File size: 23,220 Bytes
2cd560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (Conv2d, build_activation_layer, build_norm_layer,
                      constant_init, normal_init, trunc_normal_init)
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import MultiheadAttention
from mmcv.cnn.utils.weight_init import trunc_normal_
from mmcv.runner import (BaseModule, ModuleList, Sequential, _load_checkpoint,
                         load_state_dict)
from torch.nn.modules.utils import _pair as to_2tuple

from ...utils import get_root_logger
from ..builder import BACKBONES
from ..utils import PatchEmbed, nchw_to_nlc, nlc_to_nchw, pvt_convert


class MixFFN(BaseModule):
    """An implementation of MixFFN of PVT.

    The differences between MixFFN & FFN:
        1. Use 1X1 Conv to replace Linear layer.
        2. Introduce 3X3 Depth-wise Conv to encode positional information.

    Args:
        embed_dims (int): The feature dimension. Same as
            `MultiheadAttention`.
        feedforward_channels (int): The hidden dimension of FFNs.
        act_cfg (dict, optional): The activation config for FFNs.
            Default: dict(type='GELU').
        ffn_drop (float, optional): Probability of an element to be
            zeroed in FFN. Default 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut.
            Default: None.
        use_conv (bool): If True, add 3x3 DWConv between two Linear layers.
            Defaults: False.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 feedforward_channels,
                 act_cfg=dict(type='GELU'),
                 ffn_drop=0.,
                 dropout_layer=None,
                 use_conv=False,
                 init_cfg=None):
        super(MixFFN, self).__init__(init_cfg=init_cfg)

        self.embed_dims = embed_dims
        self.feedforward_channels = feedforward_channels
        self.act_cfg = act_cfg
        activate = build_activation_layer(act_cfg)

        in_channels = embed_dims
        fc1 = Conv2d(
            in_channels=in_channels,
            out_channels=feedforward_channels,
            kernel_size=1,
            stride=1,
            bias=True)
        if use_conv:
            # 3x3 depth wise conv to provide positional encode information
            dw_conv = Conv2d(
                in_channels=feedforward_channels,
                out_channels=feedforward_channels,
                kernel_size=3,
                stride=1,
                padding=(3 - 1) // 2,
                bias=True,
                groups=feedforward_channels)
        fc2 = Conv2d(
            in_channels=feedforward_channels,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            bias=True)
        drop = nn.Dropout(ffn_drop)
        layers = [fc1, activate, drop, fc2, drop]
        if use_conv:
            layers.insert(1, dw_conv)
        self.layers = Sequential(*layers)
        self.dropout_layer = build_dropout(
            dropout_layer) if dropout_layer else torch.nn.Identity()

    def forward(self, x, hw_shape, identity=None):
        out = nlc_to_nchw(x, hw_shape)
        out = self.layers(out)
        out = nchw_to_nlc(out)
        if identity is None:
            identity = x
        return identity + self.dropout_layer(out)


class SpatialReductionAttention(MultiheadAttention):
    """An implementation of Spatial Reduction Attention of PVT.

    This module is modified from MultiheadAttention which is a module from
    mmcv.cnn.bricks.transformer.

    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        attn_drop (float): A Dropout layer on attn_output_weights.
            Default: 0.0.
        proj_drop (float): A Dropout layer after `nn.MultiheadAttention`.
            Default: 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut. Default: None.
        batch_first (bool): Key, Query and Value are shape of
            (batch, n, embed_dim)
            or (n, batch, embed_dim). Default: False.
        qkv_bias (bool): enable bias for qkv if True. Default: True.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        sr_ratio (int): The ratio of spatial reduction of Spatial Reduction
            Attention of PVT. Default: 1.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 attn_drop=0.,
                 proj_drop=0.,
                 dropout_layer=None,
                 batch_first=True,
                 qkv_bias=True,
                 norm_cfg=dict(type='LN'),
                 sr_ratio=1,
                 init_cfg=None):
        super().__init__(
            embed_dims,
            num_heads,
            attn_drop,
            proj_drop,
            batch_first=batch_first,
            dropout_layer=dropout_layer,
            bias=qkv_bias,
            init_cfg=init_cfg)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = Conv2d(
                in_channels=embed_dims,
                out_channels=embed_dims,
                kernel_size=sr_ratio,
                stride=sr_ratio)
            # The ret[0] of build_norm_layer is norm name.
            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]

