**kwargs) |
|
|