jpino's picture
update model card README.md
a2a0678
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - data_cartas_layoutv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-letter_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: data_cartas_layoutv3
          type: data_cartas_layoutv3
          config: default
          split: test
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.7411894273127754
          - name: Recall
            type: recall
            value: 0.8672680412371134
          - name: F1
            type: f1
            value: 0.7992874109263659
          - name: Accuracy
            type: accuracy
            value: 0.9631952889969916

layoutlmv3-finetuned-letter_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the data_cartas_layoutv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1884
  • Precision: 0.7412
  • Recall: 0.8673
  • F1: 0.7993
  • Accuracy: 0.9632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.57 250 0.4503 0.2934 0.2242 0.2542 0.8928
0.5521 7.14 500 0.2833 0.4291 0.4639 0.4458 0.9209
0.5521 10.71 750 0.2116 0.5702 0.6753 0.6183 0.9437
0.173 14.29 1000 0.1786 0.6414 0.7835 0.7053 0.9562
0.173 17.86 1250 0.1772 0.6815 0.8492 0.7562 0.9581
0.077 21.43 1500 0.1737 0.7144 0.8737 0.7861 0.9616
0.077 25.0 1750 0.1768 0.7311 0.8724 0.7955 0.9615
0.0441 28.57 2000 0.1694 0.7726 0.8273 0.7990 0.9646
0.0441 32.14 2250 0.1874 0.7400 0.8621 0.7964 0.9620
0.0293 35.71 2500 0.1862 0.7321 0.8698 0.7951 0.9622
0.0293 39.29 2750 0.1887 0.7332 0.8711 0.7962 0.9620
0.0237 42.86 3000 0.1884 0.7412 0.8673 0.7993 0.9632

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3