        # handle the BC-breaking from https://github.com/open-mmlab/mmcv/pull/1418 # noqa
        from mmpose import digit_version, mmcv_version
        if mmcv_version < digit_version('1.3.17'):
            warnings.warn('The legacy version of forward function in'
                          'SpatialReductionAttention is deprecated in'
                          'mmcv>=1.3.17 and will no longer support in the'
                          'future. Please upgrade your mmcv.')
            self.forward = self.legacy_forward

    def forward(self, x, hw_shape, identity=None):

        x_q = x
        if self.sr_ratio > 1:
            x_kv = nlc_to_nchw(x, hw_shape)
            x_kv = self.sr(x_kv)
            x_kv = nchw_to_nlc(x_kv)
            x_kv = self.norm(x_kv)
        else:
            x_kv = x

        if identity is None:
            identity = x_q

        # Because the dataflow('key', 'query', 'value') of
        # ``torch.nn.MultiheadAttention`` is (num_query, batch,
        # embed_dims), We should adjust the shape of dataflow from
        # batch_first (batch, num_query, embed_dims) to num_query_first
        # (num_query ,batch, embed_dims), and recover ``attn_output``
        # from num_query_first to batch_first.
        if self.batch_first:
            x_q = x_q.transpose(0, 1)
            x_kv = x_kv.transpose(0, 1)

        out = self.attn(query=x_q, key=x_kv, value=x_kv)[0]

        if self.batch_first:
            out = out.transpose(0, 1)

        return identity + self.dropout_layer(self.proj_drop(out))

    def legacy_forward(self, x, hw_shape, identity=None):
        """multi head attention forward in mmcv version < 1.3.17."""
        x_q = x
        if self.sr_ratio > 1:
            x_kv = nlc_to_nchw(x, hw_shape)
            x_kv = self.sr(x_kv)
            x_kv = nchw_to_nlc(x_kv)
            x_kv = self.norm(x_kv)
        else:
            x_kv = x

        if identity is None:
            identity = x_q

        out = self.attn(query=x_q, key=x_kv, value=x_kv)[0]

        return identity + self.dropout_layer(self.proj_drop(out))


class PVTEncoderLayer(BaseModule):
    """Implements one encoder layer in PVT.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        drop_rate (float): Probability of an element to be zeroed.
            after the feed forward layer. Default: 0.0.
        attn_drop_rate (float): The drop out rate for attention layer.
            Default: 0.0.
        drop_path_rate (float): stochastic depth rate. Default: 0.0.
        qkv_bias (bool): enable bias for qkv if True.
            Default: True.
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        sr_ratio (int): The ratio of spatial reduction of Spatial Reduction
            Attention of PVT. Default: 1.
        use_conv_ffn (bool): If True, use Convolutional FFN to replace FFN.
            Default: False.
        init_cfg (dict, optional): Initialization config dict.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 qkv_bias=True,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 sr_ratio=1,
                 use_conv_ffn=False,
                 init_cfg=None):
        super(PVTEncoderLayer, self).__init__(init_cfg=init_cfg)

        # The ret[0] of build_norm_layer is norm name.
        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]

        self.attn = SpatialReductionAttention(
            embed_dims=embed_dims,
            num_heads=num_heads,
            attn_drop=attn_drop_rate,
            proj_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            qkv_bias=qkv_bias,
            norm_cfg=norm_cfg,
            sr_ratio=sr_ratio)

        # The ret[0] of build_norm_layer is norm name.
        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]

        self.ffn = MixFFN(
            embed_dims=embed_dims,
            feedforward_channels=feedforward_channels,
            ffn_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            use_conv=use_conv_ffn,
            act_cfg=act_cfg)

    def forward(self, x, hw_shape):
        x = self.attn(self.norm1(x), hw_shape, identity=x)
        x = self.ffn(self.norm2(x), hw_shape, identity=x)

        return x


class AbsolutePositionEmbedding(BaseModule):
    """An implementation of the absolute position embedding in PVT.

    Args:
        pos_shape (int): The shape of the absolute position embedding.
        pos_dim (int): The dimension of the absolute position embedding.
        drop_rate (float): Probability of an element to be zeroed.
            Default: 0.0.
    """

    def __init__(self, pos_shape, pos_dim, drop_rate=0., init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        if isinstance(pos_shape, int):
            pos_shape = to_2tuple(pos_shape)
        elif isinstance(pos_shape, tuple):
            if len(pos_shape) == 1:
                pos_shape = to_2tuple(pos_shape[0])
            assert len(pos_shape) == 2, \
                f'The size of image should have length 1 or 2, ' \
                f'but got {len(pos_shape)}'
        self.pos_shape = pos_shape
        self.pos_dim = pos_dim

        self.pos_embed = nn.Parameter(
            torch.zeros(1, pos_shape[0] * pos_shape[1], pos_dim))
        self.drop = nn.Dropout(p=drop_rate)

    def init_weights(self):
        trunc_normal_(self.pos_embed, std=0.02)

    def resize_pos_embed(self, pos_embed, input_shape, mode='bilinear'):
        """Resize pos_embed weights.

        Resize pos_embed using bilinear interpolate method.

        Args:
            pos_embed (torch.Tensor): Position embedding weights.
            input_shape (tuple): Tuple for (downsampled input image height,
                downsampled input image width).
            mode (str): Algorithm used for upsampling:
                ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
                ``'trilinear'``. Default: ``'bilinear'``.

        Return:
            torch.Tensor: The resized pos_embed of shape [B, L_new, C].
        """
        assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
        pos_h, pos_w = self.pos_shape
        pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
        pos_embed_weight = pos_embed_weight.reshape(
            1, pos_h, pos_w, self.pos_dim).permute(0, 3, 1, 2).contiguous()
        pos_embed_weight = F.interpolate(
            pos_embed_weight, size=input_shape, mode=mode)
        pos_embed_weight = torch.flatten(pos_embed_weight,
                                         2).transpose(1, 2).contiguous()
        pos_embed = pos_embed_weight

        return pos_embed

    def forward(self, x, hw_shape, mode='bilinear'):
        pos_embed = self.resize_pos_embed(self.pos_embed, hw_shape, mode)
        return self.drop(x + pos_embed)


@BACKBONES.register_module()
class PyramidVisionTransformer(BaseModule):
    """Pyramid Vision Transformer (PVT)

    Implementation of `Pyramid Vision Transformer: A Versatile Backbone for
    Dense Prediction without Convolutions
    <https://arxiv.org/pdf/2102.12122.pdf>`_.

    Args:
        pretrain_img_size (int | tuple[int]): The size of input image when
            pretrain. Defaults: 224.
        in_channels (int): Number of input channels. Default: 3.
        embed_dims (int): Embedding dimension. Default: 64.
        num_stags (int): The num of stages. Default: 4.
        num_layers (Sequence[int]): The layer number of each transformer encode
            layer. Default: [3, 4, 6, 3].
        num_heads (Sequence[int]): The attention heads of each transformer
            encode layer. Default: [1, 2, 5, 8].
        patch_sizes (Sequence[int]): The patch_size of each patch embedding.
            Default: [4, 2, 2, 2].
        strides (Sequence[int]): The stride of each patch embedding.
            Default: [4, 2, 2, 2].
        paddings (Sequence[int]): The padding of each patch embedding.
            Default: [0, 0, 0, 0].
        sr_ratios (Sequence[int]): The spatial reduction rate of each
            transformer encode layer. Default: [8, 4, 2, 1].
        out_indices (Sequence[int] | int): Output from which stages.
            Default: (0, 1, 2, 3).
        mlp_ratios (Sequence[int]): The ratio of the mlp hidden dim to the
            embedding dim of each transformer encode layer.
            Default: [8, 8, 4, 4].
        qkv_bias (bool): Enable bias for qkv if True. Default: True.
        drop_rate (float): Probability of an element to be zeroed.
            Default 0.0.
        attn_drop_rate (float): The drop out rate for attention layer.
            Default 0.0.
        drop_path_rate (float): stochastic depth rate. Default 0.1.
        use_abs_pos_embed (bool): If True, add absolute position embedding to
            the patch embedding. Defaults: True.
        use_conv_ffn (bool): If True, use Convolutional FFN to replace FFN.
            Default: False.
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        pretrained (str, optional): model pretrained path. Default: None.
        convert_weights (bool): The flag indicates whether the
            pre-trained model is from the original repo. We may need
            to convert some keys to make it compatible.
            Default: True.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None.
    """

    def __init__(self,
                 pretrain_img_size=224,
                 in_channels=3,
                 embed_dims=64,
                 num_stages=4,
                 num_layers=[3, 4, 6, 3],
                 num_heads=[1, 2, 5, 8],
                 patch_sizes=[4, 2, 2, 2],
                 strides=[4, 2, 2, 2],
                 paddings=[0, 0, 0, 0],
                 sr_ratios=[8, 4, 2, 1],
                 out_indices=(0, 1, 2, 3),
                 mlp_ratios=[8, 8, 4, 4],
                 qkv_bias=True,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.1,
                 use_abs_pos_embed=True,
                 norm_after_stage=False,
                 use_conv_ffn=False,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN', eps=1e-6),
                 pretrained=None,
                 convert_weights=True,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        self.convert_weights = convert_weights
        if isinstance(pretrain_img_size, int):
            pretrain_img_size = to_2tuple(pretrain_img_size)
        elif isinstance(pretrain_img_size, tuple):
            if len(pretrain_img_size) == 1:
                pretrain_img_size = to_2tuple(pretrain_img_size[0])
            assert len(pretrain_img_size) == 2, \
                f'The size of image should have length 1 or 2, ' \
                f'but got {len(pretrain_img_size)}'

        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be setting at the same time'
        if isinstance(pretrained, str):
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            self.init_cfg = init_cfg
        else:
            raise TypeError('pretrained must be a str or None')

        self.embed_dims = embed_dims

        self.num_stages = num_stages
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.patch_sizes = patch_sizes
        self.strides = strides
        self.sr_ratios = sr_ratios
        assert num_stages == len(num_layers) == len(num_heads) \
               == len(patch_sizes) == len(strides) == len(sr_ratios)

        self.out_indices = out_indices
        assert max(out_indices) < self.num_stages
        self.pretrained = pretrained

        # transformer encoder
        dpr = [
            x.item()
            for x in torch.linspace(0, drop_path_rate, sum(num_layers))
        ]  # stochastic num_layer decay rule

        cur = 0
        self.layers = ModuleList()
        for i, num_layer in enumerate(num_layers):
            embed_dims_i = embed_dims * num_heads[i]
            patch_embed = PatchEmbed(
                in_channels=in_channels,
                embed_dims=embed_dims_i,
                kernel_size=patch_sizes[i],
                stride=strides[i],
                padding=paddings[i],
                bias=True,
                norm_cfg=norm_cfg)

            layers = ModuleList()
            if use_abs_pos_embed:
                pos_shape = pretrain_img_size // np.prod(patch_sizes[:i + 1])
                pos_embed = AbsolutePositionEmbedding(
                    pos_shape=pos_shape,
                    pos_dim=embed_dims_i,
                    drop_rate=drop_rate)
                layers.append(pos_embed)
            layers.extend([
                PVTEncoderLayer(
                    embed_dims=embed_dims_i,
                    num_heads=num_heads[i],
                    feedforward_channels=mlp_ratios[i] * embed_dims_i,
                    drop_rate=drop_rate,
                    attn_drop_rate=attn_drop_rate,
                    drop_path_rate=dpr[cur + idx],
                    qkv_bias=qkv_bias,
                    act_cfg=act_cfg,
                    norm_cfg=norm_cfg,
                    sr_ratio=sr_ratios[i],
                    use_conv_ffn=use_conv_ffn) for idx in range(num_layer)
            ])
            in_channels = embed_dims_i
            # The ret[0] of build_norm_layer is norm name.
            if norm_after_stage:
                norm = build_norm_layer(norm_cfg, embed_dims_i)[1]
            else:
                norm = nn.Identity()
            self.layers.append(ModuleList([patch_embed, layers, norm]))
            cur += num_layer

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)

        logger = get_root_logger()
        if self.init_cfg is None:
            logger.warn(f'No pre-trained weights for '
                        f'{self.__class__.__name__}, '
                        f'training start from scratch')
            for m in self.modules():
                if isinstance(m, nn.Linear):
                    trunc_normal_init(m, std=.02, bias=0.)
                elif isinstance(m, nn.LayerNorm):
                    constant_init(m, 1.0)
                elif isinstance(m, nn.Conv2d):
                    fan_out = m.kernel_size[0] * m.kernel_size[
                        1] * m.out_channels
                    fan_out //= m.groups
                    normal_init(m, 0, math.sqrt(2.0 / fan_out))
                elif isinstance(m, AbsolutePositionEmbedding):
                    m.init_weights()
        else:
            assert 'checkpoint' in self.init_cfg, f'Only support ' \
                                                  f'specify `Pretrained` in ' \
                                                  f'`init_cfg` in ' \
                                                  f'{self.__class__.__name__} '
            checkpoint = _load_checkpoint(
                self.init_cfg['checkpoint'], logger=logger, map_location='cpu')
            logger.warn(f'Load pre-trained model for '
                        f'{self.__class__.__name__} from original repo')
            if 'state_dict' in checkpoint:
                state_dict = checkpoint['state_dict']
            elif 'model' in checkpoint:
                state_dict = checkpoint['model']
            else:
                state_dict = checkpoint
            if self.convert_weights:
                # Because pvt backbones are not supported by mmcls,
                # so we need to convert pre-trained weights to match this
                # implementation.
                state_dict = pvt_convert(state_dict)
            load_state_dict(self, state_dict, strict=False, logger=logger)

    def forward(self, x):
        outs = []

        for i, layer in enumerate(self.layers):
            x, hw_shape = layer[0](x)

            for block in layer[1]:
                x = block(x, hw_shape)
            x = layer[2](x)
            x = nlc_to_nchw(x, hw_shape)
            if i in self.out_indices:
                outs.append(x)

        return outs


@BACKBONES.register_module()
class PyramidVisionTransformerV2(PyramidVisionTransformer):
    """Implementation of `PVTv2: Improved Baselines with Pyramid Vision
    Transformer <https://arxiv.org/pdf/2106.13797.pdf>`_."""

    def __init__(self, **kwargs):
        super(PyramidVisionTransformerV2, self).__init__(
            patch_sizes=[7, 3, 3, 3],
            paddings=[3, 1, 1, 1],
            use_abs_pos_embed=False,
            norm_after_stage=True,
            use_conv_ffn=True,
            **kwargs